Properties

Label 936.2.cl.a.155.5
Level $936$
Weight $2$
Character 936.155
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(155,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 155.5
Character \(\chi\) \(=\) 936.155
Dual form 936.2.cl.a.779.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(1.19661 + 1.25225i) q^{3} +(1.00000 + 1.73205i) q^{4} +(1.62973 - 0.940923i) q^{5} +(-0.580075 - 2.37981i) q^{6} +(-2.40917 + 4.17280i) q^{7} -2.82843i q^{8} +(-0.136235 + 2.99691i) q^{9} -2.66133 q^{10} +(-0.972339 + 3.32484i) q^{12} +(-1.80278 - 3.12250i) q^{13} +(5.90124 - 3.40708i) q^{14} +(3.12842 + 0.914896i) q^{15} +(-2.00000 + 3.46410i) q^{16} +3.88874i q^{17} +(2.28599 - 3.57411i) q^{18} +(3.25945 + 1.88185i) q^{20} +(-8.10822 + 1.97636i) q^{21} +(3.54188 - 3.38453i) q^{24} +(-0.729330 + 1.26324i) q^{25} +5.09902i q^{26} +(-3.91588 + 3.41554i) q^{27} -9.63668 q^{28} +(-3.18458 - 3.33264i) q^{30} +(5.47701 + 9.48646i) q^{31} +(4.89898 - 2.82843i) q^{32} +(2.74975 - 4.76271i) q^{34} +9.06737i q^{35} +(-5.32703 + 2.76094i) q^{36} -11.1407 q^{37} +(1.75291 - 5.99394i) q^{39} +(-2.66133 - 4.60956i) q^{40} +(11.3280 + 3.31284i) q^{42} +(4.84086 - 8.38461i) q^{43} +(2.59783 + 5.01232i) q^{45} +(0.284956 + 0.164519i) q^{47} +(-6.73113 + 1.64070i) q^{48} +(-8.10819 - 14.0438i) q^{49} +(1.78649 - 1.03143i) q^{50} +(-4.86966 + 4.65332i) q^{51} +(3.60555 - 6.24500i) q^{52} +(7.21110 - 1.41421i) q^{54} +(11.8025 + 6.81416i) q^{56} +(1.54377 + 6.33347i) q^{60} -15.4913i q^{62} +(-12.1773 - 7.78853i) q^{63} -8.00000 q^{64} +(-5.87606 - 3.39254i) q^{65} +(-6.73550 + 3.88874i) q^{68} +(6.41160 - 11.1052i) q^{70} +16.8514i q^{71} +(8.47653 + 0.385332i) q^{72} +(13.6445 + 7.87766i) q^{74} +(-2.45461 + 0.598305i) q^{75} +(-6.38522 + 6.10155i) q^{78} +7.52738i q^{80} +(-8.96288 - 0.816569i) q^{81} +(-11.5314 - 12.0675i) q^{84} +(3.65900 + 6.33758i) q^{85} +(-11.8576 + 6.84601i) q^{86} +(0.362567 - 7.97576i) q^{90} +17.3728 q^{91} +(-5.32551 + 18.2102i) q^{93} +(-0.232666 - 0.402989i) q^{94} +(9.40407 + 2.75019i) q^{96} +22.9334i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 48 q^{16} + 60 q^{25} + 12 q^{27} + 48 q^{30} + 48 q^{42} - 84 q^{49} - 60 q^{51} - 192 q^{64} - 168 q^{75} - 96 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.866025 0.500000i
\(3\) 1.19661 + 1.25225i 0.690865 + 0.722984i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 1.62973 0.940923i 0.728835 0.420793i −0.0891605 0.996017i \(-0.528418\pi\)
0.817996 + 0.575224i \(0.195085\pi\)
\(6\) −0.580075 2.37981i −0.236814 0.971555i
\(7\) −2.40917 + 4.17280i −0.910580 + 1.57717i −0.0973341 + 0.995252i \(0.531032\pi\)
−0.813246 + 0.581920i \(0.802302\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −0.136235 + 2.99691i −0.0454118 + 0.998968i
\(10\) −2.66133 −0.841587
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) −0.972339 + 3.32484i −0.280690 + 0.959798i
\(13\) −1.80278 3.12250i −0.500000 0.866025i
\(14\) 5.90124 3.40708i 1.57717 0.910580i
\(15\) 3.12842 + 0.914896i 0.807754 + 0.236225i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 3.88874i 0.943158i 0.881824 + 0.471579i \(0.156316\pi\)
−0.881824 + 0.471579i \(0.843684\pi\)
\(18\) 2.28599 3.57411i 0.538812 0.842426i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 3.25945 + 1.88185i 0.728835 + 0.420793i
\(21\) −8.10822 + 1.97636i −1.76936 + 0.431277i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 3.54188 3.38453i 0.722984 0.690865i
\(25\) −0.729330 + 1.26324i −0.145866 + 0.252647i
\(26\) 5.09902i 1.00000i
\(27\) −3.91588 + 3.41554i −0.753612 + 0.657320i
\(28\) −9.63668 −1.82116
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) −3.18458 3.33264i −0.581423 0.608454i
\(31\) 5.47701 + 9.48646i 0.983700 + 1.70382i 0.647576 + 0.762001i \(0.275783\pi\)
0.336124 + 0.941818i \(0.390884\pi\)
\(32\) 4.89898 2.82843i 0.866025 0.500000i
\(33\) 0 0
\(34\) 2.74975 4.76271i 0.471579 0.816799i
\(35\) 9.06737i 1.53266i
\(36\) −5.32703 + 2.76094i −0.887838 + 0.460156i
\(37\) −11.1407 −1.83152 −0.915759 0.401727i \(-0.868410\pi\)
−0.915759 + 0.401727i \(0.868410\pi\)
\(38\) 0 0
\(39\) 1.75291 5.99394i 0.280690 0.959798i
\(40\) −2.66133 4.60956i −0.420793 0.728835i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 11.3280 + 3.31284i 1.74795 + 0.511182i
\(43\) 4.84086 8.38461i 0.738224 1.27864i −0.215071 0.976599i \(-0.568998\pi\)
0.953294 0.302043i \(-0.0976685\pi\)
\(44\) 0 0
\(45\) 2.59783 + 5.01232i 0.387262 + 0.747193i
\(46\) 0 0
\(47\) 0.284956 + 0.164519i 0.0415651 + 0.0239976i 0.520639 0.853777i \(-0.325694\pi\)
−0.479073 + 0.877775i \(0.659027\pi\)
\(48\) −6.73113 + 1.64070i −0.971555 + 0.236814i
\(49\) −8.10819 14.0438i −1.15831 2.00626i
\(50\) 1.78649 1.03143i 0.252647 0.145866i
