Properties

Label 931.2.p.e.734.1
Level $931$
Weight $2$
Character 931.734
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(293,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 734.1
Root \(1.39564 + 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 931.734
Dual form 931.2.p.e.293.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.395644 + 0.228425i) q^{2} +(0.895644 + 1.55130i) q^{3} +(-0.895644 + 1.55130i) q^{4} +(1.10436 - 0.637600i) q^{5} +(-0.708712 - 0.409175i) q^{6} -1.73205i q^{8} +(-0.104356 + 0.180750i) q^{9} +(-0.291288 + 0.504525i) q^{10} -3.00000 q^{11} -3.20871 q^{12} +(-1.89564 + 3.28335i) q^{13} +(1.97822 + 1.14213i) q^{15} +(-1.39564 - 2.41733i) q^{16} +(-3.79129 + 2.18890i) q^{17} -0.0953502i q^{18} +(-3.50000 - 2.59808i) q^{19} +2.28425i q^{20} +(1.18693 - 0.685275i) q^{22} +(-3.79129 + 6.56670i) q^{23} +(2.68693 - 1.55130i) q^{24} +(-1.68693 + 2.92185i) q^{25} -1.73205i q^{26} +5.00000 q^{27} +(-3.08258 - 1.77973i) q^{29} -1.04356 q^{30} +(4.10436 + 2.36965i) q^{32} +(-2.68693 - 4.65390i) q^{33} +(1.00000 - 1.73205i) q^{34} +(-0.186932 - 0.323775i) q^{36} +10.0308i q^{37} +(1.97822 + 0.228425i) q^{38} -6.79129 q^{39} +(-1.10436 - 1.91280i) q^{40} +(-2.68693 - 4.65390i) q^{41} +(3.39564 + 5.88143i) q^{43} +(2.68693 - 4.65390i) q^{44} +0.266150i q^{45} -3.46410i q^{46} +(5.29129 + 3.05493i) q^{47} +(2.50000 - 4.33013i) q^{48} -1.54135i q^{50} +(-6.79129 - 3.92095i) q^{51} +(-3.39564 - 5.88143i) q^{52} +(-1.10436 - 0.637600i) q^{53} +(-1.97822 + 1.14213i) q^{54} +(-3.31307 + 1.91280i) q^{55} +(0.895644 - 7.75650i) q^{57} +1.62614 q^{58} +(-4.89564 - 8.47950i) q^{59} +(-3.54356 + 2.04588i) q^{60} +(1.18693 + 0.685275i) q^{61} +3.41742 q^{64} +4.83465i q^{65} +(2.12614 + 1.22753i) q^{66} +(3.00000 + 1.73205i) q^{67} -7.84190i q^{68} -13.5826 q^{69} +(-3.08258 + 1.77973i) q^{71} +(0.313068 + 0.180750i) q^{72} +(5.37386 - 3.10260i) q^{73} +(-2.29129 - 3.96863i) q^{74} -6.04356 q^{75} +(7.16515 - 3.10260i) q^{76} +(2.68693 - 1.55130i) q^{78} +(6.00000 - 3.46410i) q^{79} +(-3.08258 - 1.77973i) q^{80} +(4.79129 + 8.29875i) q^{81} +(2.12614 + 1.22753i) q^{82} -13.5903i q^{83} +(-2.79129 + 4.83465i) q^{85} +(-2.68693 - 1.55130i) q^{86} -6.37600i q^{87} +5.19615i q^{88} +(-1.18693 + 2.05583i) q^{89} +(-0.0607953 - 0.105301i) q^{90} +(-6.79129 - 11.7629i) q^{92} -2.79129 q^{94} +(-5.52178 - 0.637600i) q^{95} +8.48945i q^{96} +(-1.00000 - 1.73205i) q^{97} +(0.313068 - 0.542250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - q^{3} + q^{4} + 9 q^{5} - 12 q^{6} - 5 q^{9} + 8 q^{10} - 12 q^{11} - 22 q^{12} - 3 q^{13} - 15 q^{15} - q^{16} - 6 q^{17} - 14 q^{19} - 9 q^{22} - 6 q^{23} - 3 q^{24} + 7 q^{25} + 20 q^{27}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.395644 + 0.228425i −0.279763 + 0.161521i −0.633316 0.773893i \(-0.718307\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0.895644 + 1.55130i 0.517100 + 0.895644i 0.999803 + 0.0198595i \(0.00632191\pi\)
−0.482703 + 0.875784i \(0.660345\pi\)
\(4\) −0.895644 + 1.55130i −0.447822 + 0.775650i
\(5\) 1.10436 0.637600i 0.493883 0.285144i −0.232301 0.972644i \(-0.574625\pi\)
0.726184 + 0.687500i \(0.241292\pi\)
\(6\) −0.708712 0.409175i −0.289331 0.167045i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) −0.104356 + 0.180750i −0.0347854 + 0.0602500i
\(10\) −0.291288 + 0.504525i −0.0921133 + 0.159545i
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) −3.20871 −0.926275
\(13\) −1.89564 + 3.28335i −0.525757 + 0.910638i 0.473793 + 0.880636i \(0.342885\pi\)
−0.999550 + 0.0300015i \(0.990449\pi\)
\(14\) 0 0
\(15\) 1.97822 + 1.14213i 0.510774 + 0.294896i
\(16\) −1.39564 2.41733i −0.348911 0.604332i
\(17\) −3.79129 + 2.18890i −0.919522 + 0.530886i −0.883483 0.468464i \(-0.844808\pi\)
−0.0360397 + 0.999350i \(0.511474\pi\)
\(18\) 0.0953502i 0.0224743i
\(19\) −3.50000 2.59808i −0.802955 0.596040i
\(20\) 2.28425i 0.510774i
\(21\) 0 0
\(22\) 1.18693 0.685275i 0.253055 0.146101i
\(23\) −3.79129 + 6.56670i −0.790538 + 1.36925i 0.135096 + 0.990833i \(0.456866\pi\)
−0.925634 + 0.378420i \(0.876468\pi\)
\(24\) 2.68693 1.55130i 0.548468 0.316658i
\(25\) −1.68693 + 2.92185i −0.337386 + 0.584370i
\(26\) 1.73205i 0.339683i
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −3.08258 1.77973i −0.572420 0.330487i 0.185695 0.982607i \(-0.440546\pi\)
−0.758115 + 0.652121i \(0.773880\pi\)
\(30\) −1.04356 −0.190527
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 4.10436 + 2.36965i 0.725555 + 0.418899i
\(33\) −2.68693 4.65390i −0.467735 0.810140i
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) 0 0
\(36\) −0.186932 0.323775i −0.0311553 0.0539626i
\(37\) 10.0308i 1.64905i 0.565823 + 0.824527i \(0.308559\pi\)
−0.565823 + 0.824527i \(0.691441\pi\)
\(38\) 1.97822 + 0.228425i 0.320910 + 0.0370554i
\(39\) −6.79129 −1.08748
\(40\) −1.10436 1.91280i −0.174614 0.302440i
\(41\) −2.68693 4.65390i −0.419628 0.726817i 0.576274 0.817257i \(-0.304506\pi\)
−0.995902 + 0.0904393i \(0.971173\pi\)
\(42\) 0 0
\(43\) 3.39564 + 5.88143i 0.517831 + 0.896909i 0.999785 + 0.0207131i \(0.00659367\pi\)
−0.481955 + 0.876196i \(0.660073\pi\)
\(44\) 2.68693 4.65390i 0.405070 0.701602i
\(45\) 0.266150i 0.0396753i
\(46\) 3.46410i 0.510754i
\(47\) 5.29129 + 3.05493i 0.771814 + 0.445607i 0.833521 0.552487i \(-0.186321\pi\)
−0.0617076 + 0.998094i \(0.519655\pi\)
\(48\) 2.50000 4.33013i 0.360844 0.625000i
\(49\) 0 0
\(50\) 1.54135i 0.217980i
\(51\) −6.79129 3.92095i −0.950971 0.549043i
\(52\) −3.39564 5.88143i −0.470891 0.815607i
\(53\) −1.10436 0.637600i −0.151695 0.0875811i 0.422231 0.906488i \(-0.361247\pi\)
−0.573926 + 0.818907i \(0.694580\pi\)
\(54\) −1.97822 + 1.14213i −0.269202 + 0.155424i
\(55\) −3.31307 + 1.91280i −0.446734 + 0.257922i
\(56\) 0 0
\(57\) 0.895644 7.75650i 0.118631 1.02737i
\(58\) 1.62614 0.213522
\(59\) −4.89564 8.47950i −0.637359 1.10394i −0.986010 0.166685i \(-0.946694\pi\)
0.348652 0.937252i \(-0.386640\pi\)
\(60\) −3.54356 + 2.04588i −0.457472 + 0.264121i
\(61\) 1.18693 + 0.685275i 0.151971 + 0.0877405i 0.574057 0.818815i \(-0.305369\pi\)
−0.422086 + 0.906556i \(0.638702\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 3.41742 0.427178
\(65\) 4.83465i 0.599665i
\(66\) 2.12614 + 1.22753i 0.261709 + 0.151098i
\(67\) 3.00000 + 1.73205i 0.366508 + 0.211604i 0.671932 0.740613i \(-0.265465\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 7.84190i 0.950971i
\(69\) −13.5826 −1.63515
