Properties

Label 931.2.i.e.411.1
Level $931$
Weight $2$
Character 931.411
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(411,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.411"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 411.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 931.411
Dual form 931.2.i.e.521.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18890i q^{2} +(0.500000 - 0.866025i) q^{3} -2.79129 q^{4} +2.64575i q^{5} +(-1.89564 - 1.09445i) q^{6} +1.73205i q^{8} +(1.00000 + 1.73205i) q^{9} +5.79129 q^{10} +(-1.39564 + 2.41733i) q^{12} +(-2.29129 + 3.96863i) q^{13} +(2.29129 + 1.32288i) q^{15} -1.79129 q^{16} +(5.29129 + 3.05493i) q^{17} +(3.79129 - 2.18890i) q^{18} +(-0.500000 + 4.33013i) q^{19} -7.38505i q^{20} +(2.29129 + 3.96863i) q^{23} +(1.50000 + 0.866025i) q^{24} -2.00000 q^{25} +(8.68693 + 5.01540i) q^{26} +5.00000 q^{27} +(-6.08258 - 3.51178i) q^{29} +(2.89564 - 5.01540i) q^{30} +7.38505i q^{32} +(6.68693 - 11.5821i) q^{34} +(-2.79129 - 4.83465i) q^{36} +(9.47822 + 1.09445i) q^{38} +(2.29129 + 3.96863i) q^{39} -4.58258 q^{40} +(-0.708712 - 1.22753i) q^{41} +(-0.708712 - 1.22753i) q^{43} +(-4.58258 + 2.64575i) q^{45} +(8.68693 - 5.01540i) q^{46} +(3.08258 - 1.77973i) q^{47} +(-0.895644 + 1.55130i) q^{48} +4.37780i q^{50} +(5.29129 - 3.05493i) q^{51} +(6.39564 - 11.0776i) q^{52} -10.4877i q^{53} -10.9445i q^{54} +(3.50000 + 2.59808i) q^{57} +(-7.68693 + 13.3142i) q^{58} +(-1.50000 + 2.59808i) q^{59} +(-6.39564 - 3.69253i) q^{60} +(12.8739 - 7.43273i) q^{61} +12.5826 q^{64} +(-10.5000 - 6.06218i) q^{65} +11.4014i q^{67} +(-14.7695 - 8.52718i) q^{68} +4.58258 q^{69} +(-3.70871 + 2.14123i) q^{71} +(-3.00000 + 1.73205i) q^{72} +(-3.87386 - 2.23658i) q^{73} +(-1.00000 + 1.73205i) q^{75} +(1.39564 - 12.0866i) q^{76} +(8.68693 - 5.01540i) q^{78} -1.00905i q^{79} -4.73930i q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.68693 + 1.55130i) q^{82} +7.11890i q^{83} +(-8.08258 + 13.9994i) q^{85} +(-2.68693 + 1.55130i) q^{86} +(-6.08258 + 3.51178i) q^{87} +(-0.708712 - 1.22753i) q^{89} +(5.79129 + 10.0308i) q^{90} +(-6.39564 - 11.0776i) q^{92} +(-3.89564 - 6.74745i) q^{94} +(-11.4564 - 1.32288i) q^{95} +(6.39564 + 3.69253i) q^{96} +(-7.87386 - 13.6379i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{9} + 14 q^{10} - q^{12} + 2 q^{16} + 12 q^{17} + 6 q^{18} - 2 q^{19} + 6 q^{24} - 8 q^{25} + 21 q^{26} + 20 q^{27} - 6 q^{29} + 7 q^{30} + 13 q^{34} - 2 q^{36}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890i 1.54779i −0.633316 0.773893i \(-0.718307\pi\)
0.633316 0.773893i \(-0.281693\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) −2.79129 −1.39564
\(5\) 2.64575i 1.18322i 0.806226 + 0.591608i \(0.201507\pi\)
−0.806226 + 0.591608i \(0.798493\pi\)
\(6\) −1.89564 1.09445i −0.773893 0.446808i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 5.79129 1.83137
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −1.39564 + 2.41733i −0.402888 + 0.697822i
\(13\) −2.29129 + 3.96863i −0.635489 + 1.10070i 0.350922 + 0.936405i \(0.385868\pi\)
−0.986411 + 0.164295i \(0.947465\pi\)
\(14\) 0 0
\(15\) 2.29129 + 1.32288i 0.591608 + 0.341565i
\(16\) −1.79129 −0.447822
\(17\) 5.29129 + 3.05493i 1.28333 + 0.740928i 0.977455 0.211144i \(-0.0677191\pi\)
0.305871 + 0.952073i \(0.401052\pi\)
\(18\) 3.79129 2.18890i 0.893615 0.515929i
\(19\) −0.500000 + 4.33013i −0.114708 + 0.993399i
\(20\) 7.38505i 1.65135i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.29129 + 3.96863i 0.477767 + 0.827516i 0.999675 0.0254855i \(-0.00811315\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) −2.00000 −0.400000
\(26\) 8.68693 + 5.01540i 1.70365 + 0.983601i
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −6.08258 3.51178i −1.12951 0.652121i −0.185695 0.982607i \(-0.559454\pi\)
−0.943811 + 0.330487i \(0.892787\pi\)
\(30\) 2.89564 5.01540i 0.528670 0.915683i
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 7.38505i 1.30551i
\(33\) 0 0
\(34\) 6.68693 11.5821i 1.14680 1.98631i
\(35\) 0 0
\(36\) −2.79129 4.83465i −0.465215 0.805775i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 9.47822 + 1.09445i 1.53757 + 0.177543i
\(39\) 2.29129 + 3.96863i 0.366900 + 0.635489i
\(40\) −4.58258 −0.724569
\(41\) −0.708712 1.22753i −0.110682 0.191707i 0.805363 0.592782i \(-0.201970\pi\)
−0.916046 + 0.401074i \(0.868637\pi\)
\(42\) 0 0
\(43\) −0.708712 1.22753i −0.108078 0.187196i 0.806914 0.590669i \(-0.201136\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) −4.58258 + 2.64575i −0.683130 + 0.394405i
\(46\) 8.68693 5.01540i 1.28082 0.739481i
\(47\) 3.08258 1.77973i 0.449640 0.259600i −0.258038 0.966135i \(-0.583076\pi\)
0.707678 + 0.706535i \(0.249743\pi\)
\(48\) −0.895644 + 1.55130i −0.129275 + 0.223911i
\(49\) 0 0
\(50\) 4.37780i 0.619115i
\(51\) 5.29129 3.05493i 0.740928 0.427775i
\(52\) 6.39564 11.0776i 0.886916 1.53618i
\(53\) 10.4877i 1.44059i −0.693668 0.720295i \(-0.744006\pi\)
0.693668 0.720295i \(-0.255994\pi\)
\(54\) 10.9445i 1.48936i
\(55\) 0 0
\(56\) 0 0
\(57\) 3.50000 + 2.59808i 0.463586 + 0.344124i
\(58\) −7.68693 + 13.3142i −1.00934 + 1.74823i
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) −6.39564 3.69253i −0.825674 0.476703i
\(61\) 12.8739 7.43273i 1.64833 0.951663i 0.670593 0.741825i \(-0.266040\pi\)
0.977736 0.209838i \(-0.0672937\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 12.5826 1.57282
\(65\) −10.5000 6.06218i −1.30236 0.751921i
\(66\) 0 0
\(67\) 11.4014i 1.39290i 0.717607 + 0.696449i \(0.245238\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) −14.7695 8.52718i −1.79107 1.03407i
\(69\) 4.58258 0.551677
\(70\) 0 0
\(71\) −3.70871 + 2.14123i −0.440143 + 0.254117i −0.703658 0.710538i \(-0.748451\pi\)
0.263515 + 0.964655i \(0.415118\pi\)
\(72\) −3.00000 + 1.73205i −0.353553 + 0.204124i
\(73\) −3.87386 2.23658i −0.453401 0.261771i 0.255864 0.966713i \(-0.417640\pi\)
−0.709266 + 0.704941i \(0.750973\pi\)
\(74\) 0 0
\(75\) −1.00000 + 1.73205i −0.115470 + 0.200000i
