Newspace parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.cl (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.47399762919\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
155.1 | −1.22474 | − | 0.707107i | −1.68278 | + | 0.410175i | 1.00000 | + | 1.73205i | 2.22783 | − | 1.28624i | 2.35102 | + | 0.687548i | 2.15165 | − | 3.72676i | − | 2.82843i | 2.66351 | − | 1.38047i | −3.63804 | |||
155.2 | −1.22474 | − | 0.707107i | −1.02543 | − | 1.39588i | 1.00000 | + | 1.73205i | 3.74302 | − | 2.16104i | 0.268853 | + | 2.43469i | −1.88985 | + | 3.27332i | − | 2.82843i | −0.896983 | + | 2.86276i | −6.11233 | |||
155.3 | −1.22474 | − | 0.707107i | −0.696155 | + | 1.58599i | 1.00000 | + | 1.73205i | −2.73310 | + | 1.57795i | 1.97408 | − | 1.45018i | 2.54847 | − | 4.41407i | − | 2.82843i | −2.03074 | − | 2.20819i | 4.46313 | |||
155.4 | −1.22474 | − | 0.707107i | 0.486170 | − | 1.66242i | 1.00000 | + | 1.73205i | −3.85756 | + | 2.22716i | −1.77094 | + | 1.69227i | 0.257522 | − | 0.446041i | − | 2.82843i | −2.52728 | − | 1.61644i | 6.29937 | |||
155.5 | −1.22474 | − | 0.707107i | 1.19661 | + | 1.25225i | 1.00000 | + | 1.73205i | 1.62973 | − | 0.940923i | −0.580075 | − | 2.37981i | −2.40917 | + | 4.17280i | − | 2.82843i | −0.136235 | + | 2.99691i | −2.66133 | |||
155.6 | −1.22474 | − | 0.707107i | 1.72159 | − | 0.190107i | 1.00000 | + | 1.73205i | −1.00993 | + | 0.583083i | −2.24293 | − | 0.984512i | −0.658612 | + | 1.14075i | − | 2.82843i | 2.92772 | − | 0.654573i | 1.64921 | |||
155.7 | 1.22474 | + | 0.707107i | −1.68278 | + | 0.410175i | 1.00000 | + | 1.73205i | −2.22783 | + | 1.28624i | −2.35102 | − | 0.687548i | −2.15165 | + | 3.72676i | 2.82843i | 2.66351 | − | 1.38047i | −3.63804 | ||||
155.8 | 1.22474 | + | 0.707107i | −1.02543 | − | 1.39588i | 1.00000 | + | 1.73205i | −3.74302 | + | 2.16104i | −0.268853 | − | 2.43469i | 1.88985 | − | 3.27332i | 2.82843i | −0.896983 | + | 2.86276i | −6.11233 | ||||
155.9 | 1.22474 | + | 0.707107i | −0.696155 | + | 1.58599i | 1.00000 | + | 1.73205i | 2.73310 | − | 1.57795i | −1.97408 | + | 1.45018i | −2.54847 | + | 4.41407i | 2.82843i | −2.03074 | − | 2.20819i | 4.46313 | ||||
155.10 | 1.22474 | + | 0.707107i | 0.486170 | − | 1.66242i | 1.00000 | + | 1.73205i | 3.85756 | − | 2.22716i | 1.77094 | − | 1.69227i | −0.257522 | + | 0.446041i | 2.82843i | −2.52728 | − | 1.61644i | 6.29937 | ||||
155.11 | 1.22474 | + | 0.707107i | 1.19661 | + | 1.25225i | 1.00000 | + | 1.73205i | −1.62973 | + | 0.940923i | 0.580075 | + | 2.37981i | 2.40917 | − | 4.17280i | 2.82843i | −0.136235 | + | 2.99691i | −2.66133 | ||||
155.12 | 1.22474 | + | 0.707107i | 1.72159 | − | 0.190107i | 1.00000 | + | 1.73205i | 1.00993 | − | 0.583083i | 2.24293 | + | 0.984512i | 0.658612 | − | 1.14075i | 2.82843i | 2.92772 | − | 0.654573i | 1.64921 | ||||
779.1 | −1.22474 | + | 0.707107i | −1.68278 | − | 0.410175i | 1.00000 | − | 1.73205i | 2.22783 | + | 1.28624i | 2.35102 | − | 0.687548i | 2.15165 | + | 3.72676i | 2.82843i | 2.66351 | + | 1.38047i | −3.63804 | ||||