\(70\) 0 0
\(71\) −3.08258 + 1.77973i −0.365834 + 0.211215i −0.671637 0.740880i \(-0.734409\pi\)
0.305803 + 0.952095i \(0.401075\pi\)
\(72\) 0.313068 + 0.180750i 0.0368954 + 0.0213016i
\(73\) 5.37386 3.10260i 0.628963 0.363132i −0.151387 0.988475i \(-0.548374\pi\)
0.780350 + 0.625342i \(0.215041\pi\)
\(74\) −2.29129 3.96863i −0.266357 0.461344i
\(75\) −6.04356 −0.697850
\(76\) 7.16515 3.10260i 0.821899 0.355893i
\(77\) 0 0
\(78\) 2.68693 1.55130i 0.304235 0.175650i
\(79\) 6.00000 3.46410i 0.675053 0.389742i −0.122936 0.992415i \(-0.539231\pi\)
0.797988 + 0.602673i \(0.205898\pi\)
\(80\) −3.08258 1.77973i −0.344642 0.198979i
\(81\) 4.79129 + 8.29875i 0.532365 + 0.922084i
\(82\) 2.12614 + 1.22753i 0.234792 + 0.135558i
\(83\) 13.5903i 1.49172i −0.666100 0.745862i \(-0.732038\pi\)
0.666100 0.745862i \(-0.267962\pi\)
\(84\) 0 0
\(85\) −2.79129 + 4.83465i −0.302758 + 0.524392i
\(86\) −2.68693 1.55130i −0.289739 0.167281i
\(87\) 6.37600i 0.683579i
\(88\) 5.19615i 0.553912i
\(89\) −1.18693 + 2.05583i −0.125815 + 0.217917i −0.922051 0.387068i \(-0.873488\pi\)
0.796237 + 0.604985i \(0.206821\pi\)
\(90\) −0.0607953 0.105301i −0.00640839 0.0110997i
\(91\) 0 0
\(92\) −6.79129 11.7629i −0.708041 1.22636i
\(93\) 0 0
\(94\) −2.79129 −0.287899
\(95\) −5.52178 0.637600i −0.566523 0.0654164i
\(96\) 8.48945i 0.866451i
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0.313068 0.542250i 0.0314645 0.0544982i
\(100\) −3.02178 5.23388i −0.302178 0.523388i
\(101\) 7.41742 + 4.28245i 0.738061 + 0.426120i 0.821364 0.570404i \(-0.193214\pi\)
−0.0833027 + 0.996524i \(0.526547\pi\)
\(102\) 3.58258 0.354728
\(103\) −3.37386 −0.332437 −0.166218 0.986089i \(-0.553156\pi\)
−0.166218 + 0.986089i \(0.553156\pi\)
\(104\) 5.68693 + 3.28335i 0.557650 + 0.321959i
\(105\) 0 0
\(106\) 0.582576 0.0565848
\(107\) 9.47860i 0.916331i 0.888867 + 0.458166i \(0.151493\pi\)
−0.888867 + 0.458166i \(0.848507\pi\)
\(108\) −4.47822 + 7.75650i −0.430917 + 0.746370i
\(109\) 11.6869 6.74745i 1.11941 0.646289i 0.178156 0.984002i \(-0.442987\pi\)
0.941249 + 0.337713i \(0.109653\pi\)
\(110\) 0.873864 1.51358i 0.0833196 0.144314i
\(111\) −15.5608 + 8.98403i −1.47697 + 0.852726i
\(112\) 0 0
\(113\) 13.2288i 1.24446i 0.782836 + 0.622228i \(0.213772\pi\)
−0.782836 + 0.622228i \(0.786228\pi\)
\(114\) 1.41742 + 3.27340i 0.132754 + 0.306582i
\(115\) 9.66930i 0.901667i
\(116\) 5.52178 3.18800i 0.512684 0.295998i
\(117\) −0.395644 0.685275i −0.0365773 0.0633537i
\(118\) 3.87386 + 2.23658i 0.356618 + 0.205894i
\(119\) 0 0
\(120\) 1.97822 3.42638i 0.180586 0.312784i
\(121\) −2.00000 −0.181818
\(122\) −0.626136 −0.0566877
\(123\) 4.81307 8.33648i 0.433980 0.751675i
\(124\) 0 0
\(125\) 10.6784i 0.955101i
\(126\) 0 0
\(127\) 10.1869 + 5.88143i 0.903944 + 0.521892i 0.878478 0.477783i \(-0.158560\pi\)
0.0254663 + 0.999676i \(0.491893\pi\)
\(128\) −9.56080 + 5.51993i −0.845063 + 0.487897i
\(129\) −6.08258 + 10.5353i −0.535541 + 0.927584i
\(130\) −1.10436 1.91280i −0.0968584 0.167764i
\(131\) 6.16515 3.55945i 0.538652 0.310991i −0.205881 0.978577i \(-0.566006\pi\)
0.744532 + 0.667586i \(0.232673\pi\)
\(132\) 9.62614 0.837848
\(133\) 0 0
\(134\) −1.58258 −0.136714
\(135\) 5.52178 3.18800i 0.475239 0.274379i
\(136\) 3.79129 + 6.56670i 0.325100 + 0.563090i
\(137\) 4.97822 8.62253i 0.425318 0.736672i −0.571132 0.820858i \(-0.693496\pi\)
0.996450 + 0.0841858i \(0.0268289\pi\)
\(138\) 5.37386 3.10260i 0.457454 0.264111i
\(139\) 9.24773 + 5.33918i 0.784382 + 0.452863i 0.837981 0.545699i \(-0.183736\pi\)
−0.0535990 + 0.998563i \(0.517069\pi\)
\(140\) 0 0
\(141\) 10.9445i 0.921694i
\(142\) 0.813068 1.40828i 0.0682312 0.118180i
\(143\) 5.68693 9.85005i 0.475565 0.823703i
\(144\) 0.582576 0.0485480
\(145\) −4.53901 −0.376945
\(146\) −1.41742 + 2.45505i −0.117307 + 0.203181i
\(147\) 0 0
\(148\) −15.5608 8.98403i −1.27909 0.738483i
\(149\) −5.60436 9.70703i −0.459127 0.795231i 0.539788 0.841801i \(-0.318504\pi\)
−0.998915 + 0.0465700i \(0.985171\pi\)
\(150\) 2.39110 1.38050i 0.195232 0.112717i
\(151\) 17.9681i 1.46222i 0.682260 + 0.731110i \(0.260997\pi\)
−0.682260 + 0.731110i \(0.739003\pi\)
\(152\) −4.50000 + 6.06218i −0.364998 + 0.491708i
\(153\) 0.913701i 0.0738683i
\(154\) 0 0
\(155\) 0 0
\(156\) 6.08258 10.5353i 0.486996 0.843501i
\(157\) −10.1869 + 5.88143i −0.813006 + 0.469389i −0.847999 0.529999i \(-0.822192\pi\)
0.0349929 + 0.999388i \(0.488859\pi\)
\(158\) −1.58258 + 2.74110i −0.125903 + 0.218070i
\(159\) 2.28425i 0.181153i
\(160\) 6.04356 0.477785
\(161\) 0 0
\(162\) −3.79129 2.18890i −0.297872 0.171976i
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 9.62614 0.751675
\(165\) −5.93466 3.42638i −0.462013 0.266743i
\(166\) 3.10436 + 5.37690i 0.240945 + 0.417329i
\(167\) 9.56080 16.5598i 0.739837 1.28143i −0.212732 0.977111i \(-0.568236\pi\)
0.952569 0.304324i \(-0.0984305\pi\)
\(168\) 0 0
\(169\) −0.686932 1.18980i −0.0528409 0.0915231i
\(170\) 2.55040i 0.195607i
\(171\) 0.834849 0.361500i 0.0638425 0.0276446i
\(172\) −12.1652 −0.927584
\(173\) 9.87386 + 17.1020i 0.750696 + 1.30024i 0.947486 + 0.319798i \(0.103615\pi\)
−0.196790 + 0.980446i \(0.563052\pi\)
\(174\) 1.45644 + 2.52263i 0.110412 + 0.191240i
\(175\) 0 0
\(176\) 4.18693 + 7.25198i 0.315602 + 0.546638i
\(177\) 8.76951 15.1892i 0.659157 1.14169i
\(178\) 1.08450i 0.0812867i
\(179\) 14.7701i 1.10397i −0.833854 0.551985i \(-0.813871\pi\)
0.833854 0.551985i \(-0.186129\pi\)
\(180\) −0.412878 0.238375i −0.0307741 0.0177675i
\(181\) −5.87386 + 10.1738i −0.436601 + 0.756215i −0.997425 0.0717202i \(-0.977151\pi\)
0.560824 + 0.827935i \(0.310484\pi\)
\(182\) 0 0
\(183\) 2.45505i 0.181483i
\(184\) 11.3739 + 6.56670i 0.838492 + 0.484104i
\(185\) 6.39564 + 11.0776i 0.470217 + 0.814440i
\(186\) 0 0
\(187\) 11.3739 6.56670i 0.831739 0.480205i
\(188\) −9.47822 + 5.47225i −0.691270 + 0.399105i
\(189\) 0 0
\(190\) 2.33030 1.00905i 0.169058 0.0732042i
\(191\) 20.5390 1.48615 0.743075 0.669208i \(-0.233366\pi\)
0.743075 + 0.669208i \(0.233366\pi\)
\(192\) 3.06080 + 5.30145i 0.220894 + 0.382599i
\(193\) −21.2477 + 12.2674i −1.52944 + 0.883025i −0.530060 + 0.847960i \(0.677831\pi\)
−0.999385 + 0.0350652i \(0.988836\pi\)
\(194\) 0.791288 + 0.456850i 0.0568112 + 0.0327999i
\(195\) −7.50000 + 4.33013i −0.537086 + 0.310087i
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0.286051i 0.0203287i
\(199\) −19.1216 11.0399i −1.35549 0.782595i −0.366481 0.930426i \(-0.619438\pi\)
