Properties

Label 931.2.s.c.31.2
Level $931$
Weight $2$
Character 931.31
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(31,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.2
Root \(1.39564 - 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 931.31
Dual form 931.2.s.c.901.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395644 + 0.228425i) q^{2} +1.79129 q^{3} +(-0.895644 - 1.55130i) q^{4} +(1.10436 + 0.637600i) q^{5} +(0.708712 + 0.409175i) q^{6} -1.73205i q^{8} +0.208712 q^{9} +(0.291288 + 0.504525i) q^{10} +(1.50000 - 2.59808i) q^{11} +(-1.60436 - 2.77883i) q^{12} +(1.89564 - 3.28335i) q^{13} +(1.97822 + 1.14213i) q^{15} +(-1.39564 + 2.41733i) q^{16} +4.37780i q^{17} +(0.0825757 + 0.0476751i) q^{18} +(0.500000 - 4.33013i) q^{19} -2.28425i q^{20} +(1.18693 - 0.685275i) q^{22} +7.58258 q^{23} -3.10260i q^{24} +(-1.68693 - 2.92185i) q^{25} +(1.50000 - 0.866025i) q^{26} -5.00000 q^{27} +(-3.08258 - 1.77973i) q^{29} +(0.521780 + 0.903750i) q^{30} +(-4.10436 + 2.36965i) q^{32} +(2.68693 - 4.65390i) q^{33} +(-1.00000 + 1.73205i) q^{34} +(-0.186932 - 0.323775i) q^{36} +(8.68693 - 5.01540i) q^{37} +(1.18693 - 1.59898i) q^{38} +(3.39564 - 5.88143i) q^{39} +(1.10436 - 1.91280i) q^{40} +(2.68693 + 4.65390i) q^{41} +(3.39564 + 5.88143i) q^{43} -5.37386 q^{44} +(0.230493 + 0.133075i) q^{45} +(3.00000 + 1.73205i) q^{46} +6.10985i q^{47} +(-2.50000 + 4.33013i) q^{48} -1.54135i q^{50} +7.84190i q^{51} -6.79129 q^{52} +(1.10436 - 0.637600i) q^{53} +(-1.97822 - 1.14213i) q^{54} +(3.31307 - 1.91280i) q^{55} +(0.895644 - 7.75650i) q^{57} +(-0.813068 - 1.40828i) q^{58} -9.79129 q^{59} -4.09175i q^{60} +1.37055i q^{61} +3.41742 q^{64} +(4.18693 - 2.41733i) q^{65} +(2.12614 - 1.22753i) q^{66} +(-3.00000 + 1.73205i) q^{67} +(6.79129 - 3.92095i) q^{68} +13.5826 q^{69} +(-3.08258 + 1.77973i) q^{71} -0.361500i q^{72} -6.20520i q^{73} +4.58258 q^{74} +(-3.02178 - 5.23388i) q^{75} +(-7.16515 + 3.10260i) q^{76} +(2.68693 - 1.55130i) q^{78} +(-6.00000 - 3.46410i) q^{79} +(-3.08258 + 1.77973i) q^{80} -9.58258 q^{81} +2.45505i q^{82} +13.5903i q^{83} +(-2.79129 + 4.83465i) q^{85} +3.10260i q^{86} +(-5.52178 - 3.18800i) q^{87} +(-4.50000 - 2.59808i) q^{88} -2.37386 q^{89} +(0.0607953 + 0.105301i) q^{90} +(-6.79129 - 11.7629i) q^{92} +(-1.39564 + 2.41733i) q^{94} +(3.31307 - 4.46320i) q^{95} +(-7.35208 + 4.24473i) q^{96} +(1.00000 + 1.73205i) q^{97} +(0.313068 - 0.542250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 2 q^{3} + q^{4} + 9 q^{5} + 12 q^{6} + 10 q^{9} - 8 q^{10} + 6 q^{11} - 11 q^{12} + 3 q^{13} - 15 q^{15} - q^{16} - 18 q^{18} + 2 q^{19} - 9 q^{22} + 12 q^{23} + 7 q^{25} + 6 q^{26} - 20 q^{27}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.395644 + 0.228425i 0.279763 + 0.161521i 0.633316 0.773893i \(-0.281693\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 1.79129 1.03420 0.517100 0.855925i \(-0.327011\pi\)
0.517100 + 0.855925i \(0.327011\pi\)
\(4\) −0.895644 1.55130i −0.447822 0.775650i
\(5\) 1.10436 + 0.637600i 0.493883 + 0.285144i 0.726184 0.687500i \(-0.241292\pi\)
−0.232301 + 0.972644i \(0.574625\pi\)
\(6\) 0.708712 + 0.409175i 0.289331 + 0.167045i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) 0.208712 0.0695707
\(10\) 0.291288 + 0.504525i 0.0921133 + 0.159545i
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) −1.60436 2.77883i −0.463138 0.802178i
\(13\) 1.89564 3.28335i 0.525757 0.910638i −0.473793 0.880636i \(-0.657115\pi\)
0.999550 0.0300015i \(-0.00955122\pi\)
\(14\) 0 0
\(15\) 1.97822 + 1.14213i 0.510774 + 0.294896i
\(16\) −1.39564 + 2.41733i −0.348911 + 0.604332i
\(17\) 4.37780i 1.06177i 0.847443 + 0.530886i \(0.178141\pi\)
−0.847443 + 0.530886i \(0.821859\pi\)
\(18\) 0.0825757 + 0.0476751i 0.0194633 + 0.0112371i
\(19\) 0.500000 4.33013i 0.114708 0.993399i
\(20\) 2.28425i 0.510774i
\(21\) 0 0
\(22\) 1.18693 0.685275i 0.253055 0.146101i
\(23\) 7.58258 1.58108 0.790538 0.612413i \(-0.209801\pi\)
0.790538 + 0.612413i \(0.209801\pi\)
\(24\) 3.10260i 0.633316i
\(25\) −1.68693 2.92185i −0.337386 0.584370i
\(26\) 1.50000 0.866025i 0.294174 0.169842i
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −3.08258 1.77973i −0.572420 0.330487i 0.185695 0.982607i \(-0.440546\pi\)
−0.758115 + 0.652121i \(0.773880\pi\)
\(30\) 0.521780 + 0.903750i 0.0952636 + 0.165001i
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) −4.10436 + 2.36965i −0.725555 + 0.418899i
\(33\) 2.68693 4.65390i 0.467735 0.810140i
\(34\) −1.00000 + 1.73205i −0.171499 + 0.297044i
\(35\) 0 0
\(36\) −0.186932 0.323775i −0.0311553 0.0539626i
\(37\) 8.68693 5.01540i 1.42812 0.824527i 0.431150 0.902280i \(-0.358108\pi\)
0.996973 + 0.0777531i \(0.0247746\pi\)
\(38\) 1.18693 1.59898i 0.192546 0.259388i
\(39\) 3.39564 5.88143i 0.543738 0.941782i
\(40\) 1.10436 1.91280i 0.174614 0.302440i
\(41\) 2.68693 + 4.65390i 0.419628 + 0.726817i 0.995902 0.0904393i \(-0.0288271\pi\)
−0.576274 + 0.817257i \(0.695494\pi\)
\(42\) 0 0
\(43\) 3.39564 + 5.88143i 0.517831 + 0.896909i 0.999785 + 0.0207131i \(0.00659367\pi\)
−0.481955 + 0.876196i \(0.660073\pi\)
\(44\) −5.37386 −0.810140
\(45\) 0.230493 + 0.133075i 0.0343598 + 0.0198376i
\(46\) 3.00000 + 1.73205i 0.442326 + 0.255377i
\(47\) 6.10985i 0.891214i 0.895229 + 0.445607i \(0.147012\pi\)
−0.895229 + 0.445607i \(0.852988\pi\)
\(48\) −2.50000 + 4.33013i −0.360844 + 0.625000i
\(49\) 0 0
\(50\) 1.54135i 0.217980i
\(51\) 7.84190i 1.09809i
\(52\) −6.79129 −0.941782
\(53\) 1.10436 0.637600i 0.151695 0.0875811i −0.422231 0.906488i \(-0.638753\pi\)
0.573926 + 0.818907i \(0.305420\pi\)
\(54\) −1.97822 1.14213i −0.269202 0.155424i
\(55\) 3.31307 1.91280i 0.446734 0.257922i
\(56\) 0 0
\(57\) 0.895644 7.75650i 0.118631 1.02737i
\(58\) −0.813068 1.40828i −0.106761 0.184916i
\(59\) −9.79129 −1.27472 −0.637359 0.770567i \(-0.719973\pi\)
−0.637359 + 0.770567i \(0.719973\pi\)
\(60\) 4.09175i 0.528243i
\(61\) 1.37055i 0.175481i 0.996143 + 0.0877405i \(0.0279646\pi\)
−0.996143 + 0.0877405i \(0.972035\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 3.41742 0.427178
\(65\) 4.18693 2.41733i 0.519325 0.299832i
\(66\) 2.12614 1.22753i 0.261709 0.151098i
\(67\) −3.00000 + 1.73205i −0.366508 + 0.211604i −0.671932 0.740613i \(-0.734535\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 6.79129 3.92095i 0.823565 0.475485i
\(69\) 13.5826 1.63515
\(70\) 0 0
\(71\) −3.08258 + 1.77973i −0.365834 + 0.211215i −0.671637 0.740880i \(-0.734409\pi\)
0.305803 + 0.952095i \(0.401075\pi\)