\(76\) 1.39564 12.0866i 0.160091 1.38643i
\(77\) 0 0
\(78\) 8.68693 5.01540i 0.983601 0.567882i
\(79\) 1.00905i 0.113527i −0.998388 0.0567635i \(-0.981922\pi\)
0.998388 0.0567635i \(-0.0180781\pi\)
\(80\) 4.73930i 0.529870i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.68693 + 1.55130i −0.296722 + 0.171313i
\(83\) 7.11890i 0.781401i 0.920518 + 0.390701i \(0.127767\pi\)
−0.920518 + 0.390701i \(0.872233\pi\)
\(84\) 0 0
\(85\) −8.08258 + 13.9994i −0.876678 + 1.51845i
\(86\) −2.68693 + 1.55130i −0.289739 + 0.167281i
\(87\) −6.08258 + 3.51178i −0.652121 + 0.376502i
\(88\) 0 0
\(89\) −0.708712 1.22753i −0.0751233 0.130117i 0.826017 0.563646i \(-0.190602\pi\)
−0.901140 + 0.433528i \(0.857268\pi\)
\(90\) 5.79129 + 10.0308i 0.610455 + 1.05734i
\(91\) 0 0
\(92\) −6.39564 11.0776i −0.666792 1.15492i
\(93\) 0 0
\(94\) −3.89564 6.74745i −0.401805 0.695947i
\(95\) −11.4564 1.32288i −1.17541 0.135724i
\(96\) 6.39564 + 3.69253i 0.652753 + 0.376867i
\(97\) −7.87386 13.6379i −0.799470 1.38472i −0.919962 0.392008i \(-0.871781\pi\)
0.120492 0.992714i \(-0.461553\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.58258 0.558258
\(101\) 11.2107i 1.11550i 0.830008 + 0.557751i \(0.188336\pi\)
−0.830008 + 0.557751i \(0.811664\pi\)
\(102\) −6.68693 11.5821i −0.662105 1.14680i
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) −6.87386 3.96863i −0.674038 0.389156i
\(105\) 0 0
\(106\) −22.9564 −2.22973
\(107\) 1.41742 + 0.818350i 0.137028 + 0.0791129i 0.566947 0.823755i \(-0.308125\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(108\) −13.9564 −1.34296
\(109\) −12.2477 7.07123i −1.17312 0.677301i −0.218707 0.975791i \(-0.570184\pi\)
−0.954413 + 0.298490i \(0.903517\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5830i 0.995565i −0.867302 0.497783i \(-0.834148\pi\)
0.867302 0.497783i \(-0.165852\pi\)
\(114\) 5.68693 7.66115i 0.532630 0.717533i
\(115\) −10.5000 + 6.06218i −0.979130 + 0.565301i
\(116\) 16.9782 + 9.80238i 1.57639 + 0.910128i
\(117\) −9.16515 −0.847319
\(118\) 5.68693 + 3.28335i 0.523525 + 0.302257i
\(119\) 0 0
\(120\) −2.29129 + 3.96863i −0.209165 + 0.362284i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) −16.2695 28.1796i −1.47297 2.55126i
\(123\) −1.41742 −0.127805
\(124\) 0 0
\(125\) 7.93725i 0.709930i
\(126\) 0 0
\(127\) 12.8739 + 7.43273i 1.14237 + 0.659548i 0.947017 0.321185i \(-0.104081\pi\)
0.195354 + 0.980733i \(0.437414\pi\)
\(128\) 12.7719i 1.12889i
\(129\) −1.41742 −0.124797
\(130\) −13.2695 + 22.9835i −1.16381 + 2.01578i
\(131\) 19.2433i 1.68129i 0.541585 + 0.840646i \(0.317824\pi\)
−0.541585 + 0.840646i \(0.682176\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 24.9564 2.15591
\(135\) 13.2288i 1.13855i
\(136\) −5.29129 + 9.16478i −0.453724 + 0.785873i
\(137\) 21.3303 1.82237 0.911185 0.411997i \(-0.135168\pi\)
0.911185 + 0.411997i \(0.135168\pi\)
\(138\) 10.0308i 0.853879i
\(139\) −1.50000 0.866025i −0.127228 0.0734553i 0.435035 0.900414i \(-0.356736\pi\)
−0.562263 + 0.826958i \(0.690069\pi\)
\(140\) 0 0
\(141\) 3.55945i 0.299760i
\(142\) 4.68693 + 8.11800i 0.393319 + 0.681248i
\(143\) 0 0
\(144\) −1.79129 3.10260i −0.149274 0.258550i
\(145\) 9.29129 16.0930i 0.771599 1.33645i
\(146\) −4.89564 + 8.47950i −0.405166 + 0.701769i
\(147\) 0 0
\(148\) 0 0
\(149\) −12.1652 −0.996608 −0.498304 0.867002i \(-0.666044\pi\)
−0.498304 + 0.867002i \(0.666044\pi\)
\(150\) 3.79129 + 2.18890i 0.309557 + 0.178723i
\(151\) 19.7477 11.4014i 1.60705 0.927829i 0.617021 0.786947i \(-0.288339\pi\)
0.990026 0.140882i \(-0.0449939\pi\)
\(152\) −7.50000 0.866025i −0.608330 0.0702439i
\(153\) 12.2197i 0.987905i
\(154\) 0 0
\(155\) 0 0
\(156\) −6.39564 11.0776i −0.512061 0.886916i
\(157\) 6.87386 + 3.96863i 0.548594 + 0.316731i 0.748555 0.663073i \(-0.230748\pi\)
−0.199961 + 0.979804i \(0.564081\pi\)
\(158\) −2.20871 −0.175716
\(159\) −9.08258 5.24383i −0.720295 0.415863i
\(160\) −19.5390 −1.54469
\(161\) 0 0
\(162\) 1.89564 + 1.09445i 0.148936 + 0.0859882i
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) 1.97822 + 3.42638i 0.154473 + 0.267555i
\(165\) 0 0
\(166\) 15.5826 1.20944
\(167\) −2.91742 + 5.05313i −0.225757 + 0.391023i −0.956546 0.291580i \(-0.905819\pi\)
0.730789 + 0.682603i \(0.239152\pi\)
\(168\) 0 0
\(169\) −4.00000 6.92820i −0.307692 0.532939i
\(170\) 30.6434 + 17.6920i 2.35024 + 1.35691i
\(171\) −8.00000 + 3.46410i −0.611775 + 0.264906i
\(172\) 1.97822 + 3.42638i 0.150838 + 0.261259i
\(173\) −7.41742 −0.563936 −0.281968 0.959424i \(-0.590987\pi\)
−0.281968 + 0.959424i \(0.590987\pi\)
\(174\) 7.68693 + 13.3142i 0.582745 + 1.00934i
\(175\) 0 0
\(176\) 0 0
\(177\) 1.50000 + 2.59808i 0.112747 + 0.195283i
\(178\) −2.68693 + 1.55130i −0.201394 + 0.116275i
\(179\) 10.5826 6.10985i 0.790979 0.456672i −0.0493282 0.998783i \(-0.515708\pi\)
0.840307 + 0.542111i \(0.182375\pi\)
\(180\) 12.7913 7.38505i 0.953406 0.550449i
\(181\) 4.87386 8.44178i 0.362271 0.627473i −0.626063 0.779773i \(-0.715335\pi\)
0.988334 + 0.152300i \(0.0486680\pi\)
\(182\) 0 0
\(183\) 14.8655i 1.09889i
\(184\) −6.87386 + 3.96863i −0.506748 + 0.292571i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −8.60436 + 4.96773i −0.627537 + 0.362309i
\(189\) 0 0
\(190\) −2.89564 + 25.0770i −0.210072 + 1.81928i
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 6.29129 10.8968i 0.454035 0.786411i
\(193\) −1.50000 0.866025i −0.107972 0.0623379i 0.445041 0.895510i \(-0.353189\pi\)
−0.553014 + 0.833172i \(0.686522\pi\)
\(194\) −29.8521 + 17.2351i −2.14325 + 1.23741i
\(195\) −10.5000 + 6.06218i −0.751921 + 0.434122i
\(196\) 0 0
\(197\) −12.3303 −0.878498 −0.439249 0.898365i \(-0.644755\pi\)
−0.439249 + 0.898365i \(0.644755\pi\)
\(198\) 0 0
\(199\) 10.6784i 0.756969i −0.925608 0.378484i \(-0.876445\pi\)
0.925608 0.378484i \(-0.123555\pi\)
\(200\) 3.46410i 0.244949i
\(201\) 9.87386 + 5.70068i 0.696449 + 0.402095i
\(202\) 24.5390 1.72656
\(203\) 0 0
\(204\) −14.7695 + 8.52718i −1.03407 + 0.597022i
\(205\) 3.24773 1.87508i 0.226831 0.130961i