−0.989013 + 0.147831i \(0.952771\pi\)
\(200\) 5.06080 + 2.92185i 0.357852 + 0.206606i
\(201\) 6.20520i 0.437681i
\(202\) −3.91288 −0.275309
\(203\) 0 0
\(204\) 12.1652 7.02355i 0.851731 0.491747i
\(205\) −5.93466 3.42638i −0.414495 0.239309i
\(206\) 1.33485 0.770675i 0.0930033 0.0536955i
\(207\) −0.791288 1.37055i −0.0549983 0.0952599i
\(208\) 10.5826 0.733770
\(209\) 10.5000 + 7.79423i 0.726300 + 0.539138i
\(210\) 0 0
\(211\) −12.2477 + 7.07123i −0.843168 + 0.486803i −0.858340 0.513081i \(-0.828504\pi\)
0.0151716 + 0.999885i \(0.495171\pi\)
\(212\) 1.97822 1.14213i 0.135865 0.0784415i
\(213\) −5.52178 3.18800i −0.378346 0.218438i
\(214\) −2.16515 3.75015i −0.148007 0.256355i
\(215\) 7.50000 + 4.33013i 0.511496 + 0.295312i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −3.08258 + 5.33918i −0.208778 + 0.361615i
\(219\) 9.62614 + 5.55765i 0.650474 + 0.375551i
\(220\) 6.85275i 0.462013i
\(221\) 16.5975i 1.11647i
\(222\) 4.10436 7.10895i 0.275466 0.477122i
\(223\) −6.79129 11.7629i −0.454778 0.787699i 0.543897 0.839152i \(-0.316948\pi\)
−0.998675 + 0.0514528i \(0.983615\pi\)
\(224\) 0 0
\(225\) −0.352083 0.609826i −0.0234722 0.0406551i
\(226\) −3.02178 5.23388i −0.201006 0.348152i
\(227\) 26.5390 1.76146 0.880728 0.473622i \(-0.157054\pi\)
0.880728 + 0.473622i \(0.157054\pi\)
\(228\) 11.2305 + 8.33648i 0.743758 + 0.552097i
\(229\) 6.92820i 0.457829i 0.973447 + 0.228914i \(0.0735176\pi\)
−0.973447 + 0.228914i \(0.926482\pi\)
\(230\) −2.20871 3.82560i −0.145638 0.252253i
\(231\) 0 0
\(232\) −3.08258 + 5.33918i −0.202381 + 0.350534i
\(233\) 6.70871 + 11.6198i 0.439502 + 0.761240i 0.997651 0.0685005i \(-0.0218215\pi\)
−0.558149 + 0.829741i \(0.688488\pi\)
\(234\) 0.313068 + 0.180750i 0.0204659 + 0.0118160i
\(235\) 7.79129 0.508248
\(236\) 17.5390 1.14169
\(237\) 10.7477 + 6.20520i 0.698140 + 0.403071i
\(238\) 0 0
\(239\) 14.5390 0.940451 0.470225 0.882546i \(-0.344173\pi\)
0.470225 + 0.882546i \(0.344173\pi\)
\(240\) 6.37600i 0.411569i
\(241\) 3.68693 6.38595i 0.237496 0.411355i −0.722499 0.691372i \(-0.757007\pi\)
0.959995 + 0.280017i \(0.0903400\pi\)
\(242\) 0.791288 0.456850i 0.0508659 0.0293674i
\(243\) −1.08258 + 1.87508i −0.0694473 + 0.120286i
\(244\) −2.12614 + 1.22753i −0.136112 + 0.0785843i
\(245\) 0 0
\(246\) 4.39770i 0.280387i
\(247\) 15.1652 6.56670i 0.964935 0.417829i
\(248\) 0 0
\(249\) 21.0826 12.1720i 1.33605 0.771371i
\(250\) −2.43920 4.22483i −0.154269 0.267201i
\(251\) 8.29129 + 4.78698i 0.523341 + 0.302151i 0.738301 0.674472i \(-0.235629\pi\)
−0.214959 + 0.976623i \(0.568962\pi\)
\(252\) 0 0
\(253\) 11.3739 19.7001i 0.715069 1.23854i
\(254\) −5.37386 −0.337186
\(255\) −10.0000 −0.626224
\(256\) −0.895644 + 1.55130i −0.0559777 + 0.0969563i
\(257\) −9.87386 + 17.1020i −0.615915 + 1.06680i 0.374309 + 0.927304i \(0.377880\pi\)
−0.990223 + 0.139491i \(0.955453\pi\)
\(258\) 5.55765i 0.346004i
\(259\) 0 0
\(260\) −7.50000 4.33013i −0.465130 0.268543i
\(261\) 0.643371 0.371450i 0.0398237 0.0229922i
\(262\) −1.62614 + 2.81655i −0.100463 + 0.174007i
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) −8.06080 + 4.65390i −0.496108 + 0.286428i
\(265\) −1.62614 −0.0998928
\(266\) 0 0
\(267\) −4.25227 −0.260235
\(268\) −5.37386 + 3.10260i −0.328261 + 0.189522i
\(269\) 3.79129 + 6.56670i 0.231159 + 0.400379i 0.958149 0.286269i \(-0.0924149\pi\)
−0.726991 + 0.686647i \(0.759082\pi\)
\(270\) −1.45644 + 2.52263i −0.0886361 + 0.153522i
\(271\) −11.6869 + 6.74745i −0.709931 + 0.409879i −0.811035 0.584997i \(-0.801096\pi\)
0.101105 + 0.994876i \(0.467762\pi\)
\(272\) 10.5826 + 6.10985i 0.641663 + 0.370464i
\(273\) 0 0
\(274\) 4.54860i 0.274791i
\(275\) 5.06080 8.76555i 0.305177 0.528583i
\(276\) 12.1652 21.0707i 0.732256 1.26830i
\(277\) 23.5390 1.41432 0.707161 0.707052i \(-0.249976\pi\)
0.707161 + 0.707052i \(0.249976\pi\)
\(278\) −4.87841 −0.292588
\(279\) 0 0
\(280\) 0 0
\(281\) 1.02178 + 0.589925i 0.0609543 + 0.0351920i 0.530167 0.847893i \(-0.322129\pi\)
−0.469213 + 0.883085i \(0.655462\pi\)
\(282\) −2.50000 4.33013i −0.148873 0.257855i
\(283\) −8.37386 + 4.83465i −0.497775 + 0.287390i −0.727794 0.685796i \(-0.759454\pi\)
0.230020 + 0.973186i \(0.426121\pi\)
\(284\) 6.37600i 0.378346i
\(285\) −3.95644 9.13701i −0.234359 0.541229i
\(286\) 5.19615i 0.307255i
\(287\) 0 0
\(288\) −0.856629 + 0.494575i −0.0504773 + 0.0291431i
\(289\) 1.08258 1.87508i 0.0636809 0.110299i
\(290\) 1.79583 1.03683i 0.105455 0.0608845i
\(291\) 1.79129 3.10260i 0.105007 0.181878i
\(292\) 11.1153i 0.650474i
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) −10.8131 6.24293i −0.629561 0.363477i
\(296\) 17.3739 1.00984
\(297\) −15.0000 −0.870388
\(298\) 4.43466 + 2.56035i 0.256893 + 0.148317i
\(299\) −14.3739 24.8963i −0.831262 1.43979i
\(300\) 5.41288 9.37538i 0.312513 0.541288i
\(301\) 0 0
\(302\) −4.10436 7.10895i −0.236179 0.409074i
\(303\) 15.3422i 0.881387i
\(304\) −1.39564 + 12.0866i −0.0800457 + 0.693216i
\(305\) 1.74773 0.100075
\(306\) 0.208712 + 0.361500i 0.0119313 + 0.0206656i
\(307\) 10.1044 + 17.5013i 0.576686 + 0.998850i 0.995856 + 0.0909419i \(0.0289877\pi\)
−0.419170 + 0.907908i \(0.637679\pi\)
\(308\) 0 0
\(309\) −3.02178 5.23388i −0.171903 0.297745i
\(310\) 0 0
\(311\) 23.9826i 1.35993i −0.733246 0.679963i \(-0.761996\pi\)
0.733246 0.679963i \(-0.238004\pi\)
\(312\) 11.7629i 0.665941i
\(313\) −7.50000 4.33013i −0.423925 0.244753i 0.272830 0.962062i \(-0.412040\pi\)
−0.696755 + 0.717309i \(0.745374\pi\)
\(314\) 2.68693 4.65390i 0.151632 0.262635i
\(315\) 0 0
\(316\) 12.4104i 0.698140i
\(317\) −12.7087 7.33738i −0.713792 0.412108i 0.0986713 0.995120i \(-0.468541\pi\)
−0.812464 + 0.583012i \(0.801874\pi\)
\(318\) 0.521780 + 0.903750i 0.0292600 + 0.0506798i
\(319\) 9.24773 + 5.33918i 0.517773 + 0.298937i
\(320\) 3.77405 2.17895i 0.210976 0.121807i
\(321\) −14.7042 + 8.48945i −0.820707 + 0.473835i
\(322\) 0 0
\(323\) 18.9564 + 2.18890i 1.05476 + 0.121794i
\(324\) −17.1652 −0.953620
\(325\) −6.39564 11.0776i −0.354766 0.614474i
\(326\) 2.37386 1.37055i 0.131476 0.0759078i
\(327\) 20.9347 + 12.0866i 1.15769 + 0.668392i
\(328\) −8.06080 + 4.65390i −0.445083 + 0.256969i
\(329\) 0 0
\(330\) 3.13068 0.172338
\(331\) 2.09355i 0.115072i −0.998343 0.0575360i \(-0.981676\pi\)
0.998343 0.0575360i \(-0.0183244\pi\)
\(332\) 21.0826 + 12.1720i 1.15706 + 0.668027i
\(333\) −1.81307 1.04678i −0.0993555 0.0573629i
\(334\) 8.73570i 0.477996i
\(335\) 4.41742 0.241350
\(336\) 0 0