\(72\) 0.361500i 0.0426032i
\(73\) 6.20520i 0.726264i −0.931738 0.363132i \(-0.881707\pi\)
0.931738 0.363132i \(-0.118293\pi\)
\(74\) 4.58258 0.532714
\(75\) −3.02178 5.23388i −0.348925 0.604356i
\(76\) −7.16515 + 3.10260i −0.821899 + 0.355893i
\(77\) 0 0
\(78\) 2.68693 1.55130i 0.304235 0.175650i
\(79\) −6.00000 3.46410i −0.675053 0.389742i 0.122936 0.992415i \(-0.460769\pi\)
−0.797988 + 0.602673i \(0.794102\pi\)
\(80\) −3.08258 + 1.77973i −0.344642 + 0.198979i
\(81\) −9.58258 −1.06473
\(82\) 2.45505i 0.271115i
\(83\) 13.5903i 1.49172i 0.666100 + 0.745862i \(0.267962\pi\)
−0.666100 + 0.745862i \(0.732038\pi\)
\(84\) 0 0
\(85\) −2.79129 + 4.83465i −0.302758 + 0.524392i
\(86\) 3.10260i 0.334562i
\(87\) −5.52178 3.18800i −0.591997 0.341790i
\(88\) −4.50000 2.59808i −0.479702 0.276956i
\(89\) −2.37386 −0.251629 −0.125815 0.992054i \(-0.540154\pi\)
−0.125815 + 0.992054i \(0.540154\pi\)
\(90\) 0.0607953 + 0.105301i 0.00640839 + 0.0110997i
\(91\) 0 0
\(92\) −6.79129 11.7629i −0.708041 1.22636i
\(93\) 0 0
\(94\) −1.39564 + 2.41733i −0.143950 + 0.249328i
\(95\) 3.31307 4.46320i 0.339914 0.457915i
\(96\) −7.35208 + 4.24473i −0.750369 + 0.433226i
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 0 0
\(99\) 0.313068 0.542250i 0.0314645 0.0544982i
\(100\) −3.02178 + 5.23388i −0.302178 + 0.523388i
\(101\) 7.41742 4.28245i 0.738061 0.426120i −0.0833027 0.996524i \(-0.526547\pi\)
0.821364 + 0.570404i \(0.193214\pi\)
\(102\) −1.79129 + 3.10260i −0.177364 + 0.307203i
\(103\) −1.68693 2.92185i −0.166218 0.287899i 0.770869 0.636994i \(-0.219822\pi\)
−0.937087 + 0.349095i \(0.886489\pi\)
\(104\) −5.68693 3.28335i −0.557650 0.321959i
\(105\) 0 0
\(106\) 0.582576 0.0565848
\(107\) 8.20871 4.73930i 0.793566 0.458166i −0.0476503 0.998864i \(-0.515173\pi\)
0.841216 + 0.540698i \(0.181840\pi\)
\(108\) 4.47822 + 7.75650i 0.430917 + 0.746370i
\(109\) 13.4949i 1.29258i 0.763093 + 0.646289i \(0.223680\pi\)
−0.763093 + 0.646289i \(0.776320\pi\)
\(110\) 1.74773 0.166639
\(111\) 15.5608 8.98403i 1.47697 0.852726i
\(112\) 0 0
\(113\) 13.2288i 1.24446i 0.782836 + 0.622228i \(0.213772\pi\)
−0.782836 + 0.622228i \(0.786228\pi\)
\(114\) 2.12614 2.86423i 0.199131 0.268259i
\(115\) 8.37386 + 4.83465i 0.780867 + 0.450834i
\(116\) 6.37600i 0.591997i
\(117\) 0.395644 0.685275i 0.0365773 0.0633537i
\(118\) −3.87386 2.23658i −0.356618 0.205894i
\(119\) 0 0
\(120\) 1.97822 3.42638i 0.180586 0.312784i
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −0.313068 + 0.542250i −0.0283439 + 0.0490930i
\(123\) 4.81307 + 8.33648i 0.433980 + 0.751675i
\(124\) 0 0
\(125\) 10.6784i 0.955101i
\(126\) 0 0
\(127\) 10.1869 + 5.88143i 0.903944 + 0.521892i 0.878478 0.477783i \(-0.158560\pi\)
0.0254663 + 0.999676i \(0.491893\pi\)
\(128\) 9.56080 + 5.51993i 0.845063 + 0.487897i
\(129\) 6.08258 + 10.5353i 0.535541 + 0.927584i
\(130\) 2.20871 0.193717
\(131\) 6.16515 + 3.55945i 0.538652 + 0.310991i 0.744532 0.667586i \(-0.232673\pi\)
−0.205881 + 0.978577i \(0.566006\pi\)
\(132\) −9.62614 −0.837848
\(133\) 0 0
\(134\) −1.58258 −0.136714
\(135\) −5.52178 3.18800i −0.475239 0.274379i
\(136\) 7.58258 0.650201
\(137\) 4.97822 + 8.62253i 0.425318 + 0.736672i 0.996450 0.0841858i \(-0.0268289\pi\)
−0.571132 + 0.820858i \(0.693496\pi\)
\(138\) 5.37386 + 3.10260i 0.457454 + 0.264111i
\(139\) −9.24773 5.33918i −0.784382 0.452863i 0.0535990 0.998563i \(-0.482931\pi\)
−0.837981 + 0.545699i \(0.816264\pi\)
\(140\) 0 0
\(141\) 10.9445i 0.921694i
\(142\) −1.62614 −0.136462
\(143\) −5.68693 9.85005i −0.475565 0.823703i
\(144\) −0.291288 + 0.504525i −0.0242740 + 0.0420438i
\(145\) −2.26951 3.93090i −0.188472 0.326444i
\(146\) 1.41742 2.45505i 0.117307 0.203181i
\(147\) 0 0
\(148\) −15.5608 8.98403i −1.27909 0.738483i
\(149\) −5.60436 + 9.70703i −0.459127 + 0.795231i −0.998915 0.0465700i \(-0.985171\pi\)
0.539788 + 0.841801i \(0.318504\pi\)
\(150\) 2.76100i 0.225435i
\(151\) −15.5608 8.98403i −1.26632 0.731110i −0.292030 0.956409i \(-0.594331\pi\)
−0.974290 + 0.225299i \(0.927664\pi\)
\(152\) −7.50000 0.866025i −0.608330 0.0702439i
\(153\) 0.913701i 0.0738683i
\(154\) 0 0
\(155\) 0 0
\(156\) −12.1652 −0.973992
\(157\) 11.7629i 0.938778i 0.882991 + 0.469389i \(0.155526\pi\)
−0.882991 + 0.469389i \(0.844474\pi\)
\(158\) −1.58258 2.74110i −0.125903 0.218070i
\(159\) 1.97822 1.14213i 0.156883 0.0905765i
\(160\) −6.04356 −0.477785
\(161\) 0 0
\(162\) −3.79129 2.18890i −0.297872 0.171976i
\(163\) 3.00000 + 5.19615i 0.234978 + 0.406994i 0.959266 0.282503i \(-0.0911648\pi\)
−0.724288 + 0.689497i \(0.757831\pi\)
\(164\) 4.81307 8.33648i 0.375837 0.650970i
\(165\) 5.93466 3.42638i 0.462013 0.266743i
\(166\) −3.10436 + 5.37690i −0.240945 + 0.417329i
\(167\) −9.56080 + 16.5598i −0.739837 + 1.28143i 0.212732 + 0.977111i \(0.431764\pi\)
−0.952569 + 0.304324i \(0.901569\pi\)
\(168\) 0 0
\(169\) −0.686932 1.18980i −0.0528409 0.0915231i
\(170\) −2.20871 + 1.27520i −0.169400 + 0.0978034i
\(171\) 0.104356 0.903750i 0.00798031 0.0691115i
\(172\) 6.08258 10.5353i 0.463792 0.803311i
\(173\) −9.87386 + 17.1020i −0.750696 + 1.30024i 0.196790 + 0.980446i \(0.436948\pi\)
−0.947486 + 0.319798i \(0.896385\pi\)
\(174\) −1.45644 2.52263i −0.110412 0.191240i
\(175\) 0 0
\(176\) 4.18693 + 7.25198i 0.315602 + 0.546638i
\(177\) −17.5390 −1.31831
\(178\) −0.939205 0.542250i −0.0703964 0.0406434i
\(179\) 12.7913 + 7.38505i 0.956066 + 0.551985i 0.894960 0.446146i \(-0.147204\pi\)
0.0611058 + 0.998131i \(0.480537\pi\)
\(180\) 0.476751i 0.0355349i
\(181\) 5.87386 10.1738i 0.436601 0.756215i −0.560824 0.827935i \(-0.689516\pi\)
0.997425 + 0.0717202i \(0.0228489\pi\)
\(182\) 0 0
\(183\) 2.45505i 0.181483i
\(184\) 13.1334i 0.968208i
\(185\) 12.7913 0.940434
\(186\) 0 0
\(187\) 11.3739 + 6.56670i 0.831739 + 0.480205i
\(188\) 9.47822 5.47225i 0.691270 0.399105i
\(189\) 0 0
\(190\) 2.33030 1.00905i 0.169058 0.0732042i
\(191\) −10.2695 17.7873i −0.743075 1.28704i −0.951089 0.308918i \(-0.900033\pi\)
0.208013 0.978126i \(-0.433300\pi\)
\(192\) 6.12159 0.441788
\(193\) 24.5348i 1.76605i −0.469325 0.883025i \(-0.655503\pi\)
0.469325 0.883025i \(-0.344497\pi\)
\(194\) 0.913701i 0.0655999i
\(195\) 7.50000 4.33013i 0.537086 0.310087i
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0.247727 0.143025i 0.0176052 0.0101644i
\(199\) −19.1216 + 11.0399i −1.35549 + 0.782595i −0.989013 0.147831i \(-0.952771\pi\)
−0.366481 + 0.930426i \(0.619438\pi\)
\(200\) −5.06080 + 2.92185i −0.357852 + 0.206606i