\(51\) −4.86966 + 4.65332i −0.681888 + 0.651595i
\(52\) 3.60555 6.24500i 0.500000 0.866025i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 7.21110 1.41421i 0.981307 0.192450i
\(55\) 0 0
\(56\) 11.8025 + 6.81416i 1.57717 + 0.910580i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 1.54377 + 6.33347i 0.199300 + 0.817648i
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 15.4913i 1.96740i
\(63\) −12.1773 7.78853i −1.53419 0.981263i
\(64\) −8.00000 −1.00000
\(65\) −5.87606 3.39254i −0.728835 0.420793i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) −6.73550 + 3.88874i −0.816799 + 0.471579i
\(69\) 0 0
\(70\) 6.41160 11.1052i 0.766332 1.32733i
\(71\) 16.8514i 1.99989i 0.0105471 + 0.999944i \(0.496643\pi\)
−0.0105471 + 0.999944i \(0.503357\pi\)
\(72\) 8.47653 + 0.385332i 0.998968 + 0.0454118i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 13.6445 + 7.87766i 1.58614 + 0.915759i
\(75\) −2.45461 + 0.598305i −0.283433 + 0.0690863i
\(76\) 0 0
\(77\) 0 0
\(78\) −6.38522 + 6.10155i −0.722984 + 0.690865i
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 7.52738i 0.841587i
\(81\) −8.96288 0.816569i −0.995876 0.0907298i
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) −11.5314 12.0675i −1.25818 1.31667i
\(85\) 3.65900 + 6.33758i 0.396875 + 0.687407i
\(86\) −11.8576 + 6.84601i −1.27864 + 0.738224i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0.362567 7.97576i 0.0382179 0.840718i
\(91\) 17.3728 1.82116
\(92\) 0 0
\(93\) −5.32551 + 18.2102i −0.552230 + 1.88831i
\(94\) −0.232666 0.402989i −0.0239976 0.0415651i
\(95\) 0 0
\(96\) 9.40407 + 2.75019i 0.959798 + 0.280690i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 22.9334i 2.31663i
\(99\) 0 0
\(100\) −2.91732 −0.291732
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 9.25448 2.25576i 0.916330 0.223353i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) −8.83176 + 5.09902i −0.866025 + 0.500000i
\(105\) −11.3546 + 10.8501i −1.10809 + 1.05886i
\(106\) 0 0
\(107\) 10.1980i 0.985882i 0.870063 + 0.492941i \(0.164078\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) −9.83176 3.36697i −0.946062 0.323987i
\(109\) 7.41038 0.709785 0.354893 0.934907i \(-0.384517\pi\)
0.354893 + 0.934907i \(0.384517\pi\)
\(110\) 0 0
\(111\) −13.3311 13.9509i −1.26533 1.32416i
\(112\) −9.63668 16.6912i −0.910580 1.57717i
\(113\) 13.3318 7.69710i 1.25415 0.724082i 0.282216 0.959351i \(-0.408930\pi\)
0.971930 + 0.235269i \(0.0755971\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.60343 4.97735i 0.887838 0.460156i
\(118\) 0 0
\(119\) −16.2269 9.36863i −1.48752 0.858821i
\(120\) 2.58772 8.84850i 0.236225 0.807754i
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −10.9540 + 18.9729i −0.983700 + 1.70382i
\(125\) 12.1542i 1.08710i
\(126\) 9.40674 + 18.1496i 0.838019 + 1.61690i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 9.79796 + 5.65685i 0.866025 + 0.500000i
\(129\) 16.2922 3.97119i 1.43445 0.349644i
\(130\) 4.79778 + 8.31000i 0.420793 + 0.728835i
\(131\) 19.1791 11.0730i 1.67568 0.967456i 0.711321 0.702867i \(-0.248097\pi\)
0.964361 0.264588i \(-0.0852361\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −3.16806 + 9.25093i −0.272663 + 0.796193i
\(136\) 10.9990 0.943158
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 2.22772 + 3.85853i 0.188953 + 0.327276i 0.944901 0.327355i \(-0.106157\pi\)
−0.755948 + 0.654631i \(0.772824\pi\)
\(140\) −15.7051 + 9.06737i −1.32733 + 0.766332i
\(141\) 0.134963 + 0.553701i 0.0113660 + 0.0466300i
\(142\) 11.9157 20.6386i 0.999944 1.73195i
\(143\) 0 0
\(144\) −10.1091 6.46574i −0.842426 0.538812i
\(145\) 0 0
\(146\) 0 0
\(147\) 7.88391 26.9584i 0.650254 2.22349i
\(148\) −11.1407 19.2962i −0.915759 1.58614i
\(149\) 11.3260 6.53907i 0.927862 0.535701i 0.0417274 0.999129i \(-0.486714\pi\)
0.886135 + 0.463428i \(0.153381\pi\)
\(150\) 3.42933 + 1.00290i 0.280004 + 0.0818863i
\(151\) −11.9133 + 20.6344i −0.969487 + 1.67920i −0.272445 + 0.962171i \(0.587832\pi\)
−0.697042 + 0.717030i \(0.745501\pi\)
\(152\) 0 0
\(153\) −11.6542 0.529784i −0.942185 0.0428305i
\(154\) 0 0
\(155\) 17.8520 + 10.3069i 1.43391 + 0.827869i
\(156\) 12.1347 2.95781i 0.971555 0.236814i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 5.32266 9.21912i 0.420793 0.728835i
\(161\) 0 0
\(162\) 10.3998 + 7.33780i 0.817089 + 0.576512i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.3487 12.9030i 1.72939 0.998467i 0.837018 0.547176i \(-0.184297\pi\)
0.892377 0.451291i \(-0.149036\pi\)
\(168\) 5.58999 + 22.9335i 0.431277 + 1.76936i
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 10.3492i 0.793749i
\(171\) 0 0
\(172\) 19.3634 1.47645
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −3.51416 6.08670i −0.265645 0.460111i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.8735i 1.48541i 0.669616 + 0.742707i \(0.266459\pi\)