\(337\) −2.12614 + 1.22753i −0.115818 + 0.0668676i −0.556790 0.830653i \(-0.687967\pi\)
0.440972 + 0.897521i \(0.354634\pi\)
\(338\) 0.543561 + 0.313825i 0.0295658 + 0.0170698i
\(339\) −20.5218 + 11.8483i −1.11459 + 0.643509i
\(340\) −5.00000 8.66025i −0.271163 0.469668i
\(341\) 0 0
\(342\) −0.247727 + 0.333726i −0.0133955 + 0.0180458i
\(343\) 0 0
\(344\) 10.1869 5.88143i 0.549243 0.317105i
\(345\) −15.0000 + 8.66025i −0.807573 + 0.466252i
\(346\) −7.81307 4.51088i −0.420033 0.242506i
\(347\) −15.6434 27.0951i −0.839780 1.45454i −0.890078 0.455808i \(-0.849350\pi\)
0.0502981 0.998734i \(-0.483983\pi\)
\(348\) 9.89110 + 5.71063i 0.530219 + 0.306122i
\(349\) 32.1105i 1.71884i −0.511273 0.859418i \(-0.670826\pi\)
0.511273 0.859418i \(-0.329174\pi\)
\(350\) 0 0
\(351\) −9.47822 + 16.4168i −0.505910 + 0.876262i
\(352\) −12.3131 7.10895i −0.656289 0.378908i
\(353\) 0.266150i 0.0141657i 0.999975 + 0.00708286i \(0.00225456\pi\)
−0.999975 + 0.00708286i \(0.997745\pi\)
\(354\) 8.01270i 0.425870i
\(355\) −2.26951 + 3.93090i −0.120453 + 0.208631i
\(356\) −2.12614 3.68258i −0.112685 0.195176i
\(357\) 0 0
\(358\) 3.37386 + 5.84370i 0.178314 + 0.308849i
\(359\) 0.313068 + 0.542250i 0.0165231 + 0.0286189i 0.874169 0.485622i \(-0.161407\pi\)
−0.857646 + 0.514241i \(0.828074\pi\)
\(360\) 0.460985 0.0242960
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 5.36695i 0.282081i
\(363\) −1.79129 3.10260i −0.0940182 0.162844i
\(364\) 0 0
\(365\) 3.95644 6.85275i 0.207089 0.358690i
\(366\) −0.560795 0.971326i −0.0293132 0.0507720i
\(367\) 8.37386 + 4.83465i 0.437112 + 0.252367i 0.702372 0.711810i \(-0.252124\pi\)
−0.265260 + 0.964177i \(0.585458\pi\)
\(368\) 21.1652 1.10331
\(369\) 1.12159 0.0583877
\(370\) −5.06080 2.92185i −0.263098 0.151900i
\(371\) 0 0
\(372\) 0 0
\(373\) 21.7182i 1.12453i 0.826958 + 0.562263i \(0.190069\pi\)
−0.826958 + 0.562263i \(0.809931\pi\)
\(374\) −3.00000 + 5.19615i −0.155126 + 0.268687i
\(375\) −16.5653 + 9.56400i −0.855431 + 0.493883i
\(376\) 5.29129 9.16478i 0.272877 0.472637i
\(377\) 11.6869 6.74745i 0.601908 0.347512i
\(378\) 0 0
\(379\) 26.3423i 1.35311i 0.736392 + 0.676556i \(0.236528\pi\)
−0.736392 + 0.676556i \(0.763472\pi\)
\(380\) 5.93466 7.99488i 0.304442 0.410129i
\(381\) 21.0707i 1.07948i
\(382\) −8.12614 + 4.69163i −0.415769 + 0.240045i
\(383\) −8.45644 14.6470i −0.432104 0.748426i 0.564950 0.825125i \(-0.308895\pi\)
−0.997054 + 0.0766990i \(0.975562\pi\)
\(384\) −17.1261 9.88778i −0.873964 0.504584i
\(385\) 0 0
\(386\) 5.60436 9.70703i 0.285254 0.494075i
\(387\) −1.41742 −0.0720517
\(388\) 3.58258 0.181878
\(389\) −16.9782 + 29.4071i −0.860830 + 1.49100i 0.0102991 + 0.999947i \(0.496722\pi\)
−0.871129 + 0.491054i \(0.836612\pi\)
\(390\) 1.97822 3.42638i 0.100171 0.173501i
\(391\) 33.1950i 1.67874i
\(392\) 0 0
\(393\) 11.0436 + 6.37600i 0.557074 + 0.321627i
\(394\) 4.74773 2.74110i 0.239187 0.138095i
\(395\) 4.41742 7.65120i 0.222265 0.384974i
\(396\) 0.560795 + 0.971326i 0.0281810 + 0.0488110i
\(397\) 3.87386 2.23658i 0.194424 0.112251i −0.399628 0.916677i \(-0.630861\pi\)
0.594052 + 0.804427i \(0.297527\pi\)
\(398\) 10.0871 0.505622
\(399\) 0 0
\(400\) 9.41742 0.470871
\(401\) −3.64337 + 2.10350i −0.181941 + 0.105044i −0.588204 0.808712i \(-0.700165\pi\)
0.406263 + 0.913756i \(0.366832\pi\)
\(402\) −1.41742 2.45505i −0.0706947 0.122447i
\(403\) 0 0
\(404\) −13.2867 + 7.67110i −0.661040 + 0.381652i
\(405\) 10.5826 + 6.10985i 0.525852 + 0.303601i
\(406\) 0 0
\(407\) 30.0924i 1.49163i
\(408\) −6.79129 + 11.7629i −0.336219 + 0.582348i
\(409\) −7.41742 + 12.8474i −0.366768 + 0.635261i −0.989058 0.147526i \(-0.952869\pi\)
0.622290 + 0.782787i \(0.286202\pi\)
\(410\) 3.13068 0.154613
\(411\) 17.8348 0.879728
\(412\) 3.02178 5.23388i 0.148872 0.257855i
\(413\) 0 0
\(414\) 0.626136 + 0.361500i 0.0307729 + 0.0177668i
\(415\) −8.66515 15.0085i −0.425356 0.736737i
\(416\) −15.5608 + 8.98403i −0.762931 + 0.440478i
\(417\) 19.1280i 0.936703i
\(418\) −5.93466 0.685275i −0.290274 0.0335179i
\(419\) 38.7726i 1.89416i 0.320992 + 0.947082i \(0.395984\pi\)
−0.320992 + 0.947082i \(0.604016\pi\)
\(420\) 0 0
\(421\) 13.8131 7.97498i 0.673208 0.388677i −0.124083 0.992272i \(-0.539599\pi\)
0.797291 + 0.603595i \(0.206266\pi\)
\(422\) 3.23049 5.59538i 0.157258 0.272379i
\(423\) −1.10436 + 0.637600i −0.0536956 + 0.0310012i
\(424\) −1.10436 + 1.91280i −0.0536323 + 0.0928938i
\(425\) 14.7701i 0.716455i
\(426\) 2.91288 0.141129
\(427\) 0 0
\(428\) −14.7042 8.48945i −0.710753 0.410353i
\(429\) 20.3739 0.983659
\(430\) −3.95644 −0.190796
\(431\) −15.7087 9.06943i −0.756662 0.436859i 0.0714340 0.997445i \(-0.477242\pi\)
−0.828096 + 0.560586i \(0.810576\pi\)
\(432\) −6.97822 12.0866i −0.335740 0.581518i
\(433\) −18.1869 + 31.5007i −0.874008 + 1.51383i −0.0161926 + 0.999869i \(0.505154\pi\)
−0.857816 + 0.513958i \(0.828179\pi\)
\(434\) 0 0
\(435\) −4.06534 7.04138i −0.194918 0.337608i
\(436\) 24.1733i 1.15769i
\(437\) 30.3303 13.1334i 1.45090 0.628256i
\(438\) −5.07803 −0.242638
\(439\) −1.58258 2.74110i −0.0755322 0.130826i 0.825785 0.563984i \(-0.190732\pi\)
−0.901318 + 0.433159i \(0.857399\pi\)
\(440\) 3.31307 + 5.73840i 0.157944 + 0.273568i
\(441\) 0 0
\(442\) 3.79129 + 6.56670i 0.180333 + 0.312346i
\(443\) −10.6652 + 18.4726i −0.506717 + 0.877659i 0.493253 + 0.869886i \(0.335808\pi\)
−0.999970 + 0.00777314i \(0.997526\pi\)
\(444\) 32.1860i 1.52748i
\(445\) 3.02715i 0.143501i
\(446\) 5.37386 + 3.10260i 0.254460 + 0.146912i
\(447\) 10.0390 17.3881i 0.474829 0.822428i
\(448\) 0 0
\(449\) 12.6766i 0.598244i 0.954215 + 0.299122i \(0.0966937\pi\)
−0.954215 + 0.299122i \(0.903306\pi\)
\(450\) 0.278599 + 0.160849i 0.0131333 + 0.00758251i
\(451\) 8.06080 + 13.9617i 0.379568 + 0.657431i
\(452\) −20.5218 11.8483i −0.965263 0.557295i
\(453\) −27.8739 + 16.0930i −1.30963 + 0.756114i
\(454\) −10.5000 + 6.06218i −0.492789 + 0.284512i
\(455\) 0 0
\(456\) −13.4347 1.55130i −0.629136 0.0726463i
\(457\) −38.0780 −1.78122 −0.890608 0.454773i \(-0.849721\pi\)
−0.890608 + 0.454773i \(0.849721\pi\)
\(458\) −1.58258 2.74110i −0.0739489 0.128083i
\(459\) −18.9564 + 10.9445i −0.884811 + 0.510846i
\(460\) −15.0000 8.66025i −0.699379 0.403786i
\(461\) −4.66515 + 2.69343i −0.217278 + 0.125445i −0.604689 0.796462i \(-0.706703\pi\)
0.387411 + 0.921907i \(0.373369\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 9.93545i 0.461242i
\(465\) 0 0
\(466\) −5.30852 3.06488i −0.245913 0.141978i
