L(s) = 1 | + (−1.22 − 0.707i)2-s + (1.19 + 1.25i)3-s + (0.999 + 1.73i)4-s + (1.62 − 0.940i)5-s + (−0.580 − 2.37i)6-s + (−2.40 + 4.17i)7-s − 2.82i·8-s + (−0.136 + 2.99i)9-s − 2.66·10-s + (−0.972 + 3.32i)12-s + (−1.80 − 3.12i)13-s + (5.90 − 3.40i)14-s + (3.12 + 0.914i)15-s + (−2.00 + 3.46i)16-s + 3.88i·17-s + (2.28 − 3.57i)18-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.499i)2-s + (0.690 + 0.722i)3-s + (0.499 + 0.866i)4-s + (0.728 − 0.420i)5-s + (−0.236 − 0.971i)6-s + (−0.910 + 1.57i)7-s − 0.999i·8-s + (−0.0454 + 0.998i)9-s − 0.841·10-s + (−0.280 + 0.959i)12-s + (−0.499 − 0.866i)13-s + (1.57 − 0.910i)14-s + (0.807 + 0.236i)15-s + (−0.500 + 0.866i)16-s + 0.943i·17-s + (0.538 − 0.842i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.298 - 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.298 - 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.629701 + 0.857191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.629701 + 0.857191i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.707i)T \) |
| 3 | \( 1 + (-1.19 - 1.25i)T \) |
| 13 | \( 1 + (1.80 + 3.12i)T \) |
good | 5 | \( 1 + (-1.62 + 0.940i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.40 - 4.17i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.88iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.47 - 9.48i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 11.1T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.84 + 8.38i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.284 - 0.164i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 16.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08273093781587034637602529250, −9.503691653869516726569121729647, −8.624691266553716139331173664364, −8.512103046127972116266530887626, −7.11251804800898494551627533510, −5.91313961044408509725733067888, −5.12932645468869144710517407106, −3.55915763677239759804620720313, −2.77345095754245289149661901655, −1.88438883244663532908971572569,
0.57372674453422111982588229137, 1.97062315410781246674601753788, 3.04322427556740031401577847350, 4.43143749405385126532861667275, 6.06442152772336766219483026583, 6.68957442376076028056160601497, 7.24292972421398406181642910863, 7.914911706250605769971579792029, 9.141303513668190671813449842017, 9.710839718923083157758743039311