−0.669616 + 0.742707i \(0.733541\pi\)
\(180\) −6.08376 + 9.51189i −0.453457 + 0.708975i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −21.2772 12.2844i −1.57717 0.910580i
\(183\) 0 0
\(184\) 0 0
\(185\) −18.1563 + 10.4825i −1.33488 + 0.770691i
\(186\) 19.3989 18.5371i 1.42240 1.35921i
\(187\) 0 0
\(188\) 0.658078i 0.0479953i
\(189\) −4.81834 24.5688i −0.350483 1.78712i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) −9.57290 10.0180i −0.690865 0.722984i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) −2.78307 11.4178i −0.199300 0.817648i
\(196\) 16.2164 28.0876i 1.15831 2.00626i
\(197\) 25.9853i 1.85137i −0.378289 0.925687i \(-0.623488\pi\)
0.378289 0.925687i \(-0.376512\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 3.57297 + 2.06286i 0.252647 + 0.145866i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −12.9294 3.78117i −0.905242 0.264735i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 14.4222 1.00000
\(209\) 0 0
\(210\) 21.5786 5.25975i 1.48907 0.362957i
\(211\) −13.4308 23.2629i −0.924618 1.60148i −0.792175 0.610294i \(-0.791051\pi\)
−0.132443 0.991191i \(-0.542282\pi\)
\(212\) 0 0
\(213\) −21.1020 + 20.1646i −1.44589 + 1.38165i
\(214\) 7.21110 12.4900i 0.492941 0.853799i
\(215\) 18.2195i 1.24256i
\(216\) 9.66059 + 11.0758i 0.657320 + 0.753612i
\(217\) −52.7802 −3.58295
\(218\) −9.07582 5.23993i −0.614692 0.354893i
\(219\) 0 0
\(220\) 0 0
\(221\) 12.1426 7.01053i 0.816799 0.471579i
\(222\) 6.46243 + 26.5128i 0.433730 + 1.77942i
\(223\) 0.955433 1.65486i 0.0639805 0.110818i −0.832261 0.554384i \(-0.812954\pi\)
0.896241 + 0.443567i \(0.146287\pi\)
\(224\) 27.2566i 1.82116i
\(225\) −3.68644 2.35783i −0.245763 0.157189i
\(226\) −21.7707 −1.44816
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) 7.11548 + 12.3244i 0.470204 + 0.814417i 0.999419 0.0340703i \(-0.0108470\pi\)
−0.529215 + 0.848487i \(0.677514\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.6877i 1.74837i −0.485596 0.874183i \(-0.661397\pi\)
0.485596 0.874183i \(-0.338603\pi\)
\(234\) −15.2813 0.694666i −0.998968 0.0454118i
\(235\) 0.619200 0.0403922
\(236\) 0 0
\(237\) 0 0
\(238\) 13.2492 + 22.9484i 0.858821 + 1.48752i
\(239\) 22.8604 13.1985i 1.47872 0.853737i 0.479006 0.877812i \(-0.340997\pi\)
0.999710 + 0.0240747i \(0.00766395\pi\)
\(240\) −9.42612 + 9.00736i −0.608454 + 0.581423i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 15.5563i 1.00000i
\(243\) −9.70255 12.2008i −0.622419 0.782684i
\(244\) 0 0
\(245\) −26.4283 15.2584i −1.68844 0.974821i
\(246\) 0 0
\(247\) 0 0
\(248\) 26.8318 15.4913i 1.70382 0.983700i
\(249\) 0 0
\(250\) 8.59431 14.8858i 0.543552 0.941460i
\(251\) 31.0798i 1.96174i −0.194668 0.980869i \(-0.562363\pi\)
0.194668 0.980869i \(-0.437637\pi\)
\(252\) 1.31286 28.8802i 0.0827021 1.81928i
\(253\) 0 0
\(254\) 0 0
\(255\) −3.55779 + 12.1656i −0.222798 + 0.761839i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 9.66084 5.57769i 0.602627 0.347927i −0.167448 0.985881i \(-0.553552\pi\)
0.770074 + 0.637954i \(0.220219\pi\)
\(258\) −22.7619 6.65664i −1.41709 0.414424i
\(259\) 26.8398 46.4879i 1.66775 2.88862i
\(260\) 13.5702i 0.841587i
\(261\) 0 0
\(262\) −31.3193 −1.93491
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 10.4215 9.08987i 0.634229 0.553192i
\(271\) 20.7363 1.25964 0.629819 0.776742i \(-0.283129\pi\)
0.629819 + 0.776742i \(0.283129\pi\)
\(272\) −13.4710 7.77748i −0.816799 0.471579i
\(273\) 20.7885 + 21.7550i 1.25818 + 1.31667i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 6.30095i 0.377906i
\(279\) −29.1762 + 15.1217i −1.74673 + 0.905312i
\(280\) 25.6464 1.53266
\(281\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(282\) 0.226230 0.773576i 0.0134718 0.0460658i
\(283\) 16.7476 + 29.0078i 0.995544 + 1.72433i 0.579437 + 0.815017i \(0.303272\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) −29.1874 + 16.8514i −1.73195 + 0.999944i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 7.80911 + 15.0671i 0.460156 + 0.887838i
\(289\) 1.87770 0.110453
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.13692 + 5.27520i −0.533785 + 0.308181i −0.742556 0.669784i \(-0.766387\pi\)
0.208772 + 0.977964i \(0.433053\pi\)
\(294\) −28.7183 + 27.4424i −1.67488 + 1.60048i
\(295\) 0 0
\(296\) 31.5106i 1.83152i
\(297\) 0 0
\(298\) −18.4953 −1.07140
\(299\) 0 0
\(300\) −3.49090 3.65320i −0.201547 0.210917i
\(301\) 23.3249 + 40.3999i 1.34442 + 2.32861i
\(302\) 29.1814 16.8479i 1.67920 0.969487i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 13.8988 + 8.88960i 0.794541 + 0.508185i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −14.5761 25.2466i −0.827869 1.43391i
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) −16.9534 4.95798i −0.959798 0.280690i