\(467\) 20.5185i 0.949481i −0.880126 0.474741i \(-0.842542\pi\)
0.880126 0.474741i \(-0.157458\pi\)
\(468\) 1.41742 0.0655205
\(469\) 0 0
\(470\) −3.08258 + 1.77973i −0.142189 + 0.0820926i
\(471\) −18.2477 10.5353i −0.840811 0.485442i
\(472\) −14.6869 + 8.47950i −0.676021 + 0.390301i
\(473\) −10.1869 17.6443i −0.468396 0.811285i
\(474\) −5.66970 −0.260418
\(475\) 13.4955 5.84370i 0.619214 0.268127i
\(476\) 0 0
\(477\) 0.230493 0.133075i 0.0105535 0.00609308i
\(478\) −5.75227 + 3.32108i −0.263103 + 0.151902i
\(479\) 0.165151 + 0.0953502i 0.00754596 + 0.00435666i 0.503768 0.863839i \(-0.331947\pi\)
−0.496222 + 0.868196i \(0.665280\pi\)
\(480\) 5.41288 + 9.37538i 0.247063 + 0.427926i
\(481\) −32.9347 19.0148i −1.50169 0.867002i
\(482\) 3.36875i 0.153442i
\(483\) 0 0
\(484\) 1.79129 3.10260i 0.0814222 0.141027i
\(485\) −2.20871 1.27520i −0.100292 0.0579039i
\(486\) 0.989150i 0.0448688i
\(487\) 10.0308i 0.454539i 0.973832 + 0.227270i \(0.0729799\pi\)
−0.973832 + 0.227270i \(0.927020\pi\)
\(488\) 1.18693 2.05583i 0.0537299 0.0930629i
\(489\) −5.37386 9.30780i −0.243015 0.420913i
\(490\) 0 0
\(491\) −19.0390 32.9765i −0.859219 1.48821i −0.872675 0.488301i \(-0.837617\pi\)
0.0134566 0.999909i \(-0.495717\pi\)
\(492\) 8.62159 + 14.9330i 0.388691 + 0.673233i
\(493\) 15.5826 0.701804
\(494\) −4.50000 + 6.06218i −0.202465 + 0.272750i
\(495\) 0.798450i 0.0358876i
\(496\) 0 0
\(497\) 0 0
\(498\) −5.56080 + 9.63158i −0.249185 + 0.431601i
\(499\) 8.87386 + 15.3700i 0.397249 + 0.688055i 0.993385 0.114828i \(-0.0366317\pi\)
−0.596137 + 0.802883i \(0.703298\pi\)
\(500\) −16.5653 9.56400i −0.740825 0.427715i
\(501\) 34.2523 1.53028
\(502\) −4.37386 −0.195215
\(503\) −10.4174 6.01450i −0.464490 0.268173i 0.249440 0.968390i \(-0.419753\pi\)
−0.713930 + 0.700217i \(0.753087\pi\)
\(504\) 0 0
\(505\) 10.9220 0.486021
\(506\) 10.3923i 0.461994i
\(507\) 1.23049 2.13128i 0.0546481 0.0946533i
\(508\) −18.2477 + 10.5353i −0.809612 + 0.467430i
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 3.95644 2.28425i 0.175194 0.101148i
\(511\) 0 0
\(512\) 22.8981i 1.01196i
\(513\) −17.5000 12.9904i −0.772644 0.573539i
\(514\) 9.02175i 0.397933i
\(515\) −3.72595 + 2.15118i −0.164185 + 0.0947922i
\(516\) −10.8956 18.8718i −0.479654 0.830785i
\(517\) −15.8739 9.16478i −0.698132 0.403067i
\(518\) 0 0
\(519\) −17.6869 + 30.6347i −0.776370 + 1.34471i
\(520\) 8.37386 0.367218
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −0.169697 + 0.293924i −0.00742745 + 0.0128647i
\(523\) 10.7477 18.6156i 0.469965 0.814004i −0.529445 0.848344i \(-0.677600\pi\)
0.999410 + 0.0343406i \(0.0109331\pi\)
\(524\) 12.7520i 0.557074i
\(525\) 0 0
\(526\) 4.74773 + 2.74110i 0.207011 + 0.119518i
\(527\) 0 0
\(528\) −7.50000 + 12.9904i −0.326396 + 0.565334i
\(529\) −17.2477 29.8739i −0.749901 1.29887i
\(530\) 0.643371 0.371450i 0.0279463 0.0161348i
\(531\) 2.04356 0.0886830
\(532\) 0 0
\(533\) 20.3739 0.882490
\(534\) 1.68239 0.971326i 0.0728040 0.0420334i
\(535\) 6.04356 + 10.4678i 0.261286 + 0.452560i
\(536\) 3.00000 5.19615i 0.129580 0.224440i
\(537\) 22.9129 13.2288i 0.988764 0.570863i
\(538\) −3.00000 1.73205i −0.129339 0.0746740i
\(539\) 0 0
\(540\) 11.4213i 0.491493i
\(541\) 1.87386 3.24563i 0.0805637 0.139540i −0.822929 0.568145i \(-0.807661\pi\)
0.903492 + 0.428605i \(0.140995\pi\)
\(542\) 3.08258 5.33918i 0.132408 0.229337i
\(543\) −21.0436 −0.903066
\(544\) −20.7477 −0.889551
\(545\) 8.60436 14.9032i 0.368570 0.638382i
\(546\) 0 0
\(547\) −10.4347 6.02445i −0.446154 0.257587i 0.260051 0.965595i \(-0.416261\pi\)
−0.706204 + 0.708008i \(0.749594\pi\)
\(548\) 8.91742 + 15.4454i 0.380933 + 0.659796i
\(549\) −0.247727 + 0.143025i −0.0105727 + 0.00610417i
\(550\) 4.62405i 0.197170i
\(551\) 6.16515 + 14.2378i 0.262644 + 0.606551i
\(552\) 23.5257i 1.00132i
\(553\) 0 0
\(554\) −9.31307 + 5.37690i −0.395674 + 0.228443i
\(555\) −11.4564 + 19.8431i −0.486299 + 0.842294i
\(556\) −16.5653 + 9.56400i −0.702527 + 0.405604i
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) 0 0
\(559\) −25.7477 −1.08901
\(560\) 0 0
\(561\) 20.3739 + 11.7629i 0.860185 + 0.496628i
\(562\) −0.539015 −0.0227370
\(563\) 35.7042 1.50475 0.752376 0.658734i \(-0.228908\pi\)
0.752376 + 0.658734i \(0.228908\pi\)
\(564\) −16.9782 9.80238i −0.714912 0.412755i
\(565\) 8.43466 + 14.6093i 0.354849 + 0.614616i
\(566\) 2.20871 3.82560i 0.0928391 0.160802i
\(567\) 0 0
\(568\) 3.08258 + 5.33918i 0.129342 + 0.224027i
\(569\) 3.19795i 0.134065i −0.997751 0.0670326i \(-0.978647\pi\)
0.997751 0.0670326i \(-0.0213531\pi\)
\(570\) 3.65246 + 2.71125i 0.152985 + 0.113562i
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 10.1869 + 17.6443i 0.425937 + 0.737745i
\(573\) 18.3956 + 31.8622i 0.768489 + 1.33106i
\(574\) 0 0
\(575\) −12.7913 22.1552i −0.533434 0.923934i
\(576\) −0.356629 + 0.617700i −0.0148595 + 0.0257375i
\(577\) 30.3785i 1.26467i −0.774694 0.632336i \(-0.782096\pi\)
0.774694 0.632336i \(-0.217904\pi\)
\(578\) 0.989150i 0.0411432i
\(579\) −38.0608 21.9744i −1.58175 0.913225i
\(580\) 4.06534 7.04138i 0.168804 0.292377i
\(581\) 0 0
\(582\) 1.63670i 0.0678434i
\(583\) 3.31307 + 1.91280i 0.137213 + 0.0792201i
\(584\) −5.37386 9.30780i −0.222372 0.385160i
\(585\) −0.873864 0.504525i −0.0361298 0.0208596i
\(586\) 8.30852 4.79693i 0.343222 0.198159i
\(587\) 7.26951 4.19705i 0.300045 0.173231i −0.342418 0.939548i \(-0.611246\pi\)
0.642463 + 0.766317i \(0.277913\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 5.70417 0.234837
\(591\) −10.7477 18.6156i −0.442102 0.765744i
\(592\) 24.2477 13.9994i 0.996575 0.575373i
\(593\) 14.8348 + 8.56490i 0.609194 + 0.351718i 0.772650 0.634832i \(-0.218931\pi\)
−0.163456 + 0.986551i \(0.552264\pi\)
\(594\) 5.93466 3.42638i 0.243502 0.140586i
\(595\) 0 0
\(596\) 20.0780 0.822428
\(597\) 39.5511i 1.61872i
\(598\) 11.3739 + 6.56670i 0.465112 + 0.268532i
\(599\) 31.3521 + 18.1011i 1.28101 + 0.739592i 0.977033 0.213087i \(-0.0683517\pi\)
0.303978 + 0.952679i \(0.401685\pi\)
\(600\) 10.4678i 0.427344i
\(601\) 20.4955 0.836027 0.418014 0.908441i \(-0.362726\pi\)
0.418014 + 0.908441i \(0.362726\pi\)
\(602\) 0 0
\(603\) −0.626136 + 0.361500i −0.0254982 + 0.0147214i
\(604\) −27.8739 16.0930i −1.13417 0.654814i
\(605\) −2.20871 + 1.27520i −0.0897969 + 0.0518443i
\(606\) −3.50455 6.07005i −0.142362 0.246579i
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) −8.20871 18.9572i −0.332907 0.768816i
\(609\) 0 0