\(201\) −5.37386 + 3.10260i −0.379043 + 0.218841i
\(202\) 3.91288 0.275309
\(203\) 0 0
\(204\) 12.1652 7.02355i 0.851731 0.491747i
\(205\) 6.85275i 0.478617i
\(206\) 1.54135i 0.107391i
\(207\) 1.58258 0.109997
\(208\) 5.29129 + 9.16478i 0.366885 + 0.635463i
\(209\) −10.5000 7.79423i −0.726300 0.539138i
\(210\) 0 0
\(211\) −12.2477 + 7.07123i −0.843168 + 0.486803i −0.858340 0.513081i \(-0.828504\pi\)
0.0151716 + 0.999885i \(0.495171\pi\)
\(212\) −1.97822 1.14213i −0.135865 0.0784415i
\(213\) −5.52178 + 3.18800i −0.378346 + 0.218438i
\(214\) 4.33030 0.296013
\(215\) 8.66025i 0.590624i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −3.08258 + 5.33918i −0.208778 + 0.361615i
\(219\) 11.1153i 0.751103i
\(220\) −5.93466 3.42638i −0.400115 0.231006i
\(221\) 14.3739 + 8.29875i 0.966891 + 0.558235i
\(222\) 8.20871 0.550933
\(223\) 6.79129 + 11.7629i 0.454778 + 0.787699i 0.998675 0.0514528i \(-0.0163852\pi\)
−0.543897 + 0.839152i \(0.683052\pi\)
\(224\) 0 0
\(225\) −0.352083 0.609826i −0.0234722 0.0406551i
\(226\) −3.02178 + 5.23388i −0.201006 + 0.348152i
\(227\) 13.2695 22.9835i 0.880728 1.52547i 0.0301953 0.999544i \(-0.490387\pi\)
0.850533 0.525922i \(-0.176280\pi\)
\(228\) −12.8348 + 5.55765i −0.850009 + 0.368065i
\(229\) −6.00000 + 3.46410i −0.396491 + 0.228914i −0.684969 0.728572i \(-0.740184\pi\)
0.288478 + 0.957487i \(0.406851\pi\)
\(230\) 2.20871 + 3.82560i 0.145638 + 0.252253i
\(231\) 0 0
\(232\) −3.08258 + 5.33918i −0.202381 + 0.350534i
\(233\) 6.70871 11.6198i 0.439502 0.761240i −0.558149 0.829741i \(-0.688488\pi\)
0.997651 + 0.0685005i \(0.0218215\pi\)
\(234\) 0.313068 0.180750i 0.0204659 0.0118160i
\(235\) −3.89564 + 6.74745i −0.254124 + 0.440155i
\(236\) 8.76951 + 15.1892i 0.570846 + 0.988735i
\(237\) −10.7477 6.20520i −0.698140 0.403071i
\(238\) 0 0
\(239\) 14.5390 0.940451 0.470225 0.882546i \(-0.344173\pi\)
0.470225 + 0.882546i \(0.344173\pi\)
\(240\) −5.52178 + 3.18800i −0.356429 + 0.205785i
\(241\) −3.68693 6.38595i −0.237496 0.411355i 0.722499 0.691372i \(-0.242993\pi\)
−0.959995 + 0.280017i \(0.909660\pi\)
\(242\) 0.913701i 0.0587349i
\(243\) −2.16515 −0.138895
\(244\) 2.12614 1.22753i 0.136112 0.0785843i
\(245\) 0 0
\(246\) 4.39770i 0.280387i
\(247\) −13.2695 9.85005i −0.844319 0.626744i
\(248\) 0 0
\(249\) 24.3441i 1.54274i
\(250\) 2.43920 4.22483i 0.154269 0.267201i
\(251\) −8.29129 4.78698i −0.523341 0.302151i 0.214959 0.976623i \(-0.431038\pi\)
−0.738301 + 0.674472i \(0.764371\pi\)
\(252\) 0 0
\(253\) 11.3739 19.7001i 0.715069 1.23854i
\(254\) 2.68693 + 4.65390i 0.168593 + 0.292012i
\(255\) −5.00000 + 8.66025i −0.313112 + 0.542326i
\(256\) −0.895644 1.55130i −0.0559777 0.0969563i
\(257\) −19.7477 −1.23183 −0.615915 0.787813i \(-0.711213\pi\)
−0.615915 + 0.787813i \(0.711213\pi\)
\(258\) 5.55765i 0.346004i
\(259\) 0 0
\(260\) −7.50000 4.33013i −0.465130 0.268543i
\(261\) −0.643371 0.371450i −0.0398237 0.0229922i
\(262\) 1.62614 + 2.81655i 0.100463 + 0.174007i
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) −8.06080 4.65390i −0.496108 0.286428i
\(265\) 1.62614 0.0998928
\(266\) 0 0
\(267\) −4.25227 −0.260235
\(268\) 5.37386 + 3.10260i 0.328261 + 0.189522i
\(269\) 7.58258 0.462318 0.231159 0.972916i \(-0.425748\pi\)
0.231159 + 0.972916i \(0.425748\pi\)
\(270\) −1.45644 2.52263i −0.0886361 0.153522i
\(271\) −11.6869 6.74745i −0.709931 0.409879i 0.101105 0.994876i \(-0.467762\pi\)
−0.811035 + 0.584997i \(0.801096\pi\)
\(272\) −10.5826 6.10985i −0.641663 0.370464i
\(273\) 0 0
\(274\) 4.54860i 0.274791i
\(275\) −10.1216 −0.610355
\(276\) −12.1652 21.0707i −0.732256 1.26830i
\(277\) −11.7695 + 20.3854i −0.707161 + 1.22484i 0.258745 + 0.965946i \(0.416691\pi\)
−0.965906 + 0.258893i \(0.916642\pi\)
\(278\) −2.43920 4.22483i −0.146294 0.253388i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.02178 + 0.589925i 0.0609543 + 0.0351920i 0.530167 0.847893i \(-0.322129\pi\)
−0.469213 + 0.883085i \(0.655462\pi\)
\(282\) −2.50000 + 4.33013i −0.148873 + 0.257855i
\(283\) 9.66930i 0.574781i 0.957814 + 0.287390i \(0.0927877\pi\)
−0.957814 + 0.287390i \(0.907212\pi\)
\(284\) 5.52178 + 3.18800i 0.327657 + 0.189173i
\(285\) 5.93466 7.99488i 0.351539 0.473576i
\(286\) 5.19615i 0.307255i
\(287\) 0 0
\(288\) −0.856629 + 0.494575i −0.0504773 + 0.0291431i
\(289\) −2.16515 −0.127362
\(290\) 2.07365i 0.121769i
\(291\) 1.79129 + 3.10260i 0.105007 + 0.181878i
\(292\) −9.62614 + 5.55765i −0.563327 + 0.325237i
\(293\) 21.0000 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(294\) 0 0
\(295\) −10.8131 6.24293i −0.629561 0.363477i
\(296\) −8.68693 15.0462i −0.504918 0.874543i
\(297\) −7.50000 + 12.9904i −0.435194 + 0.753778i
\(298\) −4.43466 + 2.56035i −0.256893 + 0.148317i
\(299\) 14.3739 24.8963i 0.831262 1.43979i
\(300\) −5.41288 + 9.37538i −0.312513 + 0.541288i
\(301\) 0 0
\(302\) −4.10436 7.10895i −0.236179 0.409074i
\(303\) 13.2867 7.67110i 0.763303 0.440693i
\(304\) 9.76951 + 7.25198i 0.560320 + 0.415929i
\(305\) −0.873864 + 1.51358i −0.0500373 + 0.0866671i
\(306\) −0.208712 + 0.361500i −0.0119313 + 0.0206656i
\(307\) −10.1044 17.5013i −0.576686 0.998850i −0.995856 0.0909419i \(-0.971012\pi\)
0.419170 0.907908i \(-0.362321\pi\)
\(308\) 0 0
\(309\) −3.02178 5.23388i −0.171903 0.297745i
\(310\) 0 0
\(311\) −20.7695 11.9913i −1.17773 0.679963i −0.222242 0.974991i \(-0.571338\pi\)
−0.955489 + 0.295028i \(0.904671\pi\)
\(312\) −10.1869 5.88143i −0.576721 0.332970i
\(313\) 8.66025i 0.489506i −0.969585 0.244753i \(-0.921293\pi\)
0.969585 0.244753i \(-0.0787070\pi\)
\(314\) −2.68693 + 4.65390i −0.151632 + 0.262635i
\(315\) 0 0
\(316\) 12.4104i 0.698140i
\(317\) 14.6748i 0.824216i 0.911135 + 0.412108i \(0.135207\pi\)
−0.911135 + 0.412108i \(0.864793\pi\)
\(318\) 1.04356 0.0585200
\(319\) −9.24773 + 5.33918i −0.517773 + 0.298937i
\(320\) 3.77405 + 2.17895i 0.210976 + 0.121807i
\(321\) 14.7042 8.48945i 0.820707 0.473835i
\(322\) 0 0
\(323\) 18.9564 + 2.18890i 1.05476 + 0.121794i
\(324\) 8.58258 + 14.8655i 0.476810 + 0.825859i
\(325\) −12.7913 −0.709533
\(326\) 2.74110i 0.151816i
\(327\) 24.1733i 1.33678i
\(328\) 8.06080 4.65390i 0.445083 0.256969i
\(329\) 0 0
\(330\) 3.13068 0.172338
\(331\) −1.81307 + 1.04678i −0.0996552 + 0.0575360i −0.548999 0.835823i \(-0.684991\pi\)
0.449344 + 0.893359i \(0.351658\pi\)
\(332\) 21.0826 12.1720i 1.15706 0.668027i
\(333\) 1.81307 1.04678i 0.0993555 0.0573629i
\(334\) −7.56534 + 4.36785i −0.413957 + 0.238998i
\(335\) −4.41742 −0.241350
\(336\) 0 0