779.2 | −1.22474 | + | 0.707107i | −1.02543 | + | 1.39588i | 1.00000 | − | 1.73205i | 3.74302 | + | 2.16104i | 0.268853 | − | 2.43469i | −1.88985 | − | 3.27332i | 2.82843i | −0.896983 | − | 2.86276i | −6.11233 | ||||
779.3 | −1.22474 | + | 0.707107i | −0.696155 | − | 1.58599i | 1.00000 | − | 1.73205i | −2.73310 | − | 1.57795i | 1.97408 | + | 1.45018i | 2.54847 | + | 4.41407i | 2.82843i | −2.03074 | + | 2.20819i | 4.46313 | ||||
779.4 | −1.22474 | + | 0.707107i | 0.486170 | + | 1.66242i | 1.00000 | − | 1.73205i | −3.85756 | − | 2.22716i | −1.77094 | − | 1.69227i | 0.257522 | + | 0.446041i | 2.82843i | −2.52728 | + | 1.61644i | 6.29937 | ||||
779.5 | −1.22474 | + | 0.707107i | 1.19661 | − | 1.25225i | 1.00000 | − | 1.73205i | 1.62973 | + | 0.940923i | −0.580075 | + | 2.37981i | −2.40917 | − | 4.17280i | 2.82843i | −0.136235 | − | 2.99691i | −2.66133 | ||||
779.6 | −1.22474 | + | 0.707107i | 1.72159 | + | 0.190107i | 1.00000 | − | 1.73205i | −1.00993 | − | 0.583083i | −2.24293 | + | 0.984512i | −0.658612 | − | 1.14075i | 2.82843i | 2.92772 | + | 0.654573i | 1.64921 | ||||
779.7 | 1.22474 | − | 0.707107i | −1.68278 | − | 0.410175i | 1.00000 | − | 1.73205i | −2.22783 | − | 1.28624i | −2.35102 | + | 0.687548i | −2.15165 | − | 3.72676i | − | 2.82843i | 2.66351 | + | 1.38047i | −3.63804 | |||
779.8 | 1.22474 | − | 0.707107i | −1.02543 | + | 1.39588i | 1.00000 | − | 1.73205i | −3.74302 | − | 2.16104i | −0.268853 | + | 2.43469i | 1.88985 | + | 3.27332i | − | 2.82843i | −0.896983 | − | 2.86276i | −6.11233 | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
104.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-26}) \) |
8.d | odd | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
13.b | even | 2 | 1 | inner |
72.l | even | 6 | 1 | inner |
117.n | odd | 6 | 1 | inner |
936.cl | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 936.2.cl.a | ✓ | 24 |
8.d | odd | 2 | 1 | inner | 936.2.cl.a | ✓ | 24 |
9.d | odd | 6 | 1 | inner | 936.2.cl.a | ✓ | 24 |
13.b | even | 2 | 1 | inner | 936.2.cl.a | ✓ | 24 |
72.l | even | 6 | 1 | inner | 936.2.cl.a | ✓ | 24 |
104.h | odd | 2 | 1 | CM | 936.2.cl.a | ✓ | 24 |
117.n | odd | 6 | 1 | inner | 936.2.cl.a | ✓ | 24 |
936.cl | even | 6 | 1 | inner | 936.2.cl.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
936.2.cl.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
936.2.cl.a | ✓ | 24 | 8.d | odd | 2 | 1 | inner |
936.2.cl.a | ✓ | 24 | 9.d | odd | 6 | 1 | inner |
936.2.cl.a | ✓ | 24 | 13.b | even | 2 | 1 | inner |
936.2.cl.a | ✓ | 24 | 72.l | even | 6 | 1 | inner |
936.2.cl.a | ✓ | 24 | 104.h | odd | 2 | 1 | CM |
936.2.cl.a | ✓ | 24 | 117.n | odd | 6 | 1 | inner |
936.2.cl.a | ✓ | 24 | 936.cl | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} - 60 T_{5}^{22} + 2250 T_{5}^{20} - 52564 T_{5}^{18} + 897255 T_{5}^{16} - 10696050 T_{5}^{14} + \cdots + 13841287201 \)
acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\).