\(610\) −0.691478 + 0.399225i −0.0279971 + 0.0161641i
\(611\) −20.0608 + 11.5821i −0.811573 + 0.468562i
\(612\) 1.41742 + 0.818350i 0.0572960 + 0.0330799i
\(613\) 2.68693 + 4.65390i 0.108524 + 0.187969i 0.915173 0.403062i \(-0.132054\pi\)
−0.806648 + 0.591032i \(0.798721\pi\)
\(614\) −7.99545 4.61618i −0.322670 0.186294i
\(615\) 12.2753i 0.494986i
\(616\) 0 0
\(617\) 22.5826 39.1142i 0.909140 1.57468i 0.0938792 0.995584i \(-0.470073\pi\)
0.815261 0.579094i \(-0.196593\pi\)
\(618\) 2.39110 + 1.38050i 0.0961841 + 0.0555319i
\(619\) 8.66025i 0.348085i −0.984738 0.174042i \(-0.944317\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) −18.9564 + 32.8335i −0.760696 + 1.31756i
\(622\) 5.47822 + 9.48855i 0.219657 + 0.380456i
\(623\) 0 0
\(624\) 9.47822 + 16.4168i 0.379432 + 0.657196i
\(625\) −1.62614 2.81655i −0.0650455 0.112662i
\(626\) 3.95644 0.158131
\(627\) −2.68693 + 23.2695i −0.107306 + 0.929295i
\(628\) 21.0707i 0.840811i
\(629\) −21.9564 38.0297i −0.875461 1.51634i
\(630\) 0 0
\(631\) 17.1434 29.6932i 0.682467 1.18207i −0.291759 0.956492i \(-0.594240\pi\)
0.974226 0.225575i \(-0.0724262\pi\)
\(632\) −6.00000 10.3923i −0.238667 0.413384i
\(633\) −21.9392 12.6666i −0.872005 0.503452i
\(634\) 6.70417 0.266256
\(635\) 15.0000 0.595257
\(636\) 3.54356 + 2.04588i 0.140511 + 0.0811243i
\(637\) 0 0
\(638\) −4.87841 −0.193138
\(639\) 0.742901i 0.0293887i
\(640\) −7.03901 + 12.1919i −0.278241 + 0.481928i
\(641\) −6.16515 + 3.55945i −0.243509 + 0.140590i −0.616788 0.787129i \(-0.711567\pi\)
0.373280 + 0.927719i \(0.378233\pi\)
\(642\) 3.87841 6.71760i 0.153069 0.265123i
\(643\) −9.24773 + 5.33918i −0.364695 + 0.210557i −0.671138 0.741332i \(-0.734194\pi\)
0.306443 + 0.951889i \(0.400861\pi\)
\(644\) 0 0
\(645\) 15.5130i 0.610824i
\(646\) −8.00000 + 3.46410i −0.314756 + 0.136293i
\(647\) 6.66205i 0.261912i 0.991388 + 0.130956i \(0.0418047\pi\)
−0.991388 + 0.130956i \(0.958195\pi\)
\(648\) 14.3739 8.29875i 0.564659 0.326006i
\(649\) 14.6869 + 25.4385i 0.576513 + 0.998549i
\(650\) 5.06080 + 2.92185i 0.198501 + 0.114604i
\(651\) 0 0
\(652\) 5.37386 9.30780i 0.210457 0.364522i
\(653\) 15.0000 0.586995 0.293498 0.955960i \(-0.405181\pi\)
0.293498 + 0.955960i \(0.405181\pi\)
\(654\) −11.0436 −0.431837
\(655\) 4.53901 7.86180i 0.177354 0.307186i
\(656\) −7.50000 + 12.9904i −0.292826 + 0.507189i
\(657\) 1.29510i 0.0505267i
\(658\) 0 0
\(659\) −25.4174 14.6748i −0.990122 0.571647i −0.0848114 0.996397i \(-0.527029\pi\)
−0.905311 + 0.424750i \(0.860362\pi\)
\(660\) 10.6307 6.13763i 0.413799 0.238907i
\(661\) −15.2477 + 26.4098i −0.593068 + 1.02722i 0.400749 + 0.916188i \(0.368750\pi\)
−0.993816 + 0.111036i \(0.964583\pi\)
\(662\) 0.478220 + 0.828301i 0.0185865 + 0.0321928i
\(663\) 25.7477 14.8655i 0.999959 0.577327i
\(664\) −23.5390 −0.913491
\(665\) 0 0
\(666\) 0.956439 0.0370613
\(667\) 23.3739 13.4949i 0.905040 0.522525i
\(668\) 17.1261 + 29.6633i 0.662630 + 1.14771i
\(669\) 12.1652 21.0707i 0.470332 0.814639i
\(670\) −1.74773 + 1.00905i −0.0675206 + 0.0389830i
\(671\) −3.56080 2.05583i −0.137463 0.0793643i
\(672\) 0 0
\(673\) 11.6874i 0.450516i 0.974299 + 0.225258i \(0.0723226\pi\)
−0.974299 + 0.225258i \(0.927677\pi\)
\(674\) 0.560795 0.971326i 0.0216010 0.0374141i
\(675\) −8.43466 + 14.6093i −0.324650 + 0.562311i
\(676\) 2.46099 0.0946533
\(677\) −2.66970 −0.102605 −0.0513024 0.998683i \(-0.516337\pi\)
−0.0513024 + 0.998683i \(0.516337\pi\)
\(678\) 5.41288 9.37538i 0.207880 0.360059i
\(679\) 0 0
\(680\) 8.37386 + 4.83465i 0.321123 + 0.185400i
\(681\) 23.7695 + 41.1700i 0.910850 + 1.57764i
\(682\) 0 0
\(683\) 34.9470i 1.33721i 0.743618 + 0.668604i \(0.233108\pi\)
−0.743618 + 0.668604i \(0.766892\pi\)
\(684\) −0.186932 + 1.61888i −0.00714751 + 0.0618993i
\(685\) 12.6965i 0.485107i
\(686\) 0 0
\(687\) −10.7477 + 6.20520i −0.410051 + 0.236743i
\(688\) 9.47822 16.4168i 0.361354 0.625883i
\(689\) 4.18693 2.41733i 0.159509 0.0920928i
\(690\) 3.95644 6.85275i 0.150619 0.260880i
\(691\) 43.3013i 1.64726i 0.567129 + 0.823629i \(0.308054\pi\)
−0.567129 + 0.823629i \(0.691946\pi\)
\(692\) −35.3739 −1.34471
\(693\) 0 0
\(694\) 12.3784 + 7.14668i 0.469878 + 0.271284i
\(695\) 13.6170 0.516524
\(696\) −11.0436 −0.418605
\(697\) 20.3739 + 11.7629i 0.771715 + 0.445550i
\(698\) 7.33485 + 12.7043i 0.277628 + 0.480866i
\(699\) −12.0172 + 20.8145i −0.454534 + 0.787275i
\(700\) 0 0
\(701\) 10.7477 + 18.6156i 0.405936 + 0.703102i 0.994430 0.105400i \(-0.0336122\pi\)
−0.588494 + 0.808502i \(0.700279\pi\)
\(702\) 8.66025i 0.326860i
\(703\) 26.0608 35.1078i 0.982902 1.32412i
\(704\) −10.2523 −0.386397
\(705\) 6.97822 + 12.0866i 0.262815 + 0.455209i
\(706\) −0.0607953 0.105301i −0.00228806 0.00396304i
\(707\) 0 0
\(708\) 15.7087 + 27.2083i 0.590370 + 1.02255i
\(709\) 6.70871 11.6198i 0.251951 0.436392i −0.712112 0.702066i \(-0.752261\pi\)
0.964063 + 0.265674i \(0.0855945\pi\)
\(710\) 2.07365i 0.0778227i
\(711\) 1.44600i 0.0542292i
\(712\) 3.56080 + 2.05583i 0.133446 + 0.0770453i
\(713\) 0 0
\(714\) 0 0
\(715\) 14.5040i 0.542417i
\(716\) 22.9129 + 13.2288i 0.856294 + 0.494382i
\(717\) 13.0218 + 22.5544i 0.486307 + 0.842309i
\(718\) −0.247727 0.143025i −0.00924509 0.00533766i
\(719\) 27.1652 15.6838i 1.01309 0.584907i 0.100995 0.994887i \(-0.467798\pi\)
0.912095 + 0.409980i \(0.134464\pi\)
\(720\) 0.643371 0.371450i 0.0239770 0.0138431i
\(721\) 0 0
\(722\) −6.33030 5.93905i −0.235589 0.221029i
\(723\) 13.2087 0.491237
\(724\) −10.5218 18.2243i −0.391039 0.677299i
\(725\) 10.4002 6.00455i 0.386253 0.223003i
\(726\) 1.41742 + 0.818350i 0.0526055 + 0.0303718i
\(727\) 39.2477 22.6597i 1.45562 0.840401i 0.456826 0.889556i \(-0.348986\pi\)
0.998791 + 0.0491546i \(0.0156527\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) 3.61500i 0.133797i
\(731\) −25.7477 14.8655i −0.952314 0.549819i
\(732\) −3.80852 2.19885i −0.140767 0.0812719i
\(733\) 28.6464i 1.05808i 0.848597 + 0.529040i \(0.177448\pi\)
−0.848597 + 0.529040i \(0.822552\pi\)
\(734\) −4.41742 −0.163050
\(735\) 0 0
\(736\) −31.1216 + 17.9681i −1.14716 + 0.662311i
\(737\) −9.00000 5.19615i −0.331519 0.191403i
\(738\) −0.443751 + 0.256199i −0.0163347 + 0.00943083i
\(739\) −12.8739 22.2982i −0.473573 0.820252i 0.525970 0.850503i \(-0.323703\pi\)
−0.999542 + 0.0302513i \(0.990369\pi\)
\(740\) −22.9129 −0.842294
\(741\) 23.7695 + 17.6443i 0.873195 + 0.648179i
\(742\) 0 0
\(743\) 28.8956 16.6829i 1.06008 0.612037i 0.134624 0.990897i \(-0.457017\pi\)
