Properties

Label 936.2.cl.a
Level $936$
Weight $2$
Character orbit 936.cl
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(155,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.cl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 24 q^{4} - 48 q^{16} + 60 q^{25} + 12 q^{27} + 48 q^{30} + 48 q^{42} - 84 q^{49} - 60 q^{51} - 192 q^{64} - 168 q^{75} - 96 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
155.1 −1.22474 0.707107i −1.68278 + 0.410175i 1.00000 + 1.73205i 2.22783 1.28624i 2.35102 + 0.687548i 2.15165 3.72676i 2.82843i 2.66351 1.38047i −3.63804
155.2 −1.22474 0.707107i −1.02543 1.39588i 1.00000 + 1.73205i 3.74302 2.16104i 0.268853 + 2.43469i −1.88985 + 3.27332i 2.82843i −0.896983 + 2.86276i −6.11233
155.3 −1.22474 0.707107i −0.696155 + 1.58599i 1.00000 + 1.73205i −2.73310 + 1.57795i 1.97408 1.45018i 2.54847 4.41407i 2.82843i −2.03074 2.20819i 4.46313
155.4 −1.22474 0.707107i 0.486170 1.66242i 1.00000 + 1.73205i −3.85756 + 2.22716i −1.77094 + 1.69227i 0.257522 0.446041i 2.82843i −2.52728 1.61644i 6.29937
155.5 −1.22474 0.707107i 1.19661 + 1.25225i 1.00000 + 1.73205i 1.62973 0.940923i −0.580075 2.37981i −2.40917 + 4.17280i 2.82843i −0.136235 + 2.99691i −2.66133
155.6 −1.22474 0.707107i 1.72159 0.190107i 1.00000 + 1.73205i −1.00993 + 0.583083i −2.24293 0.984512i −0.658612 + 1.14075i 2.82843i 2.92772 0.654573i 1.64921
155.7 1.22474 + 0.707107i −1.68278 + 0.410175i 1.00000 + 1.73205i −2.22783 + 1.28624i −2.35102 0.687548i −2.15165 + 3.72676i 2.82843i 2.66351 1.38047i −3.63804
155.8 1.22474 + 0.707107i −1.02543 1.39588i 1.00000 + 1.73205i −3.74302 + 2.16104i −0.268853 2.43469i 1.88985 3.27332i 2.82843i −0.896983 + 2.86276i −6.11233
155.9 1.22474 + 0.707107i −0.696155 + 1.58599i 1.00000 + 1.73205i 2.73310 1.57795i −1.97408 + 1.45018i −2.54847 + 4.41407i 2.82843i −2.03074 2.20819i 4.46313
155.10 1.22474 + 0.707107i 0.486170 1.66242i 1.00000 + 1.73205i 3.85756 2.22716i 1.77094 1.69227i −0.257522 + 0.446041i 2.82843i −2.52728 1.61644i 6.29937
155.11 1.22474 + 0.707107i 1.19661 + 1.25225i 1.00000 + 1.73205i −1.62973 + 0.940923i 0.580075 + 2.37981i 2.40917 4.17280i 2.82843i −0.136235 + 2.99691i −2.66133
155.12 1.22474 + 0.707107i 1.72159 0.190107i 1.00000 + 1.73205i 1.00993 0.583083i 2.24293 + 0.984512i 0.658612 1.14075i 2.82843i 2.92772 0.654573i 1.64921
779.1 −1.22474 + 0.707107i −1.68278 0.410175i 1.00000 1.73205i 2.22783 + 1.28624i 2.35102 0.687548i 2.15165 + 3.72676i 2.82843i 2.66351 + 1.38047i −3.63804
779.2 −1.22474 + 0.707107i −1.02543 + 1.39588i 1.00000 1.73205i 3.74302 + 2.16104i 0.268853 2.43469i −1.88985 3.27332i 2.82843i −0.896983 2.86276i −6.11233
779.3 −1.22474 + 0.707107i −0.696155 1.58599i 1.00000 1.73205i −2.73310 1.57795i 1.97408 + 1.45018i 2.54847 + 4.41407i 2.82843i −2.03074 + 2.20819i 4.46313
779.4 −1.22474 + 0.707107i 0.486170 + 1.66242i 1.00000 1.73205i −3.85756 2.22716i −1.77094 1.69227i 0.257522 + 0.446041i 2.82843i −2.52728 + 1.61644i 6.29937
779.5 −1.22474 + 0.707107i 1.19661 1.25225i 1.00000 1.73205i 1.62973 + 0.940923i −0.580075 + 2.37981i −2.40917 4.17280i 2.82843i −0.136235 2.99691i −2.66133
779.6 −1.22474 + 0.707107i 1.72159 + 0.190107i 1.00000 1.73205i −1.00993 0.583083i −2.24293 + 0.984512i −0.658612 1.14075i 2.82843i 2.92772 + 0.654573i 1.64921
779.7 1.22474 0.707107i −1.68278 0.410175i 1.00000 1.73205i −2.22783 1.28624i −2.35102 + 0.687548i −2.15165 3.72676i 2.82843i 2.66351 + 1.38047i −3.63804
779.8 1.22474 0.707107i −1.02543 + 1.39588i 1.00000 1.73205i −3.74302 2.16104i −0.268853 + 2.43469i 1.88985 + 3.27332i 2.82843i −0.896983 2.86276i −6.11233
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 155.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
8.d odd 2 1 inner
9.d odd 6 1 inner
13.b even 2 1 inner
72.l even 6 1 inner
117.n odd 6 1 inner
936.cl even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.cl.a 24
8.d odd 2 1 inner 936.2.cl.a 24
9.d odd 6 1 inner 936.2.cl.a 24
13.b even 2 1 inner 936.2.cl.a 24
72.l even 6 1 inner 936.2.cl.a 24
104.h odd 2 1 CM 936.2.cl.a 24
117.n odd 6 1 inner 936.2.cl.a 24
936.cl even 6 1 inner 936.2.cl.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.cl.a 24 1.a even 1 1 trivial
936.2.cl.a 24 8.d odd 2 1 inner
936.2.cl.a 24 9.d odd 6 1 inner
936.2.cl.a 24 13.b even 2 1 inner
936.2.cl.a 24 72.l even 6 1 inner
936.2.cl.a 24 104.h odd 2 1 CM
936.2.cl.a 24 117.n odd 6 1 inner
936.2.cl.a 24 936.cl even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} - 60 T_{5}^{22} + 2250 T_{5}^{20} - 52564 T_{5}^{18} + 897255 T_{5}^{16} - 10696050 T_{5}^{14} + \cdots + 13841287201 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\). Copy content Toggle raw display