\(206\) 15.1652 + 8.75560i 1.05661 + 0.610032i
\(207\) −4.58258 + 7.93725i −0.318511 + 0.551677i
\(208\) 4.10436 7.10895i 0.284586 0.492917i
\(209\) 0 0
\(210\) 0 0
\(211\) 15.8739 9.16478i 1.09280 0.630929i 0.158481 0.987362i \(-0.449340\pi\)
0.934321 + 0.356433i \(0.116007\pi\)
\(212\) 29.2741i 2.01055i
\(213\) 4.28245i 0.293429i
\(214\) 1.79129 3.10260i 0.122450 0.212089i
\(215\) 3.24773 1.87508i 0.221493 0.127879i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −15.4782 + 26.8091i −1.04832 + 1.81574i
\(219\) −3.87386 + 2.23658i −0.261771 + 0.151134i
\(220\) 0 0
\(221\) −24.2477 + 13.9994i −1.63108 + 0.941704i
\(222\) 0 0
\(223\) −3.08258 5.33918i −0.206425 0.357538i 0.744161 0.668000i \(-0.232849\pi\)
−0.950586 + 0.310462i \(0.899516\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) −23.1652 −1.54092
\(227\) 9.16515 + 15.8745i 0.608312 + 1.05363i 0.991519 + 0.129965i \(0.0414866\pi\)
−0.383206 + 0.923663i \(0.625180\pi\)
\(228\) −9.76951 7.25198i −0.647001 0.480274i
\(229\) −6.00000 3.46410i −0.396491 0.228914i 0.288478 0.957487i \(-0.406851\pi\)
−0.684969 + 0.728572i \(0.740184\pi\)
\(230\) 13.2695 + 22.9835i 0.874965 + 1.51548i
\(231\) 0 0
\(232\) 6.08258 10.5353i 0.399341 0.691678i
\(233\) 3.00000 0.196537 0.0982683 0.995160i \(-0.468670\pi\)
0.0982683 + 0.995160i \(0.468670\pi\)
\(234\) 20.0616i 1.31147i
\(235\) 4.70871 + 8.15573i 0.307163 + 0.532021i
\(236\) 4.18693 7.25198i 0.272546 0.472064i
\(237\) −0.873864 0.504525i −0.0567635 0.0327724i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) −4.10436 2.36965i −0.264935 0.152960i
\(241\) 11.7477 0.756738 0.378369 0.925655i \(-0.376485\pi\)
0.378369 + 0.925655i \(0.376485\pi\)
\(242\) −20.8521 12.0390i −1.34042 0.773893i
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) −35.9347 + 20.7469i −2.30048 + 1.32818i
\(245\) 0 0
\(246\) 3.10260i 0.197815i
\(247\) −16.0390 11.9059i −1.02054 0.757553i
\(248\) 0 0
\(249\) 6.16515 + 3.55945i 0.390701 + 0.225571i
\(250\) 17.3739 1.09882
\(251\) 7.66515 + 4.42548i 0.483820 + 0.279334i 0.722007 0.691886i \(-0.243220\pi\)
−0.238187 + 0.971219i \(0.576553\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.2695 28.1796i 1.02084 1.76815i
\(255\) 8.08258 + 13.9994i 0.506151 + 0.876678i
\(256\) −2.79129 −0.174455
\(257\) −9.87386 17.1020i −0.615915 1.06680i −0.990223 0.139491i \(-0.955453\pi\)
0.374309 0.927304i \(-0.377880\pi\)
\(258\) 3.10260i 0.193160i
\(259\) 0 0
\(260\) 29.3085 + 16.9213i 1.81764 + 1.04941i
\(261\) 14.0471i 0.869494i
\(262\) 42.1216 2.60228
\(263\) 3.70871 6.42368i 0.228689 0.396101i −0.728731 0.684800i \(-0.759889\pi\)
0.957420 + 0.288699i \(0.0932228\pi\)
\(264\) 0 0
\(265\) 27.7477 1.70453
\(266\) 0 0
\(267\) −1.41742 −0.0867450
\(268\) 31.8245i 1.94399i
\(269\) −8.29129 + 14.3609i −0.505529 + 0.875601i 0.494451 + 0.869206i \(0.335369\pi\)
−0.999980 + 0.00639585i \(0.997964\pi\)
\(270\) 28.9564 1.76223
\(271\) 14.1425i 0.859093i 0.903045 + 0.429547i \(0.141327\pi\)
−0.903045 + 0.429547i \(0.858673\pi\)
\(272\) −9.47822 5.47225i −0.574701 0.331804i
\(273\) 0 0
\(274\) 46.6899i 2.82064i
\(275\) 0 0
\(276\) −12.7913 −0.769945
\(277\) −12.1652 21.0707i −0.730933 1.26601i −0.956485 0.291782i \(-0.905752\pi\)
0.225552 0.974231i \(-0.427582\pi\)
\(278\) −1.89564 + 3.28335i −0.113693 + 0.196922i
\(279\) 0 0
\(280\) 0 0
\(281\) 13.8303 + 7.98493i 0.825047 + 0.476341i 0.852154 0.523292i \(-0.175296\pi\)
−0.0271070 + 0.999633i \(0.508629\pi\)
\(282\) −7.79129 −0.463964
\(283\) −13.5000 7.79423i −0.802492 0.463319i 0.0418500 0.999124i \(-0.486675\pi\)
−0.844342 + 0.535805i \(0.820008\pi\)
\(284\) 10.3521 5.97678i 0.614283 0.354657i
\(285\) −6.87386 + 9.26013i −0.407173 + 0.548523i
\(286\) 0 0
\(287\) 0 0
\(288\) −12.7913 + 7.38505i −0.753734 + 0.435168i
\(289\) 10.1652 + 17.6066i 0.597950 + 1.03568i
\(290\) −35.2259 20.3377i −2.06854 1.19427i
\(291\) −15.7477 −0.923148
\(292\) 10.8131 + 6.24293i 0.632787 + 0.365340i
\(293\) −9.16515 −0.535434 −0.267717 0.963498i \(-0.586269\pi\)
−0.267717 + 0.963498i \(0.586269\pi\)
\(294\) 0 0
\(295\) −6.87386 3.96863i −0.400212 0.231062i
\(296\) 0 0
\(297\) 0 0
\(298\) 26.6283i 1.54254i
\(299\) −21.0000 −1.21446
\(300\) 2.79129 4.83465i 0.161155 0.279129i
\(301\) 0 0
\(302\) −24.9564 43.2258i −1.43608 2.48737i
\(303\) 9.70871 + 5.60533i 0.557751 + 0.322018i
\(304\) 0.895644 7.75650i 0.0513687 0.444866i
\(305\) 19.6652 + 34.0610i 1.12602 + 1.95033i
\(306\) 26.7477 1.52907
\(307\) −16.6652 28.8649i −0.951130 1.64741i −0.742985 0.669308i \(-0.766591\pi\)
−0.208146 0.978098i \(-0.566743\pi\)
\(308\) 0 0
\(309\) 4.00000 + 6.92820i 0.227552 + 0.394132i
\(310\) 0 0
\(311\) 24.1652 13.9518i 1.37028 0.791132i 0.379317 0.925267i \(-0.376159\pi\)
0.990963 + 0.134135i \(0.0428257\pi\)
\(312\) −6.87386 + 3.96863i −0.389156 + 0.224679i
\(313\) −9.87386 + 5.70068i −0.558104 + 0.322221i −0.752384 0.658725i \(-0.771096\pi\)
0.194280 + 0.980946i \(0.437763\pi\)
\(314\) 8.68693 15.0462i 0.490232 0.849107i
\(315\) 0 0
\(316\) 2.81655i 0.158443i
\(317\) −5.91742 + 3.41643i −0.332356 + 0.191886i −0.656886 0.753989i \(-0.728127\pi\)
0.324531 + 0.945875i \(0.394794\pi\)
\(318\) −11.4782 + 19.8809i −0.643667 + 1.11486i
\(319\) 0 0
\(320\) 33.2904i 1.86099i
\(321\) 1.41742 0.818350i 0.0791129 0.0456759i
\(322\) 0 0
\(323\) −15.8739 + 21.3845i −0.883245 + 1.18986i
\(324\) 1.39564 2.41733i 0.0775358 0.134296i
\(325\) 4.58258 7.93725i 0.254196 0.440280i
\(326\) −22.7477 13.1334i −1.25988 0.727392i
\(327\) −12.2477 + 7.07123i −0.677301 + 0.391040i
\(328\) 2.12614 1.22753i 0.117396 0.0677788i
\(329\) 0 0
\(330\) 0 0
\(331\) 19.7477 + 11.4014i 1.08543 + 0.626675i 0.932357 0.361539i \(-0.117749\pi\)
0.153076 + 0.988214i \(0.451082\pi\)
\(332\) 19.8709i 1.09056i
\(333\) 0 0
\(334\) 11.0608 + 6.38595i 0.605220 + 0.349424i
\(335\) −30.1652 −1.64810
\(336\) 0 0
\(337\) 1.50000 0.866025i 0.0817102 0.0471754i −0.458588 0.888649i \(-0.651645\pi\)
0.540298 + 0.841473i \(0.318311\pi\)
\(338\) −15.1652 + 8.75560i −0.824875 + 0.476242i