\(337\) −2.12614 + 1.22753i −0.115818 + 0.0668676i −0.556790 0.830653i \(-0.687967\pi\)
0.440972 + 0.897521i \(0.354634\pi\)
\(338\) 0.627650i 0.0341397i
\(339\) 23.6965i 1.28702i
\(340\) 10.0000 0.542326
\(341\) 0 0
\(342\) 0.247727 0.333726i 0.0133955 0.0180458i
\(343\) 0 0
\(344\) 10.1869 5.88143i 0.549243 0.317105i
\(345\) 15.0000 + 8.66025i 0.807573 + 0.466252i
\(346\) −7.81307 + 4.51088i −0.420033 + 0.242506i
\(347\) 31.2867 1.67956 0.839780 0.542927i \(-0.182684\pi\)
0.839780 + 0.542927i \(0.182684\pi\)
\(348\) 11.4213i 0.612244i
\(349\) 32.1105i 1.71884i 0.511273 + 0.859418i \(0.329174\pi\)
−0.511273 + 0.859418i \(0.670826\pi\)
\(350\) 0 0
\(351\) −9.47822 + 16.4168i −0.505910 + 0.876262i
\(352\) 14.2179i 0.757817i
\(353\) 0.230493 + 0.133075i 0.0122679 + 0.00708286i 0.506121 0.862462i \(-0.331079\pi\)
−0.493854 + 0.869545i \(0.664412\pi\)
\(354\) −6.93920 4.00635i −0.368815 0.212935i
\(355\) −4.53901 −0.240906
\(356\) 2.12614 + 3.68258i 0.112685 + 0.195176i
\(357\) 0 0
\(358\) 3.37386 + 5.84370i 0.178314 + 0.308849i
\(359\) 0.313068 0.542250i 0.0165231 0.0286189i −0.857646 0.514241i \(-0.828074\pi\)
0.874169 + 0.485622i \(0.161407\pi\)
\(360\) 0.230493 0.399225i 0.0121480 0.0210410i
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) 4.64792 2.68348i 0.244289 0.141040i
\(363\) 1.79129 + 3.10260i 0.0940182 + 0.162844i
\(364\) 0 0
\(365\) 3.95644 6.85275i 0.207089 0.358690i
\(366\) −0.560795 + 0.971326i −0.0293132 + 0.0507720i
\(367\) 8.37386 4.83465i 0.437112 0.252367i −0.265260 0.964177i \(-0.585458\pi\)
0.702372 + 0.711810i \(0.252124\pi\)
\(368\) −10.5826 + 18.3296i −0.551655 + 0.955494i
\(369\) 0.560795 + 0.971326i 0.0291938 + 0.0505652i
\(370\) 5.06080 + 2.92185i 0.263098 + 0.151900i
\(371\) 0 0
\(372\) 0 0
\(373\) 18.8085 10.8591i 0.973868 0.562263i 0.0734550 0.997299i \(-0.476597\pi\)
0.900413 + 0.435035i \(0.143264\pi\)
\(374\) 3.00000 + 5.19615i 0.155126 + 0.268687i
\(375\) 19.1280i 0.987766i
\(376\) 10.5826 0.545755
\(377\) −11.6869 + 6.74745i −0.601908 + 0.347512i
\(378\) 0 0
\(379\) 26.3423i 1.35311i 0.736392 + 0.676556i \(0.236528\pi\)
−0.736392 + 0.676556i \(0.763472\pi\)
\(380\) −9.89110 1.14213i −0.507403 0.0585898i
\(381\) 18.2477 + 10.5353i 0.934859 + 0.539741i
\(382\) 9.38325i 0.480089i
\(383\) 8.45644 14.6470i 0.432104 0.748426i −0.564950 0.825125i \(-0.691105\pi\)
0.997054 + 0.0766990i \(0.0244381\pi\)
\(384\) 17.1261 + 9.88778i 0.873964 + 0.504584i
\(385\) 0 0
\(386\) 5.60436 9.70703i 0.285254 0.494075i
\(387\) 0.708712 + 1.22753i 0.0360259 + 0.0623986i
\(388\) 1.79129 3.10260i 0.0909389 0.157511i
\(389\) −16.9782 29.4071i −0.860830 1.49100i −0.871129 0.491054i \(-0.836612\pi\)
0.0102991 0.999947i \(-0.496722\pi\)
\(390\) 3.95644 0.200342
\(391\) 33.1950i 1.67874i
\(392\) 0 0
\(393\) 11.0436 + 6.37600i 0.557074 + 0.321627i
\(394\) −4.74773 2.74110i −0.239187 0.138095i
\(395\) −4.41742 7.65120i −0.222265 0.384974i
\(396\) −1.12159 −0.0563620
\(397\) 3.87386 + 2.23658i 0.194424 + 0.112251i 0.594052 0.804427i \(-0.297527\pi\)
−0.399628 + 0.916677i \(0.630861\pi\)
\(398\) −10.0871 −0.505622
\(399\) 0 0
\(400\) 9.41742 0.470871
\(401\) 3.64337 + 2.10350i 0.181941 + 0.105044i 0.588204 0.808712i \(-0.299835\pi\)
−0.406263 + 0.913756i \(0.633168\pi\)
\(402\) −2.83485 −0.141389
\(403\) 0 0
\(404\) −13.2867 7.67110i −0.661040 0.381652i
\(405\) −10.5826 6.10985i −0.525852 0.303601i
\(406\) 0 0
\(407\) 30.0924i 1.49163i
\(408\) 13.5826 0.672438
\(409\) 7.41742 + 12.8474i 0.366768 + 0.635261i 0.989058 0.147526i \(-0.0471309\pi\)
−0.622290 + 0.782787i \(0.713798\pi\)
\(410\) −1.56534 + 2.71125i −0.0773067 + 0.133899i
\(411\) 8.91742 + 15.4454i 0.439864 + 0.761867i
\(412\) −3.02178 + 5.23388i −0.148872 + 0.257855i
\(413\) 0 0
\(414\) 0.626136 + 0.361500i 0.0307729 + 0.0177668i
\(415\) −8.66515 + 15.0085i −0.425356 + 0.736737i
\(416\) 17.9681i 0.880957i
\(417\) −16.5653 9.56400i −0.811208 0.468351i
\(418\) −2.37386 5.48220i −0.116109 0.268143i
\(419\) 38.7726i 1.89416i −0.320992 0.947082i \(-0.604016\pi\)
0.320992 0.947082i \(-0.395984\pi\)
\(420\) 0 0
\(421\) 13.8131 7.97498i 0.673208 0.388677i −0.124083 0.992272i \(-0.539599\pi\)
0.797291 + 0.603595i \(0.206266\pi\)
\(422\) −6.46099 −0.314516
\(423\) 1.27520i 0.0620024i
\(424\) −1.10436 1.91280i −0.0536323 0.0928938i
\(425\) 12.7913 7.38505i 0.620469 0.358228i
\(426\) −2.91288 −0.141129
\(427\) 0 0
\(428\) −14.7042 8.48945i −0.710753 0.410353i
\(429\) −10.1869 17.6443i −0.491830 0.851874i
\(430\) −1.97822 + 3.42638i −0.0953982 + 0.165235i
\(431\) 15.7087 9.06943i 0.756662 0.436859i −0.0714340 0.997445i \(-0.522758\pi\)
0.828096 + 0.560586i \(0.189424\pi\)
\(432\) 6.97822 12.0866i 0.335740 0.581518i
\(433\) 18.1869 31.5007i 0.874008 1.51383i 0.0161926 0.999869i \(-0.494846\pi\)
0.857816 0.513958i \(-0.171821\pi\)
\(434\) 0 0
\(435\) −4.06534 7.04138i −0.194918 0.337608i
\(436\) 20.9347 12.0866i 1.00259 0.578845i
\(437\) 3.79129 32.8335i 0.181362 1.57064i
\(438\) 2.53901 4.39770i 0.121319 0.210130i
\(439\) 1.58258 2.74110i 0.0755322 0.130826i −0.825785 0.563984i \(-0.809268\pi\)
0.901318 + 0.433159i \(0.142601\pi\)
\(440\) −3.31307 5.73840i −0.157944 0.273568i
\(441\) 0 0
\(442\) 3.79129 + 6.56670i 0.180333 + 0.312346i
\(443\) 21.3303 1.01343 0.506717 0.862113i \(-0.330859\pi\)
0.506717 + 0.862113i \(0.330859\pi\)
\(444\) −27.8739 16.0930i −1.32284 0.763739i
\(445\) −2.62159 1.51358i −0.124275 0.0717504i
\(446\) 6.20520i 0.293825i
\(447\) −10.0390 + 17.3881i −0.474829 + 0.822428i
\(448\) 0 0
\(449\) 12.6766i 0.598244i 0.954215 + 0.299122i \(0.0966937\pi\)
−0.954215 + 0.299122i \(0.903306\pi\)
\(450\) 0.321699i 0.0151650i
\(451\) 16.1216 0.759136
\(452\) 20.5218 11.8483i 0.965263 0.557295i
\(453\) −27.8739 16.0930i −1.30963 0.756114i
\(454\) 10.5000 6.06218i 0.492789 0.284512i
\(455\) 0 0
\(456\) −13.4347 1.55130i −0.629136 0.0726463i
\(457\) 19.0390 + 32.9765i 0.890608 + 1.54258i 0.839148 + 0.543902i \(0.183054\pi\)
0.0514591 + 0.998675i \(0.483613\pi\)
\(458\) −3.16515 −0.147898
\(459\) 21.8890i 1.02169i
\(460\) 17.3205i 0.807573i
\(461\) 4.66515 2.69343i 0.217278 0.125445i −0.387411 0.921907i \(-0.626631\pi\)
0.604689 + 0.796462i \(0.293297\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 8.60436 4.96773i 0.399447 0.230621i
\(465\) 0 0
\(466\) 5.30852 3.06488i 0.245913 0.141978i
\(467\) 17.7695 10.2592i 0.822275 0.474741i −0.0289255 0.999582i \(-0.509209\pi\)
0.851200 + 0.524841i \(0.175875\pi\)