\(313\) −17.4228 + 30.1772i −0.984797 + 1.70572i −0.341964 + 0.939713i \(0.611092\pi\)
−0.642834 + 0.766006i \(0.722241\pi\)
\(314\) 0 0
\(315\) −27.1740 1.23530i −1.53108 0.0696010i
\(316\) 0 0
\(317\) −3.97753 2.29643i −0.223400 0.128980i 0.384123 0.923282i \(-0.374504\pi\)
−0.607524 + 0.794301i \(0.707837\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −13.0378 + 7.52738i −0.728835 + 0.420793i
\(321\) −12.7704 + 12.2031i −0.712777 + 0.681111i
\(322\) 0 0
\(323\) 0 0
\(324\) −7.54854 16.3407i −0.419363 0.907818i
\(325\) 5.25927 0.291732
\(326\) 0 0
\(327\) 8.86735 + 9.27961i 0.490366 + 0.513163i
\(328\) 0 0
\(329\) −1.37301 + 0.792710i −0.0756967 + 0.0437035i
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) 1.51776 33.3876i 0.0831725 1.82963i
\(334\) −36.4953 −1.99693
\(335\) 0 0
\(336\) 9.37012 32.0404i 0.511182 1.74795i
\(337\) −14.1434 24.4972i −0.770442 1.33444i −0.937321 0.348467i \(-0.886702\pi\)
0.166879 0.985977i \(-0.446631\pi\)
\(338\) 15.9217 9.19239i 0.866025 0.500000i
\(339\) 25.5916 + 7.48419i 1.38995 + 0.406485i
\(340\) −7.31801 + 12.6752i −0.396875 + 0.687407i
\(341\) 0 0
\(342\) 0 0
\(343\) 44.4077 2.39779
\(344\) −23.7153 13.6920i −1.27864 0.738224i
\(345\) 0 0
\(346\) 0 0
\(347\) 3.98367 2.29997i 0.213855 0.123469i −0.389247 0.921133i \(-0.627265\pi\)
0.603101 + 0.797664i \(0.293931\pi\)
\(348\) 0 0
\(349\) 4.02522 6.97188i 0.215465 0.373196i −0.737951 0.674854i \(-0.764207\pi\)
0.953416 + 0.301658i \(0.0975400\pi\)
\(350\) 9.93954i 0.531291i
\(351\) 17.7245 + 6.06989i 0.946062 + 0.323987i
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 15.8558 + 27.4631i 0.841540 + 1.45759i
\(356\) 0 0
\(357\) −7.68555 31.5307i −0.406762 1.66878i
\(358\) 14.0527 24.3400i 0.742707 1.28641i
\(359\) 34.2913i 1.80983i 0.425595 + 0.904914i \(0.360065\pi\)
−0.425595 + 0.904914i \(0.639935\pi\)
\(360\) 14.1770 7.34777i 0.747193 0.387262i
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −5.34787 + 18.2866i −0.280690 + 0.959798i
\(364\) 17.3728 + 30.0905i 0.910580 + 1.57717i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 29.6491 1.54138
\(371\) 0 0
\(372\) −36.8665 + 8.98612i −1.91144 + 0.465909i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −15.2200 + 14.5439i −0.785959 + 0.751042i
\(376\) 0.465331 0.805977i 0.0239976 0.0415651i
\(377\) 0 0
\(378\) −11.4715 + 33.4976i −0.590032 + 1.72293i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.9607 16.1431i 1.42873 0.824875i 0.431705 0.902015i \(-0.357912\pi\)
0.997020 + 0.0771400i \(0.0245788\pi\)
\(384\) 4.64060 + 19.0385i 0.236814 + 0.971555i
\(385\) 0 0
\(386\) 0 0
\(387\) 24.4684 + 15.6499i 1.24380 + 0.795528i
\(388\) 0 0
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) −4.66507 + 15.9519i −0.236225 + 0.807754i
\(391\) 0 0
\(392\) −39.7219 + 22.9334i −2.00626 + 1.15831i
\(393\) 36.8161 + 10.7667i 1.85712 + 0.543111i
\(394\) −18.3744 + 31.8253i −0.925687 + 1.60334i
\(395\) 0 0
\(396\) 0 0
\(397\) 32.7247 1.64241 0.821203 0.570637i \(-0.193304\pi\)
0.821203 + 0.570637i \(0.193304\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −2.91732 5.05294i −0.145866 0.252647i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 19.7476 34.2039i 0.983700 1.70382i
\(404\) 0 0
\(405\) −15.3754 + 7.10259i −0.764008 + 0.352931i
\(406\) 0 0
\(407\) 0 0
\(408\) 13.1616 + 13.7735i 0.651595 + 0.681888i
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −17.6635 10.1980i −0.866025 0.500000i
\(417\) −2.16610 + 7.40682i −0.106075 + 0.362714i
\(418\) 0 0
\(419\) −35.0575 + 20.2404i −1.71267 + 0.988810i −0.781745 + 0.623598i \(0.785670\pi\)
−0.930924 + 0.365212i \(0.880997\pi\)
\(420\) −30.1475 8.81656i −1.47105 0.430204i
\(421\) 2.81150 4.86966i 0.137024 0.237333i −0.789345 0.613950i \(-0.789580\pi\)
0.926369 + 0.376617i \(0.122913\pi\)
\(422\) 37.9882i 1.84924i
\(423\) −0.531870 + 0.831573i −0.0258604 + 0.0404325i
\(424\) 0 0
\(425\) −4.91240 2.83617i −0.238286 0.137575i
\(426\) 40.1031 9.77505i 1.94300 0.473603i
\(427\) 0 0
\(428\) −17.6635 + 10.1980i −0.853799 + 0.492941i
\(429\) 0 0
\(430\) −12.8831 + 22.3142i −0.621279 + 1.07609i
\(431\) 39.8700i 1.92047i −0.279191 0.960236i \(-0.590066\pi\)
0.279191 0.960236i \(-0.409934\pi\)
\(432\) −4.00000 20.3961i −0.192450 0.981307i
\(433\) −15.3696 −0.738614 −0.369307 0.929308i \(-0.620405\pi\)
−0.369307 + 0.929308i \(0.620405\pi\)
\(434\) 64.6423 + 37.3212i 3.10293 + 1.79148i
\(435\) 0 0
\(436\) 7.41038 + 12.8351i 0.354893 + 0.614692i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 43.1926 22.3862i 2.05679 1.06601i
\(442\) −19.8288 −0.943158
\(443\) 18.1965 + 10.5057i 0.864540 + 0.499142i 0.865530 0.500857i \(-0.166982\pi\)
−0.000990059 1.00000i \(0.500315\pi\)
\(444\) 10.8325 37.0410i 0.514089 1.75789i