\(339\) −9.16515 5.29150i −0.497783 0.287395i
\(340\) 22.5608 39.0764i 1.22353 2.11922i
\(341\) 0 0
\(342\) 7.58258 + 17.5112i 0.410019 + 0.946898i
\(343\) 0 0
\(344\) 2.12614 1.22753i 0.114634 0.0661837i
\(345\) 12.1244i 0.652753i
\(346\) 16.2360i 0.872853i
\(347\) −0.708712 + 1.22753i −0.0380457 + 0.0658970i −0.884421 0.466689i \(-0.845447\pi\)
0.846376 + 0.532587i \(0.178780\pi\)
\(348\) 16.9782 9.80238i 0.910128 0.525463i
\(349\) 6.92820i 0.370858i 0.982658 + 0.185429i \(0.0593675\pi\)
−0.982658 + 0.185429i \(0.940632\pi\)
\(350\) 0 0
\(351\) −11.4564 + 19.8431i −0.611499 + 1.05915i
\(352\) 0 0
\(353\) −24.3303 + 14.0471i −1.29497 + 0.747652i −0.979531 0.201293i \(-0.935486\pi\)
−0.315440 + 0.948945i \(0.602152\pi\)
\(354\) 5.68693 3.28335i 0.302257 0.174508i
\(355\) −5.66515 9.81233i −0.300675 0.520784i
\(356\) 1.97822 + 3.42638i 0.104845 + 0.181598i
\(357\) 0 0
\(358\) −13.3739 23.1642i −0.706831 1.22427i
\(359\) −19.4174 −1.02481 −0.512406 0.858743i \(-0.671246\pi\)
−0.512406 + 0.858743i \(0.671246\pi\)
\(360\) −4.58258 7.93725i −0.241523 0.418330i
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) −18.4782 10.6684i −0.971194 0.560719i
\(363\) −5.50000 9.52628i −0.288675 0.500000i
\(364\) 0 0
\(365\) 5.91742 10.2493i 0.309732 0.536472i
\(366\) −32.5390 −1.70084
\(367\) 31.4630i 1.64235i −0.570674 0.821177i \(-0.693318\pi\)
0.570674 0.821177i \(-0.306682\pi\)
\(368\) −4.10436 7.10895i −0.213954 0.370580i
\(369\) 1.41742 2.45505i 0.0737882 0.127805i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.0000 + 6.92820i 0.621336 + 0.358729i 0.777389 0.629020i \(-0.216544\pi\)
−0.156053 + 0.987749i \(0.549877\pi\)
\(374\) 0 0
\(375\) 6.87386 + 3.96863i 0.354965 + 0.204939i
\(376\) 3.08258 + 5.33918i 0.158972 + 0.275347i
\(377\) 27.8739 16.0930i 1.43558 0.828831i
\(378\) 0 0
\(379\) 4.91010i 0.252215i 0.992017 + 0.126107i \(0.0402484\pi\)
−0.992017 + 0.126107i \(0.959752\pi\)
\(380\) 31.9782 + 3.69253i 1.64045 + 0.189423i
\(381\) 12.8739 7.43273i 0.659548 0.380790i
\(382\) 22.7477 + 13.1334i 1.16387 + 0.671964i
\(383\) −36.1652 −1.84795 −0.923976 0.382449i \(-0.875081\pi\)
−0.923976 + 0.382449i \(0.875081\pi\)
\(384\) −11.0608 6.38595i −0.564444 0.325882i
\(385\) 0 0
\(386\) −1.89564 + 3.28335i −0.0964857 + 0.167118i
\(387\) 1.41742 2.45505i 0.0720517 0.124797i
\(388\) 21.9782 + 38.0674i 1.11578 + 1.93258i
\(389\) −12.1652 −0.616798 −0.308399 0.951257i \(-0.599793\pi\)
−0.308399 + 0.951257i \(0.599793\pi\)
\(390\) 13.2695 + 22.9835i 0.671928 + 1.16381i
\(391\) 27.9989i 1.41596i
\(392\) 0 0
\(393\) 16.6652 + 9.62163i 0.840646 + 0.485347i
\(394\) 26.9898i 1.35973i
\(395\) 2.66970 0.134327
\(396\) 0 0
\(397\) 21.7937i 1.09379i −0.837200 0.546896i \(-0.815809\pi\)
0.837200 0.546896i \(-0.184191\pi\)
\(398\) −23.3739 −1.17163
\(399\) 0 0
\(400\) 3.58258 0.179129
\(401\) 15.3978i 0.768927i −0.923140 0.384464i \(-0.874386\pi\)
0.923140 0.384464i \(-0.125614\pi\)
\(402\) 12.4782 21.6129i 0.622357 1.07795i
\(403\) 0 0
\(404\) 31.2922i 1.55684i
\(405\) −2.29129 1.32288i −0.113855 0.0657342i
\(406\) 0 0
\(407\) 0 0
\(408\) 5.29129 + 9.16478i 0.261958 + 0.453724i
\(409\) 13.4174 0.663449 0.331724 0.943376i \(-0.392370\pi\)
0.331724 + 0.943376i \(0.392370\pi\)
\(410\) −4.10436 7.10895i −0.202700 0.351086i
\(411\) 10.6652 18.4726i 0.526073 0.911185i
\(412\) 11.1652 19.3386i 0.550068 0.952745i
\(413\) 0 0
\(414\) 17.3739 + 10.0308i 0.853879 + 0.492987i
\(415\) −18.8348 −0.924566
\(416\) −29.3085 16.9213i −1.43697 0.829634i
\(417\) −1.50000 + 0.866025i −0.0734553 + 0.0424094i
\(418\) 0 0
\(419\) 27.9035i 1.36318i −0.731736 0.681588i \(-0.761290\pi\)
0.731736 0.681588i \(-0.238710\pi\)
\(420\) 0 0
\(421\) 6.24773 3.60713i 0.304496 0.175801i −0.339965 0.940438i \(-0.610415\pi\)
0.644461 + 0.764637i \(0.277082\pi\)
\(422\) −20.0608 34.7463i −0.976544 1.69142i
\(423\) 6.16515 + 3.55945i 0.299760 + 0.173066i
\(424\) 18.1652 0.882178
\(425\) −10.5826 6.10985i −0.513330 0.296371i
\(426\) 9.37386 0.454165
\(427\) 0 0
\(428\) −3.95644 2.28425i −0.191242 0.110413i
\(429\) 0 0
\(430\) −4.10436 7.10895i −0.197930 0.342824i
\(431\) 7.55585i 0.363953i −0.983303 0.181976i \(-0.941751\pi\)
0.983303 0.181976i \(-0.0582494\pi\)
\(432\) −8.95644 −0.430917
\(433\) 0.126136 0.218475i 0.00606173 0.0104992i −0.862979 0.505240i \(-0.831404\pi\)
0.869040 + 0.494741i \(0.164737\pi\)
\(434\) 0 0
\(435\) −9.29129 16.0930i −0.445483 0.771599i
\(436\) 34.1869 + 19.7378i 1.63726 + 0.945271i
\(437\) −18.3303 + 7.93725i −0.876857 + 0.379690i
\(438\) 4.89564 + 8.47950i 0.233923 + 0.405166i
\(439\) −0.165151 −0.00788225 −0.00394112 0.999992i \(-0.501255\pi\)
−0.00394112 + 0.999992i \(0.501255\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 30.6434 + 53.0759i 1.45756 + 2.52456i
\(443\) −5.29129 9.16478i −0.251397 0.435432i 0.712514 0.701658i \(-0.247557\pi\)
−0.963911 + 0.266226i \(0.914223\pi\)
\(444\) 0 0
\(445\) 3.24773 1.87508i 0.153957 0.0888871i
\(446\) −11.6869 + 6.74745i −0.553392 + 0.319501i
\(447\) −6.08258 + 10.5353i −0.287696 + 0.498304i
\(448\) 0 0
\(449\) 3.27340i 0.154481i −0.997012 0.0772407i \(-0.975389\pi\)
0.997012 0.0772407i \(-0.0246110\pi\)
\(450\) −7.58258 + 4.37780i −0.357446 + 0.206372i
\(451\) 0 0
\(452\) 29.5402i 1.38945i
\(453\) 22.8027i 1.07136i
\(454\) 34.7477 20.0616i 1.63079 0.941538i
\(455\) 0 0
\(456\) −4.50000 + 6.06218i −0.210732 + 0.283887i
\(457\) −6.16515 + 10.6784i −0.288394 + 0.499512i −0.973426 0.229000i \(-0.926454\pi\)
0.685033 + 0.728512i \(0.259788\pi\)
\(458\) −7.58258 + 13.1334i −0.354310 + 0.613684i
\(459\) 26.4564 + 15.2746i 1.23488 + 0.712959i
\(460\) 29.3085 16.9213i 1.36652 0.788959i
\(461\) 29.4564 17.0067i 1.37192 0.792080i 0.380753 0.924677i \(-0.375665\pi\)
0.991170 + 0.132597i \(0.0423315\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 10.8956 + 6.29060i 0.505818 + 0.292034i
\(465\) 0 0
\(466\) 6.56670i 0.304197i
\(467\) 5.83485 + 3.36875i 0.270005 + 0.155887i 0.628890 0.777495i \(-0.283510\pi\)