\(468\) −1.41742 −0.0655205
\(469\) 0 0
\(470\) −3.08258 + 1.77973i −0.142189 + 0.0820926i
\(471\) 21.0707i 0.970885i
\(472\) 16.9590i 0.780602i
\(473\) 20.3739 0.936791
\(474\) −2.83485 4.91010i −0.130209 0.225528i
\(475\) −13.4955 + 5.84370i −0.619214 + 0.268127i
\(476\) 0 0
\(477\) 0.230493 0.133075i 0.0105535 0.00609308i
\(478\) 5.75227 + 3.32108i 0.263103 + 0.151902i
\(479\) 0.165151 0.0953502i 0.00754596 0.00435666i −0.496222 0.868196i \(-0.665280\pi\)
0.503768 + 0.863839i \(0.331947\pi\)
\(480\) −10.8258 −0.494126
\(481\) 38.0297i 1.73400i
\(482\) 3.36875i 0.153442i
\(483\) 0 0
\(484\) 1.79129 3.10260i 0.0814222 0.141027i
\(485\) 2.55040i 0.115808i
\(486\) −0.856629 0.494575i −0.0388575 0.0224344i
\(487\) −8.68693 5.01540i −0.393642 0.227270i 0.290095 0.956998i \(-0.406313\pi\)
−0.683737 + 0.729728i \(0.739647\pi\)
\(488\) 2.37386 0.107460
\(489\) 5.37386 + 9.30780i 0.243015 + 0.420913i
\(490\) 0 0
\(491\) −19.0390 32.9765i −0.859219 1.48821i −0.872675 0.488301i \(-0.837617\pi\)
0.0134566 0.999909i \(-0.495717\pi\)
\(492\) 8.62159 14.9330i 0.388691 0.673233i
\(493\) 7.79129 13.4949i 0.350902 0.607780i
\(494\) −3.00000 6.92820i −0.134976 0.311715i
\(495\) 0.691478 0.399225i 0.0310796 0.0179438i
\(496\) 0 0
\(497\) 0 0
\(498\) −5.56080 + 9.63158i −0.249185 + 0.431601i
\(499\) 8.87386 15.3700i 0.397249 0.688055i −0.596137 0.802883i \(-0.703298\pi\)
0.993385 + 0.114828i \(0.0366317\pi\)
\(500\) −16.5653 + 9.56400i −0.740825 + 0.427715i
\(501\) −17.1261 + 29.6633i −0.765139 + 1.32526i
\(502\) −2.18693 3.78788i −0.0976075 0.169061i
\(503\) 10.4174 + 6.01450i 0.464490 + 0.268173i 0.713930 0.700217i \(-0.246913\pi\)
−0.249440 + 0.968390i \(0.580247\pi\)
\(504\) 0 0
\(505\) 10.9220 0.486021
\(506\) 9.00000 5.19615i 0.400099 0.230997i
\(507\) −1.23049 2.13128i −0.0546481 0.0946533i
\(508\) 21.0707i 0.934859i
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) −3.95644 + 2.28425i −0.175194 + 0.101148i
\(511\) 0 0
\(512\) 22.8981i 1.01196i
\(513\) −2.50000 + 21.6506i −0.110378 + 0.955899i
\(514\) −7.81307 4.51088i −0.344620 0.198966i
\(515\) 4.30235i 0.189584i
\(516\) 10.8956 18.8718i 0.479654 0.830785i
\(517\) 15.8739 + 9.16478i 0.698132 + 0.403067i
\(518\) 0 0
\(519\) −17.6869 + 30.6347i −0.776370 + 1.34471i
\(520\) −4.18693 7.25198i −0.183609 0.318020i
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) −0.169697 0.293924i −0.00742745 0.0128647i
\(523\) 21.4955 0.939931 0.469965 0.882685i \(-0.344266\pi\)
0.469965 + 0.882685i \(0.344266\pi\)
\(524\) 12.7520i 0.557074i
\(525\) 0 0
\(526\) 4.74773 + 2.74110i 0.207011 + 0.119518i
\(527\) 0 0
\(528\) 7.50000 + 12.9904i 0.326396 + 0.565334i
\(529\) 34.4955 1.49980
\(530\) 0.643371 + 0.371450i 0.0279463 + 0.0161348i
\(531\) −2.04356 −0.0886830
\(532\) 0 0
\(533\) 20.3739 0.882490
\(534\) −1.68239 0.971326i −0.0728040 0.0420334i
\(535\) 12.0871 0.522572
\(536\) 3.00000 + 5.19615i 0.129580 + 0.224440i
\(537\) 22.9129 + 13.2288i 0.988764 + 0.570863i
\(538\) 3.00000 + 1.73205i 0.129339 + 0.0746740i
\(539\) 0 0
\(540\) 11.4213i 0.491493i
\(541\) −3.74773 −0.161127 −0.0805637 0.996749i \(-0.525672\pi\)
−0.0805637 + 0.996749i \(0.525672\pi\)
\(542\) −3.08258 5.33918i −0.132408 0.229337i
\(543\) 10.5218 18.2243i 0.451533 0.782078i
\(544\) −10.3739 17.9681i −0.444776 0.770374i
\(545\) −8.60436 + 14.9032i −0.368570 + 0.638382i
\(546\) 0 0
\(547\) −10.4347 6.02445i −0.446154 0.257587i 0.260051 0.965595i \(-0.416261\pi\)
−0.706204 + 0.708008i \(0.749594\pi\)
\(548\) 8.91742 15.4454i 0.380933 0.659796i
\(549\) 0.286051i 0.0122083i
\(550\) −4.00455 2.31203i −0.170754 0.0985851i
\(551\) −9.24773 + 12.4581i −0.393966 + 0.530732i
\(552\) 23.5257i 1.00132i
\(553\) 0 0
\(554\) −9.31307 + 5.37690i −0.395674 + 0.228443i
\(555\) 22.9129 0.972598
\(556\) 19.1280i 0.811208i
\(557\) −6.00000 10.3923i −0.254228 0.440336i 0.710457 0.703740i \(-0.248488\pi\)
−0.964686 + 0.263404i \(0.915155\pi\)
\(558\) 0 0
\(559\) 25.7477 1.08901
\(560\) 0 0
\(561\) 20.3739 + 11.7629i 0.860185 + 0.496628i
\(562\) 0.269507 + 0.466801i 0.0113685 + 0.0196908i
\(563\) 17.8521 30.9207i 0.752376 1.30315i −0.194293 0.980944i \(-0.562241\pi\)
0.946668 0.322209i \(-0.104425\pi\)
\(564\) 16.9782 9.80238i 0.714912 0.412755i
\(565\) −8.43466 + 14.6093i −0.354849 + 0.614616i
\(566\) −2.20871 + 3.82560i −0.0928391 + 0.160802i
\(567\) 0 0
\(568\) 3.08258 + 5.33918i 0.129342 + 0.224027i
\(569\) −2.76951 + 1.59898i −0.116104 + 0.0670326i −0.556927 0.830561i \(-0.688020\pi\)
0.440823 + 0.897594i \(0.354686\pi\)
\(570\) 4.17424 1.80750i 0.174840 0.0757079i
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) −10.1869 + 17.6443i −0.425937 + 0.737745i
\(573\) −18.3956 31.8622i −0.768489 1.33106i
\(574\) 0 0
\(575\) −12.7913 22.1552i −0.533434 0.923934i
\(576\) 0.713258 0.0297191
\(577\) −26.3085 15.1892i −1.09524 0.632336i −0.160272 0.987073i \(-0.551237\pi\)
−0.934966 + 0.354737i \(0.884570\pi\)
\(578\) −0.856629 0.494575i −0.0356311 0.0205716i
\(579\) 43.9488i 1.82645i
\(580\) −4.06534 + 7.04138i −0.168804 + 0.292377i
\(581\) 0 0
\(582\) 1.63670i 0.0678434i
\(583\) 3.82560i 0.158440i
\(584\) −10.7477 −0.444744
\(585\) 0.873864 0.504525i 0.0361298 0.0208596i
\(586\) 8.30852 + 4.79693i 0.343222 + 0.198159i
\(587\) −7.26951 + 4.19705i −0.300045 + 0.173231i −0.642463 0.766317i \(-0.722087\pi\)
0.342418 + 0.939548i \(0.388754\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −2.85208 4.93995i −0.117418 0.203375i
\(591\) −21.4955 −0.884205
\(592\) 27.9989i 1.15075i
\(593\) 17.1298i 0.703437i 0.936106 + 0.351718i \(0.114403\pi\)
−0.936106 + 0.351718i \(0.885597\pi\)
\(594\) −5.93466 + 3.42638i −0.243502 + 0.140586i
\(595\) 0 0
\(596\) 20.0780 0.822428
\(597\) −34.2523 + 19.7756i −1.40185 + 0.809360i
\(598\) 11.3739 6.56670i 0.465112 0.268532i
\(599\) −31.3521 + 18.1011i −1.28101 + 0.739592i −0.977033 0.213087i \(-0.931648\pi\)
−0.303978 + 0.952679i \(0.598315\pi\)
\(600\) −9.06534 + 5.23388i −0.370091 + 0.213672i
\(601\) −20.4955 −0.836027 −0.418014 0.908441i \(-0.637274\pi\)
−0.418014 + 0.908441i \(0.637274\pi\)
\(602\) 0 0
\(603\) −0.626136 + 0.361500i −0.0254982 + 0.0147214i
\(604\) 32.1860i 1.30963i
\(605\) 2.55040i 0.103689i
\(606\) 7.00909 0.284725
\(607\) −7.00000 12.1244i −0.284121 0.492112i 0.688274 0.725450i \(-0.258368\pi\)
−0.972396 + 0.233338i \(0.925035\pi\)
\(608\) 8.20871 + 18.9572i 0.332907 + 0.768816i
\(609\) 0 0
\(610\) −0.691478 + 0.399225i −0.0279971 + 0.0161641i
