L(s) = 1 | + (−0.395 + 0.228i)2-s + (0.895 + 1.55i)3-s + (−0.895 + 1.55i)4-s + (1.10 − 0.637i)5-s + (−0.708 − 0.409i)6-s − 1.73i·8-s + (−0.104 + 0.180i)9-s + (−0.291 + 0.504i)10-s − 3·11-s − 3.20·12-s + (−1.89 + 3.28i)13-s + (1.97 + 1.14i)15-s + (−1.39 − 2.41i)16-s + (−3.79 + 2.18i)17-s − 0.0953i·18-s + (−3.5 − 2.59i)19-s + ⋯ |
L(s) = 1 | + (−0.279 + 0.161i)2-s + (0.517 + 0.895i)3-s + (−0.447 + 0.775i)4-s + (0.493 − 0.285i)5-s + (−0.289 − 0.167i)6-s − 0.612i·8-s + (−0.0347 + 0.0602i)9-s + (−0.0921 + 0.159i)10-s − 0.904·11-s − 0.926·12-s + (−0.525 + 0.910i)13-s + (0.510 + 0.294i)15-s + (−0.348 − 0.604i)16-s + (−0.919 + 0.530i)17-s − 0.0224i·18-s + (−0.802 − 0.596i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 + 0.120i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.992 + 0.120i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0486052 - 0.804946i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0486052 - 0.804946i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 19 | \( 1 + (3.5 + 2.59i)T \) |
good | 2 | \( 1 + (0.395 - 0.228i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.895 - 1.55i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.10 + 0.637i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 + (1.89 - 3.28i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3.79 - 2.18i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (3.79 - 6.56i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.08 + 1.77i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 10.0iT - 37T^{2} \) |
| 41 | \( 1 + (2.68 + 4.65i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.39 - 5.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.29 - 3.05i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.10 + 0.637i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.89 + 8.47i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.18 - 0.685i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3 - 1.73i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.08 - 1.77i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.37 + 3.10i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6 + 3.46i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.5iT - 83T^{2} \) |
| 89 | \( 1 + (1.18 - 2.05i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12701356991643340799461244567, −9.476125681441553167702448502613, −9.014721786335137714897076243365, −8.195903489885326560532769835399, −7.32948167688346905256962950171, −6.27643571532440645242247202306, −4.93902173643255896992097837094, −4.27805183827116176604429264291, −3.36701359749618900126840458929, −2.12049490918363799560122862734,
0.36230585079996246539337598353, 2.08654832906852039557501557596, 2.49245545550265411218034805669, 4.33810398012366406332827094363, 5.38456500669491030898734788026, 6.19389072862872179643114891722, 7.18342898208804996754083040768, 8.088323412962795375890509888108, 8.676018720191763967356492238348, 9.711788631161298037669037427232