−0.358885 + 0.933382i \(0.616843\pi\)
\(468\) 25.5826 1.18255
\(469\) 0 0
\(470\) 17.8521 10.3069i 0.823455 0.475422i
\(471\) 6.87386 3.96863i 0.316731 0.182865i
\(472\) −4.50000 2.59808i −0.207129 0.119586i
\(473\) 0 0
\(474\) −1.10436 + 1.91280i −0.0507248 + 0.0878579i
\(475\) 1.00000 8.66025i 0.0458831 0.397360i
\(476\) 0 0
\(477\) 18.1652 10.4877i 0.831725 0.480197i
\(478\) 26.2668i 1.20142i
\(479\) 31.2723i 1.42887i 0.699704 + 0.714433i \(0.253315\pi\)
−0.699704 + 0.714433i \(0.746685\pi\)
\(480\) −9.76951 + 16.9213i −0.445915 + 0.772347i
\(481\) 0 0
\(482\) 25.7146i 1.17127i
\(483\) 0 0
\(484\) −15.3521 + 26.5906i −0.697822 + 1.20866i
\(485\) 36.0826 20.8323i 1.63843 0.945945i
\(486\) 30.3303 17.5112i 1.37581 0.794325i
\(487\) 31.7477 18.3296i 1.43863 0.830592i 0.440872 0.897570i \(-0.354669\pi\)
0.997754 + 0.0669782i \(0.0213358\pi\)
\(488\) 12.8739 + 22.2982i 0.582772 + 1.00939i
\(489\) −6.00000 10.3923i −0.271329 0.469956i
\(490\) 0 0
\(491\) 11.2913 + 19.5571i 0.509569 + 0.882599i 0.999939 + 0.0110844i \(0.00352836\pi\)
−0.490370 + 0.871514i \(0.663138\pi\)
\(492\) 3.95644 0.178370
\(493\) −21.4564 37.1636i −0.966349 1.67377i
\(494\) −26.0608 + 35.1078i −1.17253 + 1.57958i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 7.79129 13.4949i 0.349136 0.604721i
\(499\) 27.7477 1.24216 0.621079 0.783748i \(-0.286694\pi\)
0.621079 + 0.783748i \(0.286694\pi\)
\(500\) 22.1552i 0.990809i
\(501\) 2.91742 + 5.05313i 0.130341 + 0.225757i
\(502\) 9.68693 16.7783i 0.432349 0.748850i
\(503\) −11.9174 6.88053i −0.531372 0.306788i 0.210203 0.977658i \(-0.432587\pi\)
−0.741575 + 0.670870i \(0.765921\pi\)
\(504\) 0 0
\(505\) −29.6606 −1.31988
\(506\) 0 0
\(507\) −8.00000 −0.355292
\(508\) −35.9347 20.7469i −1.59434 0.920494i
\(509\) −2.29129 3.96863i −0.101560 0.175906i 0.810768 0.585368i \(-0.199050\pi\)
−0.912327 + 0.409462i \(0.865717\pi\)
\(510\) 30.6434 17.6920i 1.35691 0.783413i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) −2.50000 + 21.6506i −0.110378 + 0.955899i
\(514\) −37.4347 + 21.6129i −1.65117 + 0.953305i
\(515\) −18.3303 10.5830i −0.807730 0.466343i
\(516\) 3.95644 0.174173
\(517\) 0 0
\(518\) 0 0
\(519\) −3.70871 + 6.42368i −0.162794 + 0.281968i
\(520\) 10.5000 18.1865i 0.460455 0.797532i
\(521\) −10.5826 18.3296i −0.463631 0.803033i 0.535508 0.844530i \(-0.320120\pi\)
−0.999139 + 0.0414979i \(0.986787\pi\)
\(522\) −30.7477 −1.34579
\(523\) 13.5000 + 23.3827i 0.590314 + 1.02245i 0.994190 + 0.107640i \(0.0343293\pi\)
−0.403876 + 0.914814i \(0.632337\pi\)
\(524\) 53.7135i 2.34648i
\(525\) 0 0
\(526\) −14.0608 8.11800i −0.613080 0.353962i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 60.7370i 2.63825i
\(531\) −6.00000 −0.260378
\(532\) 0 0
\(533\) 6.49545 0.281349
\(534\) 3.10260i 0.134263i
\(535\) −2.16515 + 3.75015i −0.0936077 + 0.162133i
\(536\) −19.7477 −0.852972
\(537\) 12.2197i 0.527319i
\(538\) 31.4347 + 18.1488i 1.35524 + 0.782451i
\(539\) 0 0
\(540\) 36.9253i 1.58901i
\(541\) −14.2477 24.6778i −0.612558 1.06098i −0.990808 0.135278i \(-0.956807\pi\)
0.378250 0.925703i \(-0.376526\pi\)
\(542\) 30.9564 1.32969
\(543\) −4.87386 8.44178i −0.209158 0.362271i
\(544\) −22.5608 + 39.0764i −0.967286 + 1.67539i
\(545\) 18.7087 32.4044i 0.801393 1.38805i
\(546\) 0 0
\(547\) −27.8739 16.0930i −1.19180 0.688086i −0.233086 0.972456i \(-0.574882\pi\)
−0.958715 + 0.284370i \(0.908216\pi\)
\(548\) −59.5390 −2.54338
\(549\) 25.7477 + 14.8655i 1.09889 + 0.634442i
\(550\) 0 0
\(551\) 18.2477 24.5824i 0.777379 1.04725i
\(552\) 7.93725i 0.337832i
\(553\) 0 0
\(554\) −46.1216 + 26.6283i −1.95952 + 1.13133i
\(555\) 0 0
\(556\) 4.18693 + 2.41733i 0.177565 + 0.102517i
\(557\) −0.165151 −0.00699769 −0.00349884 0.999994i \(-0.501114\pi\)
−0.00349884 + 0.999994i \(0.501114\pi\)
\(558\) 0 0
\(559\) 6.49545 0.274728
\(560\) 0 0
\(561\) 0 0
\(562\) 17.4782 30.2732i 0.737274 1.27700i
\(563\) −9.16515 15.8745i −0.386265 0.669031i 0.605679 0.795709i \(-0.292902\pi\)
−0.991944 + 0.126679i \(0.959568\pi\)
\(564\) 9.93545i 0.418358i
\(565\) 28.0000 1.17797
\(566\) −17.0608 + 29.5502i −0.717119 + 1.24209i
\(567\) 0 0
\(568\) −3.70871 6.42368i −0.155614 0.269532i
\(569\) 2.83485 + 1.63670i 0.118843 + 0.0686141i 0.558243 0.829677i \(-0.311476\pi\)
−0.439400 + 0.898291i \(0.644809\pi\)
\(570\) 20.2695 + 15.0462i 0.848996 + 0.630216i
\(571\) 4.00000 + 6.92820i 0.167395 + 0.289936i 0.937503 0.347977i \(-0.113131\pi\)
−0.770108 + 0.637913i \(0.779798\pi\)
\(572\) 0 0
\(573\) 6.00000 + 10.3923i 0.250654 + 0.434145i
\(574\) 0 0
\(575\) −4.58258 7.93725i −0.191107 0.331006i
\(576\) 12.5826 + 21.7937i 0.524274 + 0.908069i
\(577\) 12.0000 6.92820i 0.499567 0.288425i −0.228968 0.973434i \(-0.573535\pi\)
0.728535 + 0.685009i \(0.240202\pi\)
\(578\) 38.5390 22.2505i 1.60301 0.925499i
\(579\) −1.50000 + 0.866025i −0.0623379 + 0.0359908i
\(580\) −25.9347 + 44.9201i −1.07688 + 1.86521i
\(581\) 0 0
\(582\) 34.4702i 1.42884i
\(583\) 0 0
\(584\) 3.87386 6.70973i 0.160302 0.277651i
\(585\) 24.2487i 1.00256i
\(586\) 20.0616i 0.828737i
\(587\) −19.6652 + 11.3537i −0.811668 + 0.468617i −0.847535 0.530740i \(-0.821914\pi\)
0.0358670 + 0.999357i \(0.488581\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −8.68693 + 15.0462i −0.357635 + 0.619443i
\(591\) −6.16515 + 10.6784i −0.253600 + 0.439249i
\(592\) 0 0
\(593\) 17.2913 9.98313i 0.710068 0.409958i −0.101018 0.994885i \(-0.532210\pi\)
0.811086 + 0.584927i \(0.198877\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 33.9564 1.39091
\(597\) −9.24773 5.33918i −0.378484 0.218518i
\(598\) 45.9669i 1.87973i
\(599\) 25.4485i 1.03980i −0.854228 0.519898i \(-0.825970\pi\)
0.854228 0.519898i \(-0.174030\pi\)
\(600\) −3.00000 1.73205i −0.122474 0.0707107i
\(601\) −7.49545 −0.305746 −0.152873 0.988246i \(-0.548853\pi\)
−0.152873 + 0.988246i \(0.548853\pi\)
\(602\) 0 0
\(603\) −19.7477 + 11.4014i −0.804190 + 0.464299i
\(604\) −55.1216 + 31.8245i −2.24287 + 1.29492i
\(605\) 25.2042 + 14.5516i 1.02470 + 0.591608i