\(611\) 20.0608 + 11.5821i 0.811573 + 0.468562i
\(612\) 1.41742 0.818350i 0.0572960 0.0330799i
\(613\) −5.37386 −0.217048 −0.108524 0.994094i \(-0.534612\pi\)
−0.108524 + 0.994094i \(0.534612\pi\)
\(614\) 9.23236i 0.372588i
\(615\) 12.2753i 0.494986i
\(616\) 0 0
\(617\) 22.5826 39.1142i 0.909140 1.57468i 0.0938792 0.995584i \(-0.470073\pi\)
0.815261 0.579094i \(-0.196593\pi\)
\(618\) 2.76100i 0.111064i
\(619\) −7.50000 4.33013i −0.301450 0.174042i 0.341644 0.939829i \(-0.389016\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) −37.9129 −1.52139
\(622\) −5.47822 9.48855i −0.219657 0.380456i
\(623\) 0 0
\(624\) 9.47822 + 16.4168i 0.379432 + 0.657196i
\(625\) −1.62614 + 2.81655i −0.0650455 + 0.112662i
\(626\) 1.97822 3.42638i 0.0790656 0.136946i
\(627\) −18.8085 13.9617i −0.751140 0.557577i
\(628\) 18.2477 10.5353i 0.728164 0.420405i
\(629\) 21.9564 + 38.0297i 0.875461 + 1.51634i
\(630\) 0 0
\(631\) 17.1434 29.6932i 0.682467 1.18207i −0.291759 0.956492i \(-0.594240\pi\)
0.974226 0.225575i \(-0.0724262\pi\)
\(632\) −6.00000 + 10.3923i −0.238667 + 0.413384i
\(633\) −21.9392 + 12.6666i −0.872005 + 0.503452i
\(634\) −3.35208 + 5.80598i −0.133128 + 0.230585i
\(635\) 7.50000 + 12.9904i 0.297628 + 0.515508i
\(636\) −3.54356 2.04588i −0.140511 0.0811243i
\(637\) 0 0
\(638\) −4.87841 −0.193138
\(639\) −0.643371 + 0.371450i −0.0254514 + 0.0146944i
\(640\) 7.03901 + 12.1919i 0.278241 + 0.481928i
\(641\) 7.11890i 0.281180i −0.990068 0.140590i \(-0.955100\pi\)
0.990068 0.140590i \(-0.0448999\pi\)
\(642\) 7.75682 0.306137
\(643\) 9.24773 5.33918i 0.364695 0.210557i −0.306443 0.951889i \(-0.599139\pi\)
0.671138 + 0.741332i \(0.265806\pi\)
\(644\) 0 0
\(645\) 15.5130i 0.610824i
\(646\) 7.00000 + 5.19615i 0.275411 + 0.204440i
\(647\) 5.76951 + 3.33103i 0.226823 + 0.130956i 0.609105 0.793089i \(-0.291529\pi\)
−0.382283 + 0.924045i \(0.624862\pi\)
\(648\) 16.5975i 0.652012i
\(649\) −14.6869 + 25.4385i −0.576513 + 0.998549i
\(650\) −5.06080 2.92185i −0.198501 0.114604i
\(651\) 0 0
\(652\) 5.37386 9.30780i 0.210457 0.364522i
\(653\) −7.50000 12.9904i −0.293498 0.508353i 0.681137 0.732156i \(-0.261486\pi\)
−0.974634 + 0.223803i \(0.928153\pi\)
\(654\) −5.52178 + 9.56400i −0.215919 + 0.373982i
\(655\) 4.53901 + 7.86180i 0.177354 + 0.307186i
\(656\) −15.0000 −0.585652
\(657\) 1.29510i 0.0505267i
\(658\) 0 0
\(659\) −25.4174 14.6748i −0.990122 0.571647i −0.0848114 0.996397i \(-0.527029\pi\)
−0.905311 + 0.424750i \(0.860362\pi\)
\(660\) −10.6307 6.13763i −0.413799 0.238907i
\(661\) 15.2477 + 26.4098i 0.593068 + 1.02722i 0.993816 + 0.111036i \(0.0354168\pi\)
−0.400749 + 0.916188i \(0.631250\pi\)
\(662\) −0.956439 −0.0371731
\(663\) 25.7477 + 14.8655i 0.999959 + 0.577327i
\(664\) 23.5390 0.913491
\(665\) 0 0
\(666\) 0.956439 0.0370613
\(667\) −23.3739 13.4949i −0.905040 0.522525i
\(668\) 34.2523 1.32526
\(669\) 12.1652 + 21.0707i 0.470332 + 0.814639i
\(670\) −1.74773 1.00905i −0.0675206 0.0389830i
\(671\) 3.56080 + 2.05583i 0.137463 + 0.0793643i
\(672\) 0 0
\(673\) 11.6874i 0.450516i 0.974299 + 0.225258i \(0.0723226\pi\)
−0.974299 + 0.225258i \(0.927677\pi\)
\(674\) −1.12159 −0.0432021
\(675\) 8.43466 + 14.6093i 0.324650 + 0.562311i
\(676\) −1.23049 + 2.13128i −0.0473266 + 0.0819721i
\(677\) −1.33485 2.31203i −0.0513024 0.0888584i 0.839234 0.543771i \(-0.183004\pi\)
−0.890536 + 0.454912i \(0.849671\pi\)
\(678\) −5.41288 + 9.37538i −0.207880 + 0.360059i
\(679\) 0 0
\(680\) 8.37386 + 4.83465i 0.321123 + 0.185400i
\(681\) 23.7695 41.1700i 0.910850 1.57764i
\(682\) 0 0
\(683\) −30.2650 17.4735i −1.15806 0.668604i −0.207219 0.978295i \(-0.566441\pi\)
−0.950837 + 0.309690i \(0.899775\pi\)
\(684\) −1.49545 + 0.647551i −0.0571801 + 0.0247597i
\(685\) 12.6965i 0.485107i
\(686\) 0 0
\(687\) −10.7477 + 6.20520i −0.410051 + 0.236743i
\(688\) −18.9564 −0.722707
\(689\) 4.83465i 0.184186i
\(690\) 3.95644 + 6.85275i 0.150619 + 0.260880i
\(691\) −37.5000 + 21.6506i −1.42657 + 0.823629i −0.996848 0.0793336i \(-0.974721\pi\)
−0.429719 + 0.902963i \(0.641387\pi\)
\(692\) 35.3739 1.34471
\(693\) 0 0
\(694\) 12.3784 + 7.14668i 0.469878 + 0.271284i
\(695\) −6.80852 11.7927i −0.258262 0.447323i
\(696\) −5.52178 + 9.56400i −0.209303 + 0.362523i
\(697\) −20.3739 + 11.7629i −0.771715 + 0.445550i
\(698\) −7.33485 + 12.7043i −0.277628 + 0.480866i
\(699\) 12.0172 20.8145i 0.454534 0.787275i
\(700\) 0 0
\(701\) 10.7477 + 18.6156i 0.405936 + 0.703102i 0.994430 0.105400i \(-0.0336122\pi\)
−0.588494 + 0.808502i \(0.700279\pi\)
\(702\) −7.50000 + 4.33013i −0.283069 + 0.163430i
\(703\) −17.3739 40.1232i −0.655268 1.51328i
\(704\) 5.12614 8.87873i 0.193199 0.334630i
\(705\) −6.97822 + 12.0866i −0.262815 + 0.455209i
\(706\) 0.0607953 + 0.105301i 0.00228806 + 0.00396304i
\(707\) 0 0
\(708\) 15.7087 + 27.2083i 0.590370 + 1.02255i
\(709\) −13.4174 −0.503902 −0.251951 0.967740i \(-0.581072\pi\)
−0.251951 + 0.967740i \(0.581072\pi\)
\(710\) −1.79583 1.03683i −0.0673964 0.0389114i
\(711\) −1.25227 0.723000i −0.0469639 0.0271146i
\(712\) 4.11165i 0.154091i
\(713\) 0 0
\(714\) 0 0
\(715\) 14.5040i 0.542417i
\(716\) 26.4575i 0.988764i
\(717\) 26.0436 0.972615
\(718\) 0.247727 0.143025i 0.00924509 0.00533766i
\(719\) 27.1652 + 15.6838i 1.01309 + 0.584907i 0.912095 0.409980i \(-0.134464\pi\)
0.100995 + 0.994887i \(0.467798\pi\)
\(720\) −0.643371 + 0.371450i −0.0239770 + 0.0138431i
\(721\) 0 0
\(722\) −6.33030 5.93905i −0.235589 0.221029i
\(723\) −6.60436 11.4391i −0.245619 0.425424i
\(724\) −21.0436 −0.782078
\(725\) 12.0091i 0.446007i
\(726\) 1.63670i 0.0607437i
\(727\) −39.2477 + 22.6597i −1.45562 + 0.840401i −0.998791 0.0491546i \(-0.984347\pi\)
−0.456826 + 0.889556i \(0.651014\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) 3.13068 1.80750i 0.115872 0.0668986i
\(731\) −25.7477 + 14.8655i −0.952314 + 0.549819i
\(732\) 3.80852 2.19885i 0.140767 0.0812719i
\(733\) −24.8085 + 14.3232i −0.916324 + 0.529040i −0.882460 0.470387i \(-0.844114\pi\)
−0.0338633 + 0.999426i \(0.510781\pi\)
\(734\) 4.41742 0.163050
\(735\) 0 0
\(736\) −31.1216 + 17.9681i −1.14716 + 0.662311i
\(737\) 10.3923i 0.382805i
\(738\) 0.512399i 0.0188617i
\(739\) 25.7477 0.947145 0.473573 0.880755i \(-0.342964\pi\)
0.473573 + 0.880755i \(0.342964\pi\)
\(740\) −11.4564 19.8431i −0.421147 0.729448i
\(741\) −23.7695 17.6443i −0.873195 0.648179i
\(742\) 0 0
\(743\) 28.8956 16.6829i 1.06008 0.612037i 0.134624 0.990897i \(-0.457017\pi\)
0.925454 + 0.378860i \(0.123684\pi\)
\(744\) 0 0