0.925454 + 0.378860i \(0.123684\pi\)
\(744\) 0 0
\(745\) −12.3784 7.14668i −0.453510 0.261834i
\(746\) −4.96099 8.59268i −0.181635 0.314600i
\(747\) 2.45644 + 1.41823i 0.0898764 + 0.0518902i
\(748\) 23.5257i 0.860185i
\(749\) 0 0
\(750\) 4.36932 7.56788i 0.159545 0.276340i
\(751\) 7.81307 + 4.51088i 0.285103 + 0.164604i 0.635731 0.771910i \(-0.280699\pi\)
−0.350628 + 0.936515i \(0.614032\pi\)
\(752\) 17.0544i 0.621908i
\(753\) 17.1497i 0.624970i
\(754\) −3.08258 + 5.33918i −0.112261 + 0.194441i
\(755\) 11.4564 + 19.8431i 0.416943 + 0.722166i
\(756\) 0 0
\(757\) 14.1216 + 24.4593i 0.513258 + 0.888989i 0.999882 + 0.0153772i \(0.00489491\pi\)
−0.486624 + 0.873612i \(0.661772\pi\)
\(758\) −6.01723 10.4222i −0.218556 0.378550i
\(759\) 40.7477 1.47905
\(760\) −1.10436 + 9.56400i −0.0400592 + 0.346923i
\(761\) 20.5185i 0.743794i −0.928274 0.371897i \(-0.878708\pi\)
0.928274 0.371897i \(-0.121292\pi\)
\(762\) −4.81307 8.33648i −0.174359 0.301999i
\(763\) 0 0
\(764\) −18.3956 + 31.8622i −0.665531 + 1.15273i
\(765\) −0.582576 1.00905i −0.0210631 0.0364823i
\(766\) 6.69148 + 3.86333i 0.241773 + 0.139588i
\(767\) 37.1216 1.34038
\(768\) −3.20871 −0.115784
\(769\) 25.1869 + 14.5417i 0.908264 + 0.524386i 0.879872 0.475210i \(-0.157628\pi\)
0.0283918 + 0.999597i \(0.490961\pi\)
\(770\) 0 0
\(771\) −35.3739 −1.27396
\(772\) 43.9488i 1.58175i
\(773\) −19.8303 + 34.3471i −0.713246 + 1.23538i 0.250386 + 0.968146i \(0.419443\pi\)
−0.963632 + 0.267233i \(0.913891\pi\)
\(774\) 0.560795 0.323775i 0.0201574 0.0116379i
\(775\) 0 0
\(776\) −3.00000 + 1.73205i −0.107694 + 0.0621770i
\(777\) 0 0
\(778\) 15.5130i 0.556168i
\(779\) −2.68693 + 23.2695i −0.0962693 + 0.833717i
\(780\) 15.5130i 0.555455i
\(781\) 9.24773 5.33918i 0.330910 0.191051i
\(782\) 7.58258 + 13.1334i 0.271152 + 0.469650i
\(783\) −15.4129 8.89863i −0.550811 0.318011i
\(784\) 0 0
\(785\) −7.50000 + 12.9904i −0.267686 + 0.463647i
\(786\) −5.82576 −0.207798
\(787\) 25.5826 0.911920 0.455960 0.890000i \(-0.349296\pi\)
0.455960 + 0.890000i \(0.349296\pi\)
\(788\) 10.7477 18.6156i 0.382872 0.663154i
\(789\) 10.7477 18.6156i 0.382629 0.662733i
\(790\) 4.03620i 0.143602i
\(791\) 0 0
\(792\) −0.939205 0.542250i −0.0333732 0.0192680i
\(793\) −4.50000 + 2.59808i −0.159800 + 0.0922604i
\(794\) −1.02178 + 1.76978i −0.0362616 + 0.0628070i
\(795\) −1.45644 2.52263i −0.0516546 0.0894684i
\(796\) 34.2523 19.7756i 1.21404 0.700926i
\(797\) 48.4955 1.71780 0.858899 0.512146i \(-0.171149\pi\)
0.858899 + 0.512146i \(0.171149\pi\)
\(798\) 0 0
\(799\) −26.7477 −0.946267
\(800\) −13.8475 + 7.99488i −0.489584 + 0.282662i
\(801\) −0.247727 0.429076i −0.00875301 0.0151607i
\(802\) 0.960985 1.66447i 0.0339336 0.0587747i
\(803\) −16.1216 + 9.30780i −0.568919 + 0.328465i
\(804\) −9.62614 5.55765i −0.339488 0.196003i
\(805\) 0 0
\(806\) 0 0
\(807\) −6.79129 + 11.7629i −0.239065 + 0.414072i
\(808\) 7.41742 12.8474i 0.260944 0.451968i
\(809\) 50.0780 1.76065 0.880325 0.474371i \(-0.157325\pi\)
0.880325 + 0.474371i \(0.157325\pi\)
\(810\) −5.58258 −0.196152
\(811\) −7.56080 + 13.0957i −0.265495 + 0.459852i −0.967693 0.252130i \(-0.918869\pi\)
0.702198 + 0.711982i \(0.252202\pi\)
\(812\) 0 0
\(813\) −20.9347 12.0866i −0.734211 0.423897i
\(814\) 6.87386 + 11.9059i 0.240929 + 0.417301i
\(815\) −6.62614 + 3.82560i −0.232103 + 0.134005i
\(816\) 21.8890i 0.766269i
\(817\) 3.39564 29.4071i 0.118799 1.02883i
\(818\) 6.77730i 0.236963i
\(819\) 0 0
\(820\) 10.6307 6.13763i 0.371240 0.214335i
\(821\) 8.52178 14.7602i 0.297412 0.515133i −0.678131 0.734941i \(-0.737210\pi\)
0.975543 + 0.219808i \(0.0705431\pi\)
\(822\) −7.05625 + 4.07393i −0.246115 + 0.142095i
\(823\) 12.7087 22.0121i 0.442998 0.767295i −0.554912 0.831909i \(-0.687248\pi\)
0.997910 + 0.0646139i \(0.0205816\pi\)
\(824\) 5.84370i 0.203575i
\(825\) 18.1307 0.631229
\(826\) 0 0
\(827\) 26.7042 + 15.4177i 0.928595 + 0.536124i 0.886367 0.462984i \(-0.153221\pi\)
0.0422280 + 0.999108i \(0.486554\pi\)
\(828\) 2.83485 0.0985178
\(829\) −14.2523 −0.495002 −0.247501 0.968888i \(-0.579609\pi\)
−0.247501 + 0.968888i \(0.579609\pi\)
\(830\) 6.85663 + 3.95868i 0.237997 + 0.137408i
\(831\) 21.0826 + 36.5161i 0.731346 + 1.26673i
\(832\) −6.47822 + 11.2206i −0.224592 + 0.389005i
\(833\) 0 0
\(834\) −4.36932 7.56788i −0.151297 0.262054i
\(835\) 24.3839i 0.843838i
\(836\) −21.4955 + 9.30780i −0.743436 + 0.321917i
\(837\) 0 0
\(838\) −8.85663 15.3401i −0.305947 0.529916i
\(839\) 11.9174 + 20.6416i 0.411435 + 0.712627i 0.995047 0.0994062i \(-0.0316943\pi\)
−0.583612 + 0.812033i \(0.698361\pi\)
\(840\) 0 0
\(841\) −8.16515 14.1425i −0.281557 0.487671i
\(842\) −3.64337 + 6.31050i −0.125559 + 0.217474i
\(843\) 2.11345i 0.0727911i
\(844\) 25.3332i 0.872005i
\(845\) −1.51723 0.875976i −0.0521945 0.0301345i
\(846\) 0.291288 0.504525i 0.0100147 0.0173459i
\(847\) 0 0
\(848\) 3.55945i 0.122232i
\(849\) −15.0000 8.66025i −0.514799 0.297219i
\(850\) 3.37386 + 5.84370i 0.115723 + 0.200437i
\(851\) −65.8693 38.0297i −2.25797 1.30364i
\(852\) 9.89110 5.71063i 0.338863 0.195643i
\(853\) 0.873864 0.504525i 0.0299205 0.0172746i −0.484965 0.874533i \(-0.661168\pi\)
0.514886 + 0.857259i \(0.327834\pi\)
\(854\) 0 0
\(855\) 0.691478 0.931524i 0.0236480 0.0318575i
\(856\) 16.4174 0.561136
\(857\) 6.56080 + 11.3636i 0.224112 + 0.388174i 0.956053 0.293195i \(-0.0947184\pi\)
−0.731940 + 0.681369i \(0.761385\pi\)
\(858\) −8.06080 + 4.65390i −0.275191 + 0.158882i
\(859\) −5.68693 3.28335i −0.194036 0.112027i 0.399835 0.916587i \(-0.369067\pi\)
−0.593870 + 0.804561i \(0.702401\pi\)
\(860\) −13.4347 + 7.75650i −0.458118 + 0.264495i
\(861\) 0 0
\(862\) 8.28674 0.282248
\(863\) 18.5203i 0.630437i −0.949019 0.315218i \(-0.897922\pi\)
0.949019 0.315218i \(-0.102078\pi\)
\(864\) 20.5218 + 11.8483i 0.698165 + 0.403086i
\(865\) 21.8085 + 12.5912i 0.741512 + 0.428112i
\(866\) 16.6174i 0.564683i
\(867\) 3.87841 0.131718
\(868\) 0 0
\(869\) −18.0000 + 10.3923i −0.610608 + 0.352535i
\(870\) 3.21686 + 1.85725i 0.109062 + 0.0629667i
\(871\) −11.3739 + 6.56670i −0.385389 + 0.222504i
\(872\) −11.6869 20.2424i −0.395769 0.685493i
\(873\) 0.417424 0.0141277
\(874\) −9.00000 + 12.1244i −0.304430 + 0.410112i
\(875\) 0 0
\(876\) −17.2432 + 9.95536i −0.582593 + 0.336360i
\(877\) 37.1216 21.4322i 1.25351 0.723713i 0.281703 0.959502i \(-0.409101\pi\)
0.971804 + 0.235789i \(0.0757674\pi\)
\(878\) 1.25227 + 0.723000i 0.0422622 + 0.0244001i
\(879\) −18.8085 32.5773i −0.634396 1.09881i