\(606\) 12.2695 21.2514i 0.498415 0.863280i
\(607\) 4.00000 6.92820i 0.162355 0.281207i −0.773358 0.633970i \(-0.781424\pi\)
0.935713 + 0.352763i \(0.114758\pi\)
\(608\) −31.9782 3.69253i −1.29689 0.149752i
\(609\) 0 0
\(610\) 74.5562 43.0451i 3.01869 1.74284i
\(611\) 16.3115i 0.659891i
\(612\) 34.1087i 1.37876i
\(613\) −12.2477 + 21.2137i −0.494681 + 0.856813i −0.999981 0.00613096i \(-0.998048\pi\)
0.505300 + 0.862944i \(0.331382\pi\)
\(614\) −63.1824 + 36.4784i −2.54983 + 1.47215i
\(615\) 3.75015i 0.151221i
\(616\) 0 0
\(617\) −4.33485 + 7.50818i −0.174514 + 0.302268i −0.939993 0.341193i \(-0.889169\pi\)
0.765479 + 0.643461i \(0.222502\pi\)
\(618\) 15.1652 8.75560i 0.610032 0.352202i
\(619\) 24.4955 14.1425i 0.984555 0.568433i 0.0809131 0.996721i \(-0.474216\pi\)
0.903642 + 0.428288i \(0.140883\pi\)
\(620\) 0 0
\(621\) 11.4564 + 19.8431i 0.459731 + 0.796278i
\(622\) −30.5390 52.8951i −1.22450 2.12090i
\(623\) 0 0
\(624\) −4.10436 7.10895i −0.164306 0.284586i
\(625\) −31.0000 −1.24000
\(626\) 12.4782 + 21.6129i 0.498730 + 0.863826i
\(627\) 0 0
\(628\) −19.1869 11.0776i −0.765642 0.442044i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.2913 35.1455i 0.807783 1.39912i −0.106612 0.994301i \(-0.534000\pi\)
0.914396 0.404821i \(-0.132666\pi\)
\(632\) 1.74773 0.0695209
\(633\) 18.3296i 0.728535i
\(634\) 7.47822 + 12.9527i 0.296998 + 0.514416i
\(635\) −19.6652 + 34.0610i −0.780388 + 1.35167i
\(636\) 25.3521 + 14.6370i 1.00528 + 0.580396i
\(637\) 0 0
\(638\) 0 0
\(639\) −7.41742 4.28245i −0.293429 0.169411i
\(640\) 33.7913 1.33572
\(641\) 35.1606 + 20.3000i 1.38876 + 0.801801i 0.993176 0.116628i \(-0.0372086\pi\)
0.395585 + 0.918429i \(0.370542\pi\)
\(642\) −1.79129 3.10260i −0.0706965 0.122450i
\(643\) −4.50000 + 2.59808i −0.177463 + 0.102458i −0.586100 0.810239i \(-0.699337\pi\)
0.408637 + 0.912697i \(0.366004\pi\)
\(644\) 0 0
\(645\) 3.75015i 0.147662i
\(646\) 46.8085 + 34.7463i 1.84166 + 1.36708i
\(647\) 17.8348 10.2970i 0.701160 0.404815i −0.106619 0.994300i \(-0.534003\pi\)
0.807779 + 0.589485i \(0.200669\pi\)
\(648\) −1.50000 0.866025i −0.0589256 0.0340207i
\(649\) 0 0
\(650\) −17.3739 10.0308i −0.681459 0.393441i
\(651\) 0 0
\(652\) −16.7477 + 29.0079i −0.655892 + 1.13604i
\(653\) −0.165151 + 0.286051i −0.00646287 + 0.0111940i −0.869239 0.494393i \(-0.835391\pi\)
0.862776 + 0.505587i \(0.168724\pi\)
\(654\) 15.4782 + 26.8091i 0.605246 + 1.04832i
\(655\) −50.9129 −1.98933
\(656\) 1.26951 + 2.19885i 0.0495659 + 0.0858507i
\(657\) 8.94630i 0.349029i
\(658\) 0 0
\(659\) 32.4564 + 18.7387i 1.26432 + 0.729957i 0.973908 0.226943i \(-0.0728732\pi\)
0.290415 + 0.956901i \(0.406207\pi\)
\(660\) 0 0
\(661\) −25.7477 −1.00147 −0.500735 0.865600i \(-0.666937\pi\)
−0.500735 + 0.865600i \(0.666937\pi\)
\(662\) 24.9564 43.2258i 0.969960 1.68002i
\(663\) 27.9989i 1.08739i
\(664\) −12.3303 −0.478509
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1860i 1.24625i
\(668\) 8.14337 14.1047i 0.315076 0.545728i
\(669\) −6.16515 −0.238359
\(670\) 66.0285i 2.55090i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −1.89564 3.28335i −0.0730175 0.126470i
\(675\) −10.0000 −0.384900
\(676\) 11.1652 + 19.3386i 0.429429 + 0.743793i
\(677\) −7.74773 + 13.4195i −0.297769 + 0.515752i −0.975625 0.219443i \(-0.929576\pi\)
0.677856 + 0.735195i \(0.262909\pi\)
\(678\) −11.5826 + 20.0616i −0.444826 + 0.770461i
\(679\) 0 0
\(680\) −24.2477 13.9994i −0.929858 0.536854i
\(681\) 18.3303 0.702419
\(682\) 0 0
\(683\) −19.4174 + 11.2107i −0.742987 + 0.428964i −0.823154 0.567818i \(-0.807788\pi\)
0.0801673 + 0.996781i \(0.474455\pi\)
\(684\) 22.3303 9.66930i 0.853820 0.369715i
\(685\) 56.4347i 2.15626i
\(686\) 0 0
\(687\) −6.00000 + 3.46410i −0.228914 + 0.132164i
\(688\) 1.26951 + 2.19885i 0.0483995 + 0.0838304i
\(689\) 41.6216 + 24.0302i 1.58566 + 0.915479i
\(690\) 26.5390 1.01032
\(691\) 18.4955 + 10.6784i 0.703600 + 0.406224i 0.808687 0.588239i \(-0.200179\pi\)
−0.105087 + 0.994463i \(0.533512\pi\)
\(692\) 20.7042 0.787054
\(693\) 0 0
\(694\) 2.68693 + 1.55130i 0.101995 + 0.0588866i
\(695\) 2.29129 3.96863i 0.0869135 0.150539i
\(696\) −6.08258 10.5353i −0.230559 0.399341i
\(697\) 8.66025i 0.328031i
\(698\) 15.1652 0.574009
\(699\) 1.50000 2.59808i 0.0567352 0.0982683i
\(700\) 0 0
\(701\) −21.0826 36.5161i −0.796278 1.37919i −0.922025 0.387131i \(-0.873466\pi\)
0.125747 0.992062i \(-0.459867\pi\)
\(702\) 43.4347 + 25.0770i 1.63934 + 0.946471i
\(703\) 0 0
\(704\) 0 0
\(705\) 9.41742 0.354681
\(706\) 30.7477 + 53.2566i 1.15721 + 2.00434i
\(707\) 0 0
\(708\) −4.18693 7.25198i −0.157355 0.272546i
\(709\) −15.0826 26.1238i −0.566438 0.981099i −0.996914 0.0784975i \(-0.974988\pi\)
0.430476 0.902602i \(-0.358346\pi\)
\(710\) −21.4782 + 12.4005i −0.806063 + 0.465381i
\(711\) 1.74773 1.00905i 0.0655449 0.0378424i
\(712\) 2.12614 1.22753i 0.0796803 0.0460035i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −29.5390 + 17.0544i −1.10392 + 0.637351i
\(717\) 6.00000 10.3923i 0.224074 0.388108i
\(718\) 42.5028i 1.58619i
\(719\) 20.6893i 0.771579i 0.922587 + 0.385790i \(0.126071\pi\)
−0.922587 + 0.385790i \(0.873929\pi\)
\(720\) 8.20871 4.73930i 0.305921 0.176623i
\(721\) 0 0
\(722\) −9.47822 + 40.4947i −0.352743 + 1.50706i
\(723\) 5.87386 10.1738i 0.218451 0.378369i
\(724\) −13.6044 + 23.5634i −0.505602 + 0.875728i
\(725\) 12.1652 + 7.02355i 0.451802 + 0.260848i
\(726\) −20.8521 + 12.0390i −0.773893 + 0.446808i
\(727\) −9.24773 + 5.33918i −0.342979 + 0.198019i −0.661589 0.749867i \(-0.730117\pi\)
0.318609 + 0.947886i \(0.396784\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −22.4347 12.9527i −0.830344 0.479399i
\(731\) 8.66025i 0.320311i
\(732\) 41.4938i 1.53365i
\(733\) −18.0000 10.3923i −0.664845 0.383849i 0.129275 0.991609i \(-0.458735\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) −68.8693 −2.54201
\(735\) 0 0
\(736\) −29.3085 + 16.9213i −1.08033 + 0.623727i
\(737\) 0 0
\(738\) −5.37386 3.10260i −0.197815 0.114208i