\(745\) −12.3784 + 7.14668i −0.453510 + 0.261834i
\(746\) 9.92197 0.363269
\(747\) 2.83645i 0.103780i
\(748\) 23.5257i 0.860185i
\(749\) 0 0
\(750\) 4.36932 7.56788i 0.159545 0.276340i
\(751\) 9.02175i 0.329208i −0.986360 0.164604i \(-0.947365\pi\)
0.986360 0.164604i \(-0.0526347\pi\)
\(752\) −14.7695 8.52718i −0.538589 0.310954i
\(753\) −14.8521 8.57485i −0.541240 0.312485i
\(754\) −6.16515 −0.224522
\(755\) −11.4564 19.8431i −0.416943 0.722166i
\(756\) 0 0
\(757\) 14.1216 + 24.4593i 0.513258 + 0.888989i 0.999882 + 0.0153772i \(0.00489491\pi\)
−0.486624 + 0.873612i \(0.661772\pi\)
\(758\) −6.01723 + 10.4222i −0.218556 + 0.378550i
\(759\) 20.3739 35.2886i 0.739524 1.28089i
\(760\) −7.73049 5.73840i −0.280414 0.208154i
\(761\) 17.7695 10.2592i 0.644144 0.371897i −0.142065 0.989857i \(-0.545374\pi\)
0.786209 + 0.617961i \(0.212041\pi\)
\(762\) 4.81307 + 8.33648i 0.174359 + 0.301999i
\(763\) 0 0
\(764\) −18.3956 + 31.8622i −0.665531 + 1.15273i
\(765\) −0.582576 + 1.00905i −0.0210631 + 0.0364823i
\(766\) 6.69148 3.86333i 0.241773 0.139588i
\(767\) −18.5608 + 32.1482i −0.670191 + 1.16081i
\(768\) −1.60436 2.77883i −0.0578922 0.100272i
\(769\) −25.1869 14.5417i −0.908264 0.524386i −0.0283918 0.999597i \(-0.509039\pi\)
−0.879872 + 0.475210i \(0.842372\pi\)
\(770\) 0 0
\(771\) −35.3739 −1.27396
\(772\) −38.0608 + 21.9744i −1.36984 + 0.790876i
\(773\) 19.8303 + 34.3471i 0.713246 + 1.23538i 0.963632 + 0.267233i \(0.0861093\pi\)
−0.250386 + 0.968146i \(0.580557\pi\)
\(774\) 0.647551i 0.0232757i
\(775\) 0 0
\(776\) 3.00000 1.73205i 0.107694 0.0621770i
\(777\) 0 0
\(778\) 15.5130i 0.556168i
\(779\) 21.4955 9.30780i 0.770155 0.333487i
\(780\) −13.4347 7.75650i −0.481038 0.277727i
\(781\) 10.6784i 0.382102i
\(782\) −7.58258 + 13.1334i −0.271152 + 0.469650i
\(783\) 15.4129 + 8.89863i 0.550811 + 0.318011i
\(784\) 0 0
\(785\) −7.50000 + 12.9904i −0.267686 + 0.463647i
\(786\) 2.91288 + 5.04525i 0.103899 + 0.179958i
\(787\) 12.7913 22.1552i 0.455960 0.789746i −0.542783 0.839873i \(-0.682629\pi\)
0.998743 + 0.0501270i \(0.0159626\pi\)
\(788\) 10.7477 + 18.6156i 0.382872 + 0.663154i
\(789\) 21.4955 0.765258
\(790\) 4.03620i 0.143602i
\(791\) 0 0
\(792\) −0.939205 0.542250i −0.0333732 0.0192680i
\(793\) 4.50000 + 2.59808i 0.159800 + 0.0922604i
\(794\) 1.02178 + 1.76978i 0.0362616 + 0.0628070i
\(795\) 2.91288 0.103309
\(796\) 34.2523 + 19.7756i 1.21404 + 0.700926i
\(797\) −48.4955 −1.71780 −0.858899 0.512146i \(-0.828851\pi\)
−0.858899 + 0.512146i \(0.828851\pi\)
\(798\) 0 0
\(799\) −26.7477 −0.946267
\(800\) 13.8475 + 7.99488i 0.489584 + 0.282662i
\(801\) −0.495454 −0.0175060
\(802\) 0.960985 + 1.66447i 0.0339336 + 0.0587747i
\(803\) −16.1216 9.30780i −0.568919 0.328465i
\(804\) 9.62614 + 5.55765i 0.339488 + 0.196003i
\(805\) 0 0
\(806\) 0 0
\(807\) 13.5826 0.478129
\(808\) −7.41742 12.8474i −0.260944 0.451968i
\(809\) −25.0390 + 43.3688i −0.880325 + 1.52477i −0.0293449 + 0.999569i \(0.509342\pi\)
−0.850980 + 0.525198i \(0.823991\pi\)
\(810\) −2.79129 4.83465i −0.0980759 0.169872i
\(811\) 7.56080 13.0957i 0.265495 0.459852i −0.702198 0.711982i \(-0.747798\pi\)
0.967693 + 0.252130i \(0.0811311\pi\)
\(812\) 0 0
\(813\) −20.9347 12.0866i −0.734211 0.423897i
\(814\) 6.87386 11.9059i 0.240929 0.417301i
\(815\) 7.65120i 0.268010i
\(816\) −18.9564 10.9445i −0.663608 0.383134i
\(817\) 27.1652 11.7629i 0.950388 0.411530i
\(818\) 6.77730i 0.236963i
\(819\) 0 0
\(820\) 10.6307 6.13763i 0.371240 0.214335i
\(821\) −17.0436 −0.594824 −0.297412 0.954749i \(-0.596124\pi\)
−0.297412 + 0.954749i \(0.596124\pi\)
\(822\) 8.14786i 0.284189i
\(823\) 12.7087 + 22.0121i 0.442998 + 0.767295i 0.997910 0.0646139i \(-0.0205816\pi\)
−0.554912 + 0.831909i \(0.687248\pi\)
\(824\) −5.06080 + 2.92185i −0.176301 + 0.101788i
\(825\) −18.1307 −0.631229
\(826\) 0 0
\(827\) 26.7042 + 15.4177i 0.928595 + 0.536124i 0.886367 0.462984i \(-0.153221\pi\)
0.0422280 + 0.999108i \(0.486554\pi\)
\(828\) −1.41742 2.45505i −0.0492589 0.0853189i
\(829\) −7.12614 + 12.3428i −0.247501 + 0.428684i −0.962832 0.270102i \(-0.912943\pi\)
0.715331 + 0.698786i \(0.246276\pi\)
\(830\) −6.85663 + 3.95868i −0.237997 + 0.137408i
\(831\) −21.0826 + 36.5161i −0.731346 + 1.26673i
\(832\) 6.47822 11.2206i 0.224592 0.389005i
\(833\) 0 0
\(834\) −4.36932 7.56788i −0.151297 0.262054i
\(835\) −21.1170 + 12.1919i −0.730785 + 0.421919i
\(836\) −2.68693 + 23.2695i −0.0929295 + 0.804793i
\(837\) 0 0
\(838\) 8.85663 15.3401i 0.305947 0.529916i
\(839\) −11.9174 20.6416i −0.411435 0.712627i 0.583612 0.812033i \(-0.301639\pi\)
−0.995047 + 0.0994062i \(0.968306\pi\)
\(840\) 0 0
\(841\) −8.16515 14.1425i −0.281557 0.487671i
\(842\) 7.28674 0.251118
\(843\) 1.83030 + 1.05673i 0.0630390 + 0.0363956i
\(844\) 21.9392 + 12.6666i 0.755179 + 0.436003i
\(845\) 1.75195i 0.0602690i
\(846\) −0.291288 + 0.504525i −0.0100147 + 0.0173459i
\(847\) 0 0
\(848\) 3.55945i 0.122232i
\(849\) 17.3205i 0.594438i
\(850\) 6.74773 0.231445
\(851\) 65.8693 38.0297i 2.25797 1.30364i
\(852\) 9.89110 + 5.71063i 0.338863 + 0.195643i
\(853\) −0.873864 + 0.504525i −0.0299205 + 0.0172746i −0.514886 0.857259i \(-0.672166\pi\)
0.484965 + 0.874533i \(0.338832\pi\)
\(854\) 0 0
\(855\) 0.691478 0.931524i 0.0236480 0.0318575i
\(856\) −8.20871 14.2179i −0.280568 0.485958i
\(857\) 13.1216 0.448225 0.224112 0.974563i \(-0.428052\pi\)
0.224112 + 0.974563i \(0.428052\pi\)
\(858\) 9.30780i 0.317763i
\(859\) 6.56670i 0.224053i −0.993705 0.112027i \(-0.964266\pi\)
0.993705 0.112027i \(-0.0357342\pi\)
\(860\) 13.4347 7.75650i 0.458118 0.264495i
\(861\) 0 0
\(862\) 8.28674 0.282248
\(863\) −16.0390 + 9.26013i −0.545974 + 0.315218i −0.747497 0.664265i \(-0.768744\pi\)
0.201522 + 0.979484i \(0.435411\pi\)
\(864\) 20.5218 11.8483i 0.698165 0.403086i
\(865\) −21.8085 + 12.5912i −0.741512 + 0.428112i
\(866\) 14.3911 8.30870i 0.489029 0.282341i
\(867\) −3.87841 −0.131718
\(868\) 0 0
\(869\) −18.0000 + 10.3923i −0.610608 + 0.352535i
\(870\) 3.71450i 0.125933i
\(871\) 13.1334i 0.445008i
\(872\) 23.3739 0.791539
\(873\) 0.208712 + 0.361500i 0.00706384 + 0.0122349i
\(874\) 9.00000 12.1244i 0.304430 0.410112i
\(875\) 0 0
\(876\) −17.2432 + 9.95536i −0.582593 + 0.336360i
\(877\) −37.1216 21.4322i −1.25351 0.723713i −0.281703 0.959502i \(-0.590899\pi\)
−0.971804 + 0.235789i \(0.924233\pi\)
\(878\) 1.25227 0.723000i 0.0422622 0.0244001i
\(879\) 37.6170 1.26879
\(880\) 10.6784i 0.359967i
\(881\) 13.5903i 0.457867i 0.973442 + 0.228934i \(0.0735239\pi\)