\(445\) 0 0
\(446\) −2.34032 + 1.35119i −0.110818 + 0.0639805i
\(447\) 21.7414 + 6.35819i 1.02833 + 0.300732i
\(448\) 19.2734 33.3824i 0.910580 1.57717i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 2.84771 + 5.49444i 0.134242 + 0.259011i
\(451\) 0 0
\(452\) 26.6635 + 15.3942i 1.25415 + 0.724082i
\(453\) −40.0949 + 9.77303i −1.88382 + 0.459177i
\(454\) 0 0
\(455\) 28.3128 16.3464i 1.32733 0.766332i
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 20.1256i 0.940408i
\(459\) −13.2821 15.2278i −0.619957 0.710775i
\(460\) 0 0
\(461\) 35.8709 + 20.7101i 1.67068 + 0.964565i 0.967261 + 0.253784i \(0.0816754\pi\)
0.703414 + 0.710780i \(0.251658\pi\)
\(462\) 0 0
\(463\) −16.5684 28.6973i −0.769999 1.33368i −0.937563 0.347816i \(-0.886923\pi\)
0.167564 0.985861i \(-0.446410\pi\)
\(464\) 0 0
\(465\) 8.45524 + 34.6885i 0.392103 + 1.60864i
\(466\) −18.8710 + 32.6856i −0.874183 + 1.51413i
\(467\) 31.2740i 1.44719i 0.690225 + 0.723595i \(0.257512\pi\)
−0.690225 + 0.723595i \(0.742488\pi\)
\(468\) 18.2245 + 11.6563i 0.842426 + 0.538812i
\(469\) 0 0
\(470\) −0.758362 0.437841i −0.0349806 0.0201961i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 37.4745i 1.71764i
\(477\) 0 0
\(478\) −37.3309 −1.70747
\(479\) −37.7879 21.8169i −1.72657 0.996837i −0.903020 0.429598i \(-0.858655\pi\)
−0.823553 0.567240i \(-0.808011\pi\)
\(480\) 17.9138 4.36644i 0.817648 0.199300i
\(481\) 20.0842 + 34.7868i 0.915759 + 1.58614i
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 3.25586 + 21.8037i 0.147689 + 0.989034i
\(487\) −36.0555 −1.63383 −0.816916 0.576757i \(-0.804318\pi\)
−0.816916 + 0.576757i \(0.804318\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 21.5786 + 37.3752i 0.974821 + 1.68844i
\(491\) −32.6501 + 18.8505i −1.47348 + 0.850712i −0.999554 0.0298549i \(-0.990495\pi\)
−0.473922 + 0.880567i \(0.657162\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −43.8161 −1.96740
\(497\) −70.3174 40.5978i −3.15417 1.82106i
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −21.0517 + 12.1542i −0.941460 + 0.543552i
\(501\) 42.9005 + 12.5461i 1.91665 + 0.560519i
\(502\) −21.9767 + 38.0648i −0.980869 + 1.69892i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −22.0293 + 34.4426i −0.981263 + 1.53419i
\(505\) 0 0
\(506\) 0 0
\(507\) −21.8762 + 5.33227i −0.971555 + 0.236814i
\(508\) 0 0
\(509\) 33.3714 19.2670i 1.47916 0.853994i 0.479440 0.877575i \(-0.340840\pi\)
0.999722 + 0.0235804i \(0.00750657\pi\)
\(510\) 12.9598 12.3840i 0.573868 0.548373i
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −15.7761 −0.695853
\(515\) 0 0
\(516\) 23.1705 + 24.2478i 1.02003 + 1.06745i
\(517\) 0 0
\(518\) −65.7439 + 37.9572i −2.88862 + 1.66775i
\(519\) 0 0
\(520\) −9.59556 + 16.6200i −0.420793 + 0.728835i
\(521\) 42.6660i 1.86923i −0.355658 0.934616i \(-0.615743\pi\)
0.355658 0.934616i \(-0.384257\pi\)
\(522\) 0 0
\(523\) −9.49528 −0.415200 −0.207600 0.978214i \(-0.566565\pi\)
−0.207600 + 0.978214i \(0.566565\pi\)
\(524\) 38.3581 + 22.1461i 1.67568 + 0.967456i
\(525\) 3.41695 11.6840i 0.149128 0.509932i
\(526\) 0 0
\(527\) −36.8904 + 21.2987i −1.60697 + 0.927785i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 9.59556 + 16.6200i 0.414852 + 0.718545i
\(536\) 0 0
\(537\) −24.8865 + 23.7809i −1.07393 + 1.02622i
\(538\) 0 0
\(539\) 0 0
\(540\) −19.1911 + 3.76369i −0.825855 + 0.161963i
\(541\) −42.5604 −1.82981 −0.914907 0.403665i \(-0.867736\pi\)
−0.914907 + 0.403665i \(0.867736\pi\)
\(542\) −25.3966 14.6627i −1.09088 0.629819i
\(543\) 0 0
\(544\) 10.9990 + 19.0509i 0.471579 + 0.816799i
\(545\) 12.0769 6.97259i 0.517317 0.298673i
\(546\) −10.0775 41.3439i −0.431277 1.76936i
\(547\) −5.44685 + 9.43423i −0.232891 + 0.403378i −0.958658 0.284562i \(-0.908152\pi\)
0.725767 + 0.687941i \(0.241485\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −34.8527 10.1926i −1.47942 0.432651i
\(556\) −4.45545 + 7.71706i −0.188953 + 0.327276i
\(557\) 40.7470i 1.72651i 0.504772 + 0.863253i \(0.331577\pi\)
−0.504772 + 0.863253i \(0.668423\pi\)
\(558\) 46.4260 + 2.11047i 1.96537 + 0.0893431i
\(559\) −34.9079 −1.47645
\(560\) −31.4103 18.1347i −1.32733 0.766332i
\(561\) 0 0
\(562\) 0 0
\(563\) −40.8159 + 23.5651i −1.72018 + 0.993149i −0.801665 + 0.597773i \(0.796052\pi\)
−0.918519 + 0.395376i \(0.870614\pi\)
\(564\) −0.824075 + 0.787464i −0.0346998 + 0.0331582i
\(565\) 14.4847 25.0883i 0.609378 1.05547i
\(566\) 47.3695i 1.99109i
\(567\) 25.0005 35.4331i 1.04992 1.48805i
\(568\) 47.6628 1.99989
\(569\) 33.1651 + 19.1479i 1.39035 + 0.802720i 0.993354 0.115099i \(-0.0367185\pi\)
0.396998 + 0.917819i \(0.370052\pi\)
\(570\) 0 0
\(571\) 23.7390 + 41.1171i 0.993444 + 1.72070i 0.595723 + 0.803190i \(0.296866\pi\)