\(739\) 2.12614 3.68258i 0.0782112 0.135466i −0.824267 0.566201i \(-0.808412\pi\)
0.902478 + 0.430736i \(0.141746\pi\)
\(740\) 0 0
\(741\) −18.3303 + 7.93725i −0.673380 + 0.291582i
\(742\) 0 0
\(743\) −10.0390 + 5.79603i −0.368296 + 0.212636i −0.672714 0.739903i \(-0.734871\pi\)
0.304418 + 0.952539i \(0.401538\pi\)
\(744\) 0 0
\(745\) 32.1860i 1.17920i
\(746\) 15.1652 26.2668i 0.555236 0.961696i
\(747\) −12.3303 + 7.11890i −0.451142 + 0.260467i
\(748\) 0 0
\(749\) 0 0
\(750\) 8.68693 15.0462i 0.317202 0.549410i
\(751\) −18.8739 + 10.8968i −0.688717 + 0.397631i −0.803131 0.595802i \(-0.796834\pi\)
0.114414 + 0.993433i \(0.463501\pi\)
\(752\) −5.52178 + 3.18800i −0.201359 + 0.116254i
\(753\) 7.66515 4.42548i 0.279334 0.161273i
\(754\) −35.2259 61.0131i −1.28285 2.22197i
\(755\) 30.1652 + 52.2476i 1.09782 + 1.90148i
\(756\) 0 0
\(757\) 7.24773 + 12.5534i 0.263423 + 0.456262i 0.967149 0.254209i \(-0.0818151\pi\)
−0.703726 + 0.710471i \(0.748482\pi\)
\(758\) 10.7477 0.390375
\(759\) 0 0
\(760\) 2.29129 19.8431i 0.0831137 0.719786i
\(761\) 24.3303 + 14.0471i 0.881973 + 0.509207i 0.871308 0.490736i \(-0.163272\pi\)
0.0106644 + 0.999943i \(0.496605\pi\)
\(762\) −16.2695 28.1796i −0.589382 1.02084i
\(763\) 0 0
\(764\) 16.7477 29.0079i 0.605912 1.04947i
\(765\) −32.3303 −1.16890
\(766\) 79.1619i 2.86024i
\(767\) −6.87386 11.9059i −0.248201 0.429896i
\(768\) −1.39564 + 2.41733i −0.0503610 + 0.0872277i
\(769\) 31.3693 + 18.1111i 1.13121 + 0.653102i 0.944238 0.329264i \(-0.106800\pi\)
0.186968 + 0.982366i \(0.440134\pi\)
\(770\) 0 0
\(771\) −19.7477 −0.711197
\(772\) 4.18693 + 2.41733i 0.150691 + 0.0870015i
\(773\) −1.08712 −0.0391010 −0.0195505 0.999809i \(-0.506224\pi\)
−0.0195505 + 0.999809i \(0.506224\pi\)
\(774\) −5.37386 3.10260i −0.193160 0.111521i
\(775\) 0 0
\(776\) 23.6216 13.6379i 0.847966 0.489573i
\(777\) 0 0
\(778\) 26.6283i 0.954671i
\(779\) 5.66970 2.45505i 0.203138 0.0879613i
\(780\) 29.3085 16.9213i 1.04941 0.605879i
\(781\) 0 0
\(782\) 61.2867 2.19161
\(783\) −30.4129 17.5589i −1.08687 0.627503i
\(784\) 0 0
\(785\) −10.5000 + 18.1865i −0.374761 + 0.649105i
\(786\) 21.0608 36.4784i 0.751214 1.30114i
\(787\) −2.83485 4.91010i −0.101051 0.175026i 0.811067 0.584954i \(-0.198887\pi\)
−0.912118 + 0.409927i \(0.865554\pi\)
\(788\) 34.4174 1.22607
\(789\) −3.70871 6.42368i −0.132034 0.228689i
\(790\) 5.84370i 0.207910i
\(791\) 0 0
\(792\) 0 0
\(793\) 68.1221i 2.41909i
\(794\) −47.7042 −1.69296
\(795\) 13.8739 24.0302i 0.492055 0.852265i
\(796\) 29.8064i 1.05646i
\(797\) 2.83485 0.100415 0.0502077 0.998739i \(-0.484012\pi\)
0.0502077 + 0.998739i \(0.484012\pi\)
\(798\) 0 0
\(799\) 21.7477 0.769379
\(800\) 14.7701i 0.522202i
\(801\) 1.41742 2.45505i 0.0500822 0.0867450i
\(802\) −33.7042 −1.19014
\(803\) 0 0
\(804\) −27.5608 15.9122i −0.971994 0.561181i
\(805\) 0 0
\(806\) 0 0
\(807\) 8.29129 + 14.3609i 0.291867 + 0.505529i
\(808\) −19.4174 −0.683103
\(809\) 3.00000 + 5.19615i 0.105474 + 0.182687i 0.913932 0.405868i \(-0.133031\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) −2.89564 + 5.01540i −0.101743 + 0.176223i
\(811\) −14.5000 + 25.1147i −0.509164 + 0.881898i 0.490780 + 0.871284i \(0.336712\pi\)
−0.999944 + 0.0106140i \(0.996621\pi\)
\(812\) 0 0
\(813\) 12.2477 + 7.07123i 0.429547 + 0.247999i
\(814\) 0 0
\(815\) 27.4955 + 15.8745i 0.963124 + 0.556060i
\(816\) −9.47822 + 5.47225i −0.331804 + 0.191567i
\(817\) 5.66970 2.45505i 0.198358 0.0858914i
\(818\) 29.3694i 1.02688i
\(819\) 0 0
\(820\) −9.06534 + 5.23388i −0.316575 + 0.182775i
\(821\) 6.08258 + 10.5353i 0.212283 + 0.367686i 0.952429 0.304761i \(-0.0985767\pi\)
−0.740145 + 0.672447i \(0.765243\pi\)
\(822\) −40.4347 23.3450i −1.41032 0.814249i
\(823\) −40.5826 −1.41462 −0.707310 0.706904i \(-0.750091\pi\)
−0.707310 + 0.706904i \(0.750091\pi\)
\(824\) −12.0000 6.92820i −0.418040 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −13.0390 7.52808i −0.453411 0.261777i 0.255859 0.966714i \(-0.417642\pi\)
−0.709270 + 0.704937i \(0.750975\pi\)
\(828\) 12.7913 22.1552i 0.444528 0.769945i
\(829\) −5.74773 9.95536i −0.199627 0.345764i 0.748781 0.662818i \(-0.230640\pi\)
−0.948407 + 0.317054i \(0.897306\pi\)
\(830\) 41.2276i 1.43103i
\(831\) −24.3303 −0.844009
\(832\) −28.8303 + 49.9355i −0.999511 + 1.73120i
\(833\) 0 0
\(834\) 1.89564 + 3.28335i 0.0656408 + 0.113693i
\(835\) −13.3693 7.71878i −0.462664 0.267119i
\(836\) 0 0
\(837\) 0 0
\(838\) −61.0780 −2.10991
\(839\) 12.0826 + 20.9276i 0.417137 + 0.722502i 0.995650 0.0931707i \(-0.0297002\pi\)
−0.578513 + 0.815673i \(0.696367\pi\)
\(840\) 0 0
\(841\) 10.1652 + 17.6066i 0.350522 + 0.607123i
\(842\) −7.89564 13.6757i −0.272102 0.471294i
\(843\) 13.8303 7.98493i 0.476341 0.275016i
\(844\) −44.3085 + 25.5815i −1.52516 + 0.880553i
\(845\) 18.3303 10.5830i 0.630582 0.364066i
\(846\) 7.79129 13.4949i 0.267870 0.463964i
\(847\) 0 0
\(848\) 18.7864i 0.645128i
\(849\) −13.5000 + 7.79423i −0.463319 + 0.267497i
\(850\) −13.3739 + 23.1642i −0.458720 + 0.794526i
\(851\) 0 0
\(852\) 11.9536i 0.409522i
\(853\) 8.62159 4.97768i 0.295198 0.170432i −0.345086 0.938571i \(-0.612150\pi\)
0.640284 + 0.768139i \(0.278817\pi\)
\(854\) 0 0
\(855\) −9.16515 21.1660i −0.313442 0.723862i
\(856\) −1.41742 + 2.45505i −0.0484466 + 0.0839119i
\(857\) 11.2913 19.5571i 0.385703 0.668057i −0.606163 0.795340i \(-0.707292\pi\)
0.991866 + 0.127283i \(0.0406256\pi\)
\(858\) 0 0
\(859\) 28.9955 16.7405i 0.989312 0.571180i 0.0842435 0.996445i \(-0.473153\pi\)
0.905069 + 0.425266i \(0.139819\pi\)
\(860\) −9.06534 + 5.23388i −0.309126 + 0.178474i
\(861\) 0 0
\(862\) −16.5390 −0.563321
\(863\) 4.91288 + 2.83645i 0.167236 + 0.0965539i 0.581282 0.813702i \(-0.302551\pi\)
−0.414046 + 0.910256i \(0.635885\pi\)
\(864\) 36.9253i 1.25622i
\(865\) 19.6247i 0.667258i
\(866\) −0.478220 0.276100i −0.0162506 0.00938227i
\(867\) 20.3303 0.690453
\(868\) 0 0
\(869\) 0 0
\(870\) −35.2259 + 20.3377i −1.19427 + 0.689513i
\(871\) −45.2477 26.1238i −1.53316 0.885171i
\(872\) 12.2477 21.2137i 0.414760 0.718386i