−0.973442 + 0.228934i \(0.926476\pi\)
\(882\) 0 0
\(883\) −20.5000 + 35.5070i −0.689880 + 1.19491i 0.281996 + 0.959415i \(0.409003\pi\)
−0.971876 + 0.235492i \(0.924330\pi\)
\(884\) 29.7309i 0.999959i
\(885\) −19.3693 11.1829i −0.651092 0.375908i
\(886\) 8.43920 + 4.87238i 0.283521 + 0.163691i
\(887\) −1.41742 −0.0475925 −0.0237962 0.999717i \(-0.507575\pi\)
−0.0237962 + 0.999717i \(0.507575\pi\)
\(888\) −15.5608 26.9521i −0.522186 0.904453i
\(889\) 0 0
\(890\) −0.691478 1.19767i −0.0231784 0.0401461i
\(891\) −14.3739 + 24.8963i −0.481543 + 0.834056i
\(892\) 12.1652 21.0707i 0.407319 0.705498i
\(893\) 26.4564 + 3.05493i 0.885331 + 0.102229i
\(894\) −7.94375 + 4.58633i −0.265679 + 0.153390i
\(895\) 9.41742 + 16.3115i 0.314790 + 0.545232i
\(896\) 0 0
\(897\) 25.7477 44.5964i 0.859692 1.48903i
\(898\) −2.89564 + 5.01540i −0.0966289 + 0.167366i
\(899\) 0 0
\(900\) −0.630682 + 1.09237i −0.0210227 + 0.0364125i
\(901\) 2.79129 + 4.83465i 0.0929913 + 0.161066i
\(902\) 6.37841 + 3.68258i 0.212378 + 0.122616i
\(903\) 0 0
\(904\) 22.9129 0.762071
\(905\) 12.9737 7.49035i 0.431260 0.248988i
\(906\) −7.35208 12.7342i −0.244257 0.423065i
\(907\) 40.4093i 1.34177i −0.741562 0.670884i \(-0.765915\pi\)
0.741562 0.670884i \(-0.234085\pi\)
\(908\) −47.5390 −1.57764
\(909\) 1.54811 0.893800i 0.0513475 0.0296455i
\(910\) 0 0
\(911\) 7.38505i 0.244678i −0.992488 0.122339i \(-0.960961\pi\)
0.992488 0.122339i \(-0.0390395\pi\)
\(912\) 17.5000 + 12.9904i 0.579483 + 0.430155i
\(913\) 35.3085 + 20.3854i 1.16854 + 0.674658i
\(914\) 17.3960i 0.575407i
\(915\) −1.56534 + 2.71125i −0.0517486 + 0.0896312i
\(916\) 10.7477 + 6.20520i 0.355115 + 0.205026i
\(917\) 0 0
\(918\) 5.00000 8.66025i 0.165025 0.285831i
\(919\) −11.0000 19.0526i −0.362857 0.628486i 0.625573 0.780165i \(-0.284865\pi\)
−0.988430 + 0.151680i \(0.951532\pi\)
\(920\) 8.37386 14.5040i 0.276078 0.478181i
\(921\) −18.0998 31.3498i −0.596409 1.03301i
\(922\) 2.46099 0.0810482
\(923\) 13.4949i 0.444190i
\(924\) 0 0
\(925\) −29.3085 16.9213i −0.963658 0.556368i
\(926\) −7.51723 4.34008i −0.247032 0.142624i
\(927\) −0.352083 0.609826i −0.0115639 0.0200293i
\(928\) 16.8693 0.553762
\(929\) −3.47822 2.00815i −0.114117 0.0658853i 0.441855 0.897086i \(-0.354320\pi\)
−0.555972 + 0.831201i \(0.687654\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −24.0345 −0.787275
\(933\) −37.2042 21.4798i −1.21801 0.703218i
\(934\) 9.37386 0.306722
\(935\) 8.37386 + 14.5040i 0.273855 + 0.474330i
\(936\) −1.18693 0.685275i −0.0387961 0.0223989i
\(937\) 9.93920 + 5.73840i 0.324700 + 0.187465i 0.653485 0.756939i \(-0.273306\pi\)
−0.328786 + 0.944405i \(0.606639\pi\)
\(938\) 0 0
\(939\) 15.5130i 0.506248i
\(940\) 13.9564 0.455209
\(941\) −2.60436 4.51088i −0.0848996 0.147050i 0.820449 0.571720i \(-0.193724\pi\)
−0.905348 + 0.424670i \(0.860390\pi\)
\(942\) −4.81307 + 8.33648i −0.156818 + 0.271617i
\(943\) 20.3739 + 35.2886i 0.663464 + 1.14915i
\(944\) 13.6652 23.6687i 0.444763 0.770352i
\(945\) 0 0
\(946\) 8.06080 + 4.65390i 0.262079 + 0.151311i
\(947\) −17.9174 + 31.0339i −0.582238 + 1.00847i 0.412976 + 0.910742i \(0.364490\pi\)
−0.995214 + 0.0977238i \(0.968844\pi\)
\(948\) 22.2306i 0.722017i
\(949\) −20.3739 11.7629i −0.661364 0.381838i
\(950\) −6.67424 0.770675i −0.216541 0.0250040i
\(951\) 26.2867i 0.852405i
\(952\) 0 0
\(953\) −42.8911 + 24.7632i −1.38938 + 0.802158i −0.993245 0.116035i \(-0.962982\pi\)
−0.396134 + 0.918193i \(0.629648\pi\)
\(954\) 0.121591 0.00393664
\(955\) 26.1914i 0.847533i
\(956\) −13.0218 22.5544i −0.421154 0.729461i
\(957\) −16.5653 + 9.56400i −0.535481 + 0.309160i
\(958\) 0.0871215 0.00281477
\(959\) 0 0
\(960\) 6.76042 + 3.90313i 0.218191 + 0.125973i
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 8.68693 15.0462i 0.280078 0.485109i
\(963\) 1.71326 0.989150i 0.0552090 0.0318749i
\(964\) −6.60436 + 11.4391i −0.212712 + 0.368428i
\(965\) 15.6434 27.0951i 0.503578 0.872223i
\(966\) 0 0
\(967\) −11.2087 19.4141i −0.360448 0.624314i 0.627587 0.778547i \(-0.284043\pi\)
−0.988035 + 0.154233i \(0.950709\pi\)
\(968\) 3.00000 1.73205i 0.0964237 0.0556702i
\(969\) 33.9564 + 3.92095i 1.09084 + 0.125959i
\(970\) −0.582576 + 1.00905i −0.0187054 + 0.0323987i
\(971\) 21.7259 37.6304i 0.697219 1.20762i −0.272208 0.962238i \(-0.587754\pi\)
0.969427 0.245380i \(-0.0789127\pi\)
\(972\) 1.93920 + 3.35880i 0.0622000 + 0.107734i
\(973\) 0 0
\(974\) −2.29129 3.96863i −0.0734176 0.127163i
\(975\) −22.9129 −0.733799
\(976\) −3.31307 1.91280i −0.106049 0.0612273i
\(977\) −16.4174 9.47860i −0.525240 0.303247i 0.213836 0.976870i \(-0.431404\pi\)
−0.739076 + 0.673622i \(0.764738\pi\)
\(978\) 4.91010i 0.157008i
\(979\) −3.56080 + 6.16748i −0.113804 + 0.197113i
\(980\) 0 0
\(981\) 2.81655i 0.0899256i
\(982\) 17.3960i 0.555127i
\(983\) −58.2867 −1.85906 −0.929529 0.368749i \(-0.879786\pi\)
−0.929529 + 0.368749i \(0.879786\pi\)
\(984\) 14.4392 8.33648i 0.460305 0.265757i
\(985\) −13.2523 7.65120i −0.422253 0.243788i
\(986\) 6.16515 3.55945i 0.196338 0.113356i
\(987\) 0 0
\(988\) −3.39564 + 29.4071i −0.108030 + 0.935566i
\(989\) 25.7477 + 44.5964i 0.818730 + 1.41808i
\(990\) 0.364772 0.0115932
\(991\) 35.0025i 1.11189i −0.831219 0.555946i \(-0.812356\pi\)
0.831219 0.555946i \(-0.187644\pi\)
\(992\) 0 0
\(993\) −3.24773 + 1.87508i −0.103064 + 0.0595037i
\(994\) 0 0
\(995\) −28.1561 −0.892607
\(996\) 37.7650 21.8036i 1.19663 0.690874i
\(997\) 4.74773 2.74110i 0.150362 0.0868116i −0.422931 0.906162i \(-0.638999\pi\)
0.573293 + 0.819350i \(0.305666\pi\)
\(998\) 7.02178 4.05403i 0.222271 0.128328i
\(999\) −43.4347 + 25.0770i −1.37421 + 0.793402i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.s.c.31.2 4
7.2 even 3 133.2.i.c.12.1 4
7.3 odd 6 931.2.p.e.734.1 4
7.4 even 3 931.2.p.f.734.1 4
7.5 odd 6 931.2.i.d.411.1 4
7.6 odd 2 133.2.s.c.31.2 yes 4
19.8 odd 6 931.2.i.d.521.2 4
133.27 even 6 133.2.i.c.122.2 yes 4
133.46 odd 6 931.2.p.e.293.1 4
133.65 odd 6 133.2.s.c.103.2 yes 4
133.103 even 6 inner 931.2.s.c.901.2 4
133.122 even 6 931.2.p.f.293.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.i.c.12.1 4 7.2 even 3
133.2.i.c.122.2 yes 4 133.27 even 6
133.2.s.c.31.2 yes 4 7.6 odd 2
133.2.s.c.103.2 yes 4 133.65 odd 6
931.2.i.d.411.1 4 7.5 odd 6
931.2.i.d.521.2 4 19.8 odd 6
931.2.p.e.293.1 4 133.46 odd 6
931.2.p.e.734.1 4 7.3 odd 6
931.2.p.f.293.1 4 133.122 even 6
931.2.p.f.734.1 4 7.4 even 3
931.2.s.c.31.2 4 1.1 even 1 trivial
931.2.s.c.901.2 4 133.103 even 6 inner