0.397721 + 0.917506i \(0.369801\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.08988 23.9752i 0.0454118 0.998968i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −2.29970 1.32773i −0.0956551 0.0552265i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 10.9677 17.1478i 0.453457 0.708975i
\(586\) 14.9205 0.616361
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 54.5773 13.3031i 2.25073 0.548611i
\(589\) 0 0
\(590\) 0 0
\(591\) 32.5399 31.0943i 1.33851 1.27905i
\(592\) 22.2814 38.5925i 0.915759 1.58614i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −35.2606 −1.44554
\(596\) 22.6520 + 13.0781i 0.927862 + 0.535701i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 1.69226 + 6.94267i 0.0690863 + 0.283433i
\(601\) −23.5063 + 40.7141i −0.958842 + 1.66076i −0.233520 + 0.972352i \(0.575025\pi\)
−0.725321 + 0.688410i \(0.758309\pi\)
\(602\) 65.9727i 2.68885i
\(603\) 0 0
\(604\) −47.6530 −1.93897
\(605\) 17.9270 + 10.3501i 0.728835 + 0.420793i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.18637i 0.0479953i
\(612\) −10.7366 20.7154i −0.434000 0.837371i
\(613\) −11.3661 −0.459073 −0.229537 0.973300i \(-0.573721\pi\)
−0.229537 + 0.973300i \(0.573721\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 41.2275i 1.65574i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 17.2578 + 18.0601i 0.690865 + 0.722984i
\(625\) 7.78951 + 13.4918i 0.311580 + 0.539673i
\(626\) 42.6771 24.6396i 1.70572 0.984797i
\(627\) 0 0
\(628\) 0 0
\(629\) 43.3233i 1.72741i
\(630\) 32.4078 + 20.7279i 1.29116 + 0.825818i
\(631\) 49.7287 1.97967 0.989834 0.142230i \(-0.0454274\pi\)
0.989834 + 0.142230i \(0.0454274\pi\)
\(632\) 0 0
\(633\) 13.0593 44.6554i 0.519062 1.77489i
\(634\) 3.24764 + 5.62508i 0.128980 + 0.223400i
\(635\) 0 0
\(636\) 0 0
\(637\) −29.2345 + 50.6356i −1.15831 + 2.00626i
\(638\) 0 0
\(639\) −50.5019 2.29575i −1.99783 0.0908185i
\(640\) 21.2906 0.841587
\(641\) 40.1635 + 23.1884i 1.58636 + 0.915888i 0.993899 + 0.110291i \(0.0351782\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 24.2694 5.91562i 0.957838 0.233471i
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) 0 0
\(645\) 22.8153 21.8017i 0.898350 0.858440i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −2.30960 + 25.3509i −0.0907298 + 0.995876i
\(649\) 0 0
\(650\) −6.44126 3.71887i −0.252647 0.145866i
\(651\) −63.1574 66.0937i −2.47534 2.59042i
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) −4.29857 17.6353i −0.168087 0.689595i
\(655\) 20.8377 36.0920i 0.814198 1.41023i
\(656\) 0 0
\(657\) 0 0
\(658\) 2.24212 0.0874071
\(659\) −26.5794 15.3456i −1.03539 0.597781i −0.116863 0.993148i \(-0.537284\pi\)
−0.918523 + 0.395367i \(0.870617\pi\)
\(660\) 0 0
\(661\) −3.60555 6.24500i −0.140240 0.242902i 0.787347 0.616510i \(-0.211454\pi\)
−0.927587 + 0.373608i \(0.878121\pi\)
\(662\) 0 0
\(663\) 23.3089 + 6.81661i 0.905242 + 0.264735i
\(664\) 0 0
\(665\) 0 0
\(666\) −25.4675 + 39.8181i −0.986844 + 1.54292i
\(667\) 0 0
\(668\) 44.6974 + 25.8061i 1.72939 + 0.998467i
\(669\) 3.21557 0.783789i 0.124321 0.0303030i
\(670\) 0 0
\(671\) 0 0
\(672\) −34.1320 + 32.6156i −1.31667 + 1.25818i
\(673\) 4.11619 7.12945i 0.158667 0.274820i −0.775721 0.631076i \(-0.782614\pi\)
0.934388 + 0.356256i \(0.115947\pi\)
\(674\) 40.0037i 1.54088i
\(675\) −1.45866 7.43773i −0.0561438 0.286278i
\(676\) −26.0000 −1.00000
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) −26.0511 27.2622i −1.00049 1.04700i
\(679\) 0 0
\(680\) 17.9254 10.3492i 0.687407 0.396875i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −54.3880 31.4010i −2.07655 1.19889i
\(687\) −6.91866 + 23.6578i −0.263963 + 0.902602i
\(688\) 19.3634 + 33.5384i 0.738224 + 1.27864i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −6.50530 −0.246938
\(695\) 7.26116 + 4.19223i 0.275431 + 0.159020i
\(696\) 0 0
\(697\) 0 0
\(698\) −9.85973 + 5.69252i −0.373196 + 0.215465i
\(699\) 33.4195 31.9348i 1.26404 1.20788i
\(700\) 7.02831 12.1734i 0.265645 0.460111i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −17.4159 19.9672i −0.657320 0.753612i
\(703\) 0 0
\(704\) 0 0
\(705\) 0.740943 + 0.775390i 0.0279055 + 0.0292029i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.27096 9.12957i 0.197955 0.342868i −0.749910 0.661540i \(-0.769903\pi\)
0.947865 + 0.318671i \(0.103237\pi\)
\(710\) 44.8470i 1.68308i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −12.8828 + 44.0516i −0.482125 + 1.64859i
\(715\) 0 0
\(716\) −34.4219 + 19.8735i −1.28641 + 0.742707i
\(717\) 43.8827 + 12.8334i 1.63883 + 0.479271i
\(718\) 24.2476 41.9981i 0.904914 1.56736i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −22.5588 1.02549i −0.840718 0.0382179i
\(721\) 0 0
\(722\) −23.2702 13.4350i −0.866025 0.500000i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 19.4804 18.6149i 0.722984 0.690865i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 49.1376i 1.82116i