\(880\) 9.24773 + 5.33918i 0.311741 + 0.179984i
\(881\) 13.5903i 0.457867i −0.973442 0.228934i \(-0.926476\pi\)
0.973442 0.228934i \(-0.0735239\pi\)
\(882\) 0 0
\(883\) −20.5000 + 35.5070i −0.689880 + 1.19491i 0.281996 + 0.959415i \(0.409003\pi\)
−0.971876 + 0.235492i \(0.924330\pi\)
\(884\) 25.7477 + 14.8655i 0.865990 + 0.499979i
\(885\) 22.3658i 0.751817i
\(886\) 9.74475i 0.327381i
\(887\) −0.708712 + 1.22753i −0.0237962 + 0.0412163i −0.877678 0.479250i \(-0.840909\pi\)
0.853882 + 0.520467i \(0.174242\pi\)
\(888\) 15.5608 + 26.9521i 0.522186 + 0.904453i
\(889\) 0 0
\(890\) −0.691478 1.19767i −0.0231784 0.0401461i
\(891\) −14.3739 24.8963i −0.481543 0.834056i
\(892\) 24.3303 0.814639
\(893\) −10.5826 24.4394i −0.354132 0.817834i
\(894\) 9.17265i 0.306779i
\(895\) −9.41742 16.3115i −0.314790 0.545232i
\(896\) 0 0
\(897\) 25.7477 44.5964i 0.859692 1.48903i
\(898\) −2.89564 5.01540i −0.0966289 0.167366i
\(899\) 0 0
\(900\) 1.26136 0.0420455
\(901\) 5.58258 0.185983
\(902\) −6.37841 3.68258i −0.212378 0.122616i
\(903\) 0 0
\(904\) 22.9129 0.762071
\(905\) 14.9807i 0.497976i
\(906\) 7.35208 12.7342i 0.244257 0.423065i
\(907\) −34.9955 + 20.2046i −1.16200 + 0.670884i −0.951784 0.306770i \(-0.900752\pi\)
−0.210221 + 0.977654i \(0.567418\pi\)
\(908\) −23.7695 + 41.1700i −0.788819 + 1.36627i
\(909\) −1.54811 + 0.893800i −0.0513475 + 0.0296455i
\(910\) 0 0
\(911\) 7.38505i 0.244678i −0.992488 0.122339i \(-0.960961\pi\)
0.992488 0.122339i \(-0.0390395\pi\)
\(912\) −20.0000 + 8.66025i −0.662266 + 0.286770i
\(913\) 40.7708i 1.34932i
\(914\) 15.0653 8.69798i 0.498317 0.287704i
\(915\) 1.56534 + 2.71125i 0.0517486 + 0.0896312i
\(916\) −10.7477 6.20520i −0.355115 0.205026i
\(917\) 0 0
\(918\) 5.00000 8.66025i 0.165025 0.285831i
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) 16.7477 0.552156
\(921\) −18.0998 + 31.3498i −0.596409 + 1.03301i
\(922\) 1.23049 2.13128i 0.0405241 0.0701898i
\(923\) 13.4949i 0.444190i
\(924\) 0 0
\(925\) −29.3085 16.9213i −0.963658 0.556368i
\(926\) 7.51723 4.34008i 0.247032 0.142624i
\(927\) 0.352083 0.609826i 0.0115639 0.0200293i
\(928\) −8.43466 14.6093i −0.276881 0.479572i
\(929\) −3.47822 + 2.00815i −0.114117 + 0.0658853i −0.555972 0.831201i \(-0.687654\pi\)
0.441855 + 0.897086i \(0.354320\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −24.0345 −0.787275
\(933\) 37.2042 21.4798i 1.21801 0.703218i
\(934\) 4.68693 + 8.11800i 0.153361 + 0.265629i
\(935\) 8.37386 14.5040i 0.273855 0.474330i
\(936\) −1.18693 + 0.685275i −0.0387961 + 0.0223989i
\(937\) −9.93920 5.73840i −0.324700 0.187465i 0.328786 0.944405i \(-0.393361\pi\)
−0.653485 + 0.756939i \(0.726694\pi\)
\(938\) 0 0
\(939\) 15.5130i 0.506248i
\(940\) −6.97822 + 12.0866i −0.227604 + 0.394222i
\(941\) 2.60436 4.51088i 0.0848996 0.147050i −0.820449 0.571720i \(-0.806276\pi\)
0.905348 + 0.424670i \(0.139610\pi\)
\(942\) 9.62614 0.313636
\(943\) 40.7477 1.32693
\(944\) −13.6652 + 23.6687i −0.444763 + 0.770352i
\(945\) 0 0
\(946\) 8.06080 + 4.65390i 0.262079 + 0.151311i
\(947\) −17.9174 31.0339i −0.582238 1.00847i −0.995214 0.0977238i \(-0.968844\pi\)
0.412976 0.910742i \(-0.364490\pi\)
\(948\) −19.2523 + 11.1153i −0.625285 + 0.361008i
\(949\) 23.5257i 0.763677i
\(950\) −4.00455 + 5.39473i −0.129925 + 0.175028i
\(951\) 26.2867i 0.852405i
\(952\) 0 0
\(953\) −42.8911 + 24.7632i −1.38938 + 0.802158i −0.993245 0.116035i \(-0.962982\pi\)
−0.396134 + 0.918193i \(0.629648\pi\)
\(954\) −0.0607953 + 0.105301i −0.00196832 + 0.00340923i
\(955\) 22.6824 13.0957i 0.733985 0.423766i
\(956\) −13.0218 + 22.5544i −0.421154 + 0.729461i
\(957\) 19.1280i 0.618321i
\(958\) −0.0871215 −0.00281477
\(959\) 0 0
\(960\) 6.76042 + 3.90313i 0.218191 + 0.125973i
\(961\) −31.0000 −1.00000
\(962\) 17.3739 0.560156
\(963\) −1.71326 0.989150i −0.0552090 0.0318749i
\(964\) 6.60436 + 11.4391i 0.212712 + 0.368428i
\(965\) −15.6434 + 27.0951i −0.503578 + 0.872223i
\(966\) 0 0
\(967\) −11.2087 19.4141i −0.360448 0.624314i 0.627587 0.778547i \(-0.284043\pi\)
−0.988035 + 0.154233i \(0.950709\pi\)
\(968\) 3.46410i 0.111340i
\(969\) 13.5826 + 31.3676i 0.436335 + 1.00767i
\(970\) 1.16515 0.0374108
\(971\) −21.7259 37.6304i −0.697219 1.20762i −0.969427 0.245380i \(-0.921087\pi\)
0.272208 0.962238i \(-0.412246\pi\)
\(972\) −1.93920 3.35880i −0.0622000 0.107734i
\(973\) 0 0
\(974\) −2.29129 3.96863i −0.0734176 0.127163i
\(975\) 11.4564 19.8431i 0.366900 0.635489i
\(976\) 3.82560i 0.122455i
\(977\) 18.9572i 0.606495i 0.952912 + 0.303247i \(0.0980709\pi\)
−0.952912 + 0.303247i \(0.901929\pi\)
\(978\) 4.25227 + 2.45505i 0.135973 + 0.0785039i
\(979\) 3.56080 6.16748i 0.113804 0.197113i
\(980\) 0 0
\(981\) 2.81655i 0.0899256i
\(982\) 15.0653 + 8.69798i 0.480754 + 0.277564i
\(983\) −29.1434 50.4778i −0.929529 1.60999i −0.784110 0.620622i \(-0.786880\pi\)
−0.145419 0.989370i \(-0.546453\pi\)
\(984\) −14.4392 8.33648i −0.460305 0.265757i
\(985\) −13.2523 + 7.65120i −0.422253 + 0.243788i
\(986\) −6.16515 + 3.55945i −0.196338 + 0.113356i
\(987\) 0 0
\(988\) −3.39564 + 29.4071i −0.108030 + 0.935566i
\(989\) −51.4955 −1.63746
\(990\) 0.182386 + 0.315902i 0.00579661 + 0.0100400i
\(991\) −30.3131 + 17.5013i −0.962926 + 0.555946i −0.897072 0.441883i \(-0.854310\pi\)
−0.0658539 + 0.997829i \(0.520977\pi\)
\(992\) 0 0
\(993\) 3.24773 1.87508i 0.103064 0.0595037i
\(994\) 0 0
\(995\) −28.1561 −0.892607
\(996\) 43.6072i 1.38175i
\(997\) 4.74773 + 2.74110i 0.150362 + 0.0868116i 0.573293 0.819350i \(-0.305666\pi\)
−0.422931 + 0.906162i \(0.638999\pi\)
\(998\) −7.02178 4.05403i −0.222271 0.128328i
\(999\) 50.1540i 1.58680i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.p.e.734.1 4
7.2 even 3 133.2.s.c.31.2 yes 4
7.3 odd 6 133.2.i.c.12.1 4
7.4 even 3 931.2.i.d.411.1 4
7.5 odd 6 931.2.s.c.31.2 4
7.6 odd 2 931.2.p.f.734.1 4
19.8 odd 6 931.2.p.f.293.1 4
133.27 even 6 inner 931.2.p.e.293.1 4
133.46 odd 6 931.2.s.c.901.2 4
133.65 odd 6 133.2.i.c.122.2 yes 4
133.103 even 6 931.2.i.d.521.2 4
133.122 even 6 133.2.s.c.103.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.i.c.12.1 4 7.3 odd 6
133.2.i.c.122.2 yes 4 133.65 odd 6
133.2.s.c.31.2 yes 4 7.2 even 3
133.2.s.c.103.2 yes 4 133.122 even 6
931.2.i.d.411.1 4 7.4 even 3
931.2.i.d.521.2 4 133.103 even 6
931.2.p.e.293.1 4 133.27 even 6 inner
931.2.p.e.734.1 4 1.1 even 1 trivial
931.2.p.f.293.1 4 19.8 odd 6
931.2.p.f.734.1 4 7.6 odd 2
931.2.s.c.31.2 4 7.5 odd 6
931.2.s.c.901.2 4 133.46 odd 6