\(729\) 3.66824 26.7497i 0.135861 0.990728i
\(730\) 0 0
\(731\) 32.6056 + 18.8248i 1.20596 + 0.696262i
\(732\) 0 0
\(733\) −26.0985 45.2040i −0.963971 1.66965i −0.712354 0.701820i \(-0.752371\pi\)
−0.251617 0.967827i \(-0.580962\pi\)
\(734\) 0 0
\(735\) −12.5172 51.3530i −0.461703 1.89418i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) −36.3126 20.9651i −1.33488 0.770691i
\(741\) 0 0
\(742\) 0 0
\(743\) −46.5757 + 26.8905i −1.70870 + 0.986516i −0.772514 + 0.634998i \(0.781001\pi\)
−0.936181 + 0.351518i \(0.885666\pi\)
\(744\) 51.5062 + 15.0628i 1.88831 + 0.552230i
\(745\) 12.3055 21.3138i 0.450839 0.780876i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −42.5544 24.5688i −1.55490 0.897724i
\(750\) 28.9247 7.05034i 1.05618 0.257442i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) −1.13982 + 0.658078i −0.0415651 + 0.0239976i
\(753\) 38.9195 37.1905i 1.41831 1.35530i
\(754\) 0 0
\(755\) 44.8378i 1.63182i
\(756\) 37.7361 32.9144i 1.37245 1.19709i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) −17.8528 + 30.9220i −0.646316 + 1.11945i
\(764\) 0 0
\(765\) −19.4916 + 10.1023i −0.704721 + 0.365249i
\(766\) −45.6596 −1.64975
\(767\) 0 0
\(768\) 7.77871 26.5987i 0.280690 0.959798i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 18.5449 + 5.42341i 0.667879 + 0.195319i
\(772\) 0 0
\(773\) 14.6791i 0.527972i −0.964527 0.263986i \(-0.914963\pi\)
0.964527 0.263986i \(-0.0850372\pi\)
\(774\) −18.9014 36.4689i −0.679397 1.31085i
\(775\) −15.9782 −0.573953
\(776\) 0 0
\(777\) 90.3312 22.0180i 3.24061 0.789892i
\(778\) 0 0
\(779\) 0 0
\(780\) 16.9932 16.2382i 0.608454 0.581423i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 64.8655 2.31663
\(785\) 0 0
\(786\) −37.4771 39.2194i −1.33676 1.39891i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 45.0078 25.9853i 1.60334 0.925687i
\(789\) 0 0
\(790\) 0 0
\(791\) 74.1744i 2.63734i
\(792\) 0 0
\(793\) 0 0
\(794\) −40.0794 23.1399i −1.42236 0.821203i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) −0.639773 + 1.10812i −0.0226336 + 0.0392025i
\(800\) 8.25142i 0.291732i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −48.3716 + 27.9274i −1.70382 + 0.983700i
\(807\) 0 0
\(808\) 0 0
\(809\) 55.9584i 1.96739i −0.179841 0.983696i \(-0.557558\pi\)
0.179841 0.983696i \(-0.442442\pi\)
\(810\) 23.8532 + 2.17316i 0.838116 + 0.0763570i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 24.8133 + 25.9669i 0.870240 + 0.910698i
\(814\) 0 0
\(815\) 0 0
\(816\) −6.38025 26.1756i −0.223353 0.916330i
\(817\) 0 0
\(818\) 0 0
\(819\) −2.36678 + 52.0645i −0.0827021 + 1.81928i
\(820\) 0 0
\(821\) −10.4329 6.02341i −0.364109 0.210218i 0.306773 0.951783i \(-0.400751\pi\)
−0.670882 + 0.741564i \(0.734084\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.4222 + 24.9800i 0.500000 + 0.866025i
\(833\) 54.6127 31.5307i 1.89222 1.09247i
\(834\) 7.89034 7.53980i 0.273220 0.261082i
\(835\) 24.2815 42.0568i 0.840296 1.45544i
\(836\) 0 0
\(837\) −53.8487 18.4409i −1.86128 0.637412i
\(838\) 57.2486 1.97762
\(839\) 7.04517 + 4.06753i 0.243226 + 0.140427i 0.616659 0.787231i \(-0.288486\pi\)
−0.373432 + 0.927657i \(0.621819\pi\)
\(840\) 30.6888 + 32.1156i 1.05886 + 1.10809i
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) −6.88674 + 3.97606i −0.237333 + 0.137024i
\(843\) 0 0
\(844\) 26.8617 46.5258i 0.924618 1.60148i
\(845\) 24.4640i 0.841587i
\(846\) 1.23942 0.642376i 0.0426120 0.0220853i
\(847\) −53.0017 −1.82116
\(848\) 0 0
\(849\) −16.2844 + 55.6832i −0.558879 + 1.91104i
\(850\) 4.01095 + 6.94718i 0.137575 + 0.238286i
\(851\) 0 0
\(852\) −56.0281 16.3852i −1.91949 0.561349i
\(853\) −20.2037 + 34.9939i −0.691762 + 1.19817i 0.279498 + 0.960146i \(0.409832\pi\)
−0.971260 + 0.238021i \(0.923501\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 28.8444 0.985882
\(857\) −13.8365 7.98849i −0.472645 0.272882i 0.244701 0.969599i \(-0.421310\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 25.7476 + 44.5962i 0.878498 + 1.52160i 0.852989 + 0.521929i \(0.174787\pi\)
0.0255092 + 0.999675i \(0.491879\pi\)
\(860\) 31.5571 18.2195i 1.07609 0.621279i
\(861\) 0 0
\(862\) −28.1924 + 48.8306i −0.960236 + 1.66318i
\(863\) 54.9248i 1.86966i 0.355094 + 0.934831i \(0.384449\pi\)
−0.355094 + 0.934831i \(0.615551\pi\)
\(864\) −9.52323 + 27.8084i −0.323987 + 0.946062i
\(865\) 0 0
\(866\) 18.8238 + 10.8679i 0.639658 + 0.369307i
\(867\) 2.24688 + 2.35134i 0.0763081 + 0.0798557i
\(868\) −52.7802 91.4179i −1.79148 3.10293i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 20.9597i 0.709785i
\(873\) 0 0
\(874\) 0 0
\(875\) −50.7171 29.2815i −1.71455 0.989896i
\(876\) 0 0
\(877\) −29.3969 50.9169i −0.992662 1.71934i −0.601055 0.799208i \(-0.705253\pi\)
−0.391607 0.920133i \(-0.628081\pi\)
\(878\) 0 0
\(879\) −17.5392 5.12929i −0.591583 0.173007i
\(880\) 0 0
\(881\) 2.41480i 0.0813567i 0.999172 + 0.0406783i \(0.0129519\pi\)
−0.999172 + 0.0406783i \(0.987048\pi\)
\(882\) −68.7293 3.12434i −2.31424 0.105202i
\(883\) −48.1523 −1.62046 −0.810228 0.586115i \(-0.800657\pi\)
−0.810228 + 0.586115i \(0.800657\pi\)
\(884\) 24.2852 + 14.0211i 0.816799 + 0.471579i
\(885\) 0 0
\(886\) −14.8573 25.7337i −0.499142 0.864540i
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) −39.4590 + 37.7060i −1.32416 + 1.26533i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 3.82173 0.127961
\(893\) 0 0
\(894\) −22.1317 23.1606i −0.740195 0.774607i
\(895\) 18.6994 + 32.3883i 0.625053 + 1.08262i
\(896\) −47.2099 + 27.2566i −1.57717 + 0.910580i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.397442 8.74293i 0.0132481 0.291431i
\(901\) 0 0
\(902\) 0 0
\(903\) −22.6797 + 77.5515i −0.754733 + 2.58075i
\(904\) −21.7707 37.7079i −0.724082 1.25415i
\(905\) 0 0
\(906\) 56.0165 + 16.3819i 1.86102 + 0.544251i
\(907\) 13.1418 22.7623i 0.436367 0.755810i −0.561039 0.827789i \(-0.689598\pi\)
0.997406 + 0.0719791i \(0.0229315\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −46.2347 −1.53266
\(911\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −14.2310 + 24.6487i −0.470204 + 0.814417i
\(917\) 106.707i 3.52378i
\(918\) 5.49951 + 28.0421i 0.181511 + 0.925527i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −29.2885 50.7291i −0.964565 1.67068i
\(923\) 52.6184 30.3792i 1.73195 0.999944i
\(924\) 0 0
\(925\) 8.12524 14.0733i 0.267156 0.462728i
\(926\) 46.8625i 1.54000i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 14.1729 48.4633i 0.464749 1.58917i
\(931\) 0 0
\(932\) 46.2244 26.6877i 1.51413 0.874183i
\(933\) 0 0
\(934\) 22.1141 38.3027i 0.723595 1.25330i
\(935\) 0 0
\(936\) −14.0781 27.1626i −0.460156 0.887838i
\(937\) 51.9906 1.69846 0.849229 0.528025i \(-0.177067\pi\)
0.849229 + 0.528025i \(0.177067\pi\)
\(938\) 0 0
\(939\) −58.6377 + 14.2928i −1.91357 + 0.466428i
\(940\) 0.619200 + 1.07249i 0.0201961 + 0.0349806i
\(941\) 24.9573 14.4091i 0.813586 0.469724i −0.0346136 0.999401i \(-0.511020\pi\)
0.848200 + 0.529677i \(0.177687\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −30.9699 35.5067i −1.00745 1.15503i
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.88387 7.72878i −0.0610888 0.250623i
\(952\) −26.4985 + 45.8967i −0.858821 + 1.48752i
\(953\) 41.4539i 1.34282i −0.741084 0.671412i \(-0.765688\pi\)
0.741084 0.671412i \(-0.234312\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 45.7208 + 26.3969i 1.47872 + 0.853737i
\(957\) 0 0
\(958\) 30.8537 + 53.4402i 0.996837 + 1.72657i
\(959\) 0 0
\(960\) −25.0273 7.31917i −0.807754 0.236225i
\(961\) −44.4953 + 77.0681i −1.43533 + 2.48607i
\(962\) 56.8066i 1.83152i
\(963\) −30.5626 1.38933i −0.984865 0.0447706i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 30.3638 + 52.5917i 0.976435 + 1.69124i 0.675114 + 0.737713i \(0.264094\pi\)
0.301321 + 0.953523i \(0.402572\pi\)
\(968\) 26.9444 15.5563i 0.866025 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 36.1106i 1.15884i −0.815028 0.579422i \(-0.803278\pi\)
0.815028 0.579422i \(-0.196722\pi\)
\(972\) 11.4299 29.0062i 0.366615 0.930373i
\(973\) −21.4679 −0.688228
\(974\) 44.1588 + 25.4951i 1.41494 + 0.816916i
\(975\) 6.29331 + 6.58590i 0.201547 + 0.210917i
\(976\) 0 0
\(977\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 61.0334i 1.94964i
\(981\) −1.00955 + 22.2082i −0.0322326 + 0.709053i
\(982\) 53.3173 1.70142
\(983\) 14.9717 + 8.64394i 0.477524 + 0.275699i 0.719384 0.694612i \(-0.244424\pi\)
−0.241860 + 0.970311i \(0.577757\pi\)
\(984\) 0 0
\(985\) −24.4501 42.3489i −0.779046 1.34935i
\(986\) 0 0
\(987\) −2.63563 0.770783i −0.0838932 0.0245343i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 53.6635 + 30.9826i 1.70382 + 0.983700i
\(993\) 0 0
\(994\) 57.4139 + 99.4439i 1.82106 + 3.15417i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 43.6256 38.0514i 1.38025 1.20389i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.cl.a.155.5 24
8.3 odd 2 inner 936.2.cl.a.155.11 yes 24
9.5 odd 6 inner 936.2.cl.a.779.5 yes 24
13.12 even 2 inner 936.2.cl.a.155.11 yes 24
72.59 even 6 inner 936.2.cl.a.779.11 yes 24
104.51 odd 2 CM 936.2.cl.a.155.5 24
117.77 odd 6 inner 936.2.cl.a.779.11 yes 24
936.779 even 6 inner 936.2.cl.a.779.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cl.a.155.5 24 1.1 even 1 trivial
936.2.cl.a.155.5 24 104.51 odd 2 CM
936.2.cl.a.155.11 yes 24 8.3 odd 2 inner
936.2.cl.a.155.11 yes 24 13.12 even 2 inner
936.2.cl.a.779.5 yes 24 9.5 odd 6 inner
936.2.cl.a.779.5 yes 24 936.779 even 6 inner
936.2.cl.a.779.11 yes 24 72.59 even 6 inner
936.2.cl.a.779.11 yes 24 117.77 odd 6 inner