\(873\) 15.7477 27.2759i 0.532980 0.923148i
\(874\) 17.3739 + 40.1232i 0.587680 + 1.35719i
\(875\) 0 0
\(876\) 10.8131 6.24293i 0.365340 0.210929i
\(877\) 41.8553i 1.41335i 0.707537 + 0.706676i \(0.249806\pi\)
−0.707537 + 0.706676i \(0.750194\pi\)
\(878\) 0.361500i 0.0122000i
\(879\) −4.58258 + 7.93725i −0.154566 + 0.267717i
\(880\) 0 0
\(881\) 35.0224i 1.17994i −0.807427 0.589968i \(-0.799141\pi\)
0.807427 0.589968i \(-0.200859\pi\)
\(882\) 0 0
\(883\) 5.87386 10.1738i 0.197671 0.342377i −0.750102 0.661323i \(-0.769995\pi\)
0.947773 + 0.318946i \(0.103329\pi\)
\(884\) 67.6824 39.0764i 2.27640 1.31428i
\(885\) −6.87386 + 3.96863i −0.231062 + 0.133404i
\(886\) −20.0608 + 11.5821i −0.673956 + 0.389108i
\(887\) 9.08258 + 15.7315i 0.304963 + 0.528211i 0.977253 0.212076i \(-0.0680226\pi\)
−0.672290 + 0.740288i \(0.734689\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.10436 7.10895i −0.137578 0.238293i
\(891\) 0 0
\(892\) 8.60436 + 14.9032i 0.288095 + 0.498995i
\(893\) 6.16515 + 14.2378i 0.206309 + 0.476450i
\(894\) 23.0608 + 13.3142i 0.771268 + 0.445292i
\(895\) 16.1652 + 27.9989i 0.540341 + 0.935899i
\(896\) 0 0
\(897\) −10.5000 + 18.1865i −0.350585 + 0.607231i
\(898\) −7.16515 −0.239104
\(899\) 0 0
\(900\) 5.58258 + 9.66930i 0.186086 + 0.322310i
\(901\) 32.0390 55.4932i 1.06737 1.84875i
\(902\) 0 0
\(903\) 0 0
\(904\) 18.3303 0.609657
\(905\) 22.3348 + 12.8950i 0.742435 + 0.428645i
\(906\) −49.9129 −1.65824
\(907\) 41.6216 + 24.0302i 1.38202 + 0.797911i 0.992399 0.123063i \(-0.0392718\pi\)
0.389623 + 0.920974i \(0.372605\pi\)
\(908\) −25.5826 44.3103i −0.848988 1.47049i
\(909\) −19.4174 + 11.2107i −0.644035 + 0.371834i
\(910\) 0 0
\(911\) 12.2197i 0.404857i −0.979297 0.202428i \(-0.935117\pi\)
0.979297 0.202428i \(-0.0648834\pi\)
\(912\) −6.26951 4.65390i −0.207604 0.154106i
\(913\) 0 0
\(914\) 23.3739 + 13.4949i 0.773139 + 0.446372i
\(915\) 39.3303 1.30022
\(916\) 16.7477 + 9.66930i 0.553360 + 0.319483i
\(917\) 0 0
\(918\) 33.4347 57.9105i 1.10351 1.91133i
\(919\) 16.0000 27.7128i 0.527791 0.914161i −0.471684 0.881768i \(-0.656354\pi\)
0.999475 0.0323936i \(-0.0103130\pi\)
\(920\) −10.5000 18.1865i −0.346175 0.599592i
\(921\) −33.3303 −1.09827
\(922\) −37.2259 64.4772i −1.22597 2.12344i
\(923\) 19.6247i 0.645954i
\(924\) 0 0
\(925\) 0 0
\(926\) 8.75560i 0.287727i
\(927\) −16.0000 −0.525509
\(928\) 25.9347 44.9201i 0.851347 1.47458i
\(929\) 7.74655i 0.254156i 0.991893 + 0.127078i \(0.0405599\pi\)
−0.991893 + 0.127078i \(0.959440\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −8.37386 −0.274295
\(933\) 27.9035i 0.913520i
\(934\) 7.37386 12.7719i 0.241280 0.417910i
\(935\) 0 0
\(936\) 15.8745i 0.518875i
\(937\) 15.8739 + 9.16478i 0.518577 + 0.299400i 0.736352 0.676599i \(-0.236547\pi\)
−0.217776 + 0.975999i \(0.569880\pi\)
\(938\) 0 0
\(939\) 11.4014i 0.372069i
\(940\) −13.1434 22.7650i −0.428689 0.742512i
\(941\) −44.0780 −1.43690 −0.718451 0.695577i \(-0.755149\pi\)
−0.718451 + 0.695577i \(0.755149\pi\)
\(942\) −8.68693 15.0462i −0.283036 0.490232i
\(943\) 3.24773 5.62523i 0.105761 0.183183i
\(944\) 2.68693 4.65390i 0.0874522 0.151472i
\(945\) 0 0
\(946\) 0 0
\(947\) 44.4083 1.44308 0.721538 0.692374i \(-0.243435\pi\)
0.721538 + 0.692374i \(0.243435\pi\)
\(948\) 2.43920 + 1.40828i 0.0792217 + 0.0457387i
\(949\) 17.7523 10.2493i 0.576263 0.332706i
\(950\) −18.9564 2.18890i −0.615028 0.0710173i
\(951\) 6.83285i 0.221570i
\(952\) 0 0
\(953\) −10.8303 + 6.25288i −0.350828 + 0.202551i −0.665050 0.746799i \(-0.731590\pi\)
0.314222 + 0.949350i \(0.398256\pi\)
\(954\) −22.9564 39.7617i −0.743242 1.28733i
\(955\) −27.4955 15.8745i −0.889732 0.513687i
\(956\) −33.4955 −1.08332
\(957\) 0 0
\(958\) 68.4519 2.21158
\(959\) 0 0
\(960\) 28.8303 + 16.6452i 0.930494 + 0.537221i
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 0 0
\(963\) 3.27340i 0.105484i
\(964\) −32.7913 −1.05614
\(965\) 2.29129 3.96863i 0.0737592 0.127755i
\(966\) 0 0
\(967\) −2.29129 3.96863i −0.0736828 0.127622i 0.826830 0.562452i \(-0.190142\pi\)
−0.900513 + 0.434830i \(0.856809\pi\)
\(968\) 16.5000 + 9.52628i 0.530330 + 0.306186i
\(969\) 10.5826 + 24.4394i 0.339961 + 0.785107i
\(970\) −45.5998 78.9812i −1.46412 2.53593i
\(971\) −2.66970 −0.0856747 −0.0428373 0.999082i \(-0.513640\pi\)
−0.0428373 + 0.999082i \(0.513640\pi\)
\(972\) −22.3303 38.6772i −0.716245 1.24057i
\(973\) 0 0
\(974\) −40.1216 69.4926i −1.28558 2.22669i
\(975\) −4.58258 7.93725i −0.146760 0.254196i
\(976\) −23.0608 + 13.3142i −0.738158 + 0.426176i
\(977\) 5.66970 3.27340i 0.181390 0.104725i −0.406556 0.913626i \(-0.633270\pi\)
0.587945 + 0.808901i \(0.299937\pi\)
\(978\) −22.7477 + 13.1334i −0.727392 + 0.419960i
\(979\) 0 0
\(980\) 0 0
\(981\) 28.2849i 0.903068i
\(982\) 42.8085 24.7155i 1.36607 0.788704i
\(983\) 21.2477 36.8021i 0.677697 1.17381i −0.297975 0.954574i \(-0.596311\pi\)
0.975673 0.219233i \(-0.0703553\pi\)
\(984\) 2.45505i 0.0782642i
\(985\) 32.6229i 1.03945i
\(986\) −81.3475 + 46.9660i −2.59063 + 1.49570i
\(987\) 0 0
\(988\) 44.7695 + 33.2327i 1.42431 + 1.05727i
\(989\) 3.24773 5.62523i 0.103272 0.178872i
\(990\) 0 0
\(991\) 0.873864 + 0.504525i 0.0277592 + 0.0160268i 0.513815 0.857901i \(-0.328232\pi\)
−0.486056 + 0.873928i \(0.661565\pi\)
\(992\) 0 0
\(993\) 19.7477 11.4014i 0.626675 0.361811i
\(994\) 0 0
\(995\) 28.2523 0.895657
\(996\) −17.2087 9.93545i −0.545279 0.314817i
\(997\) 32.7581i 1.03746i 0.854939 + 0.518729i \(0.173595\pi\)
−0.854939 + 0.518729i \(0.826405\pi\)
\(998\) 60.7370i 1.92260i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.i.e.411.1 4
7.2 even 3 133.2.p.b.69.1 yes 4
7.3 odd 6 931.2.s.e.31.2 4
7.4 even 3 931.2.s.d.31.2 4
7.5 odd 6 133.2.p.a.69.1 yes 4
7.6 odd 2 931.2.i.c.411.1 4
19.8 odd 6 931.2.s.e.901.2 4
133.27 even 6 931.2.s.d.901.2 4
133.46 odd 6 931.2.i.c.521.2 4
133.65 odd 6 133.2.p.a.27.1 4
133.103 even 6 133.2.p.b.27.1 yes 4
133.122 even 6 inner 931.2.i.e.521.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.p.a.27.1 4 133.65 odd 6
133.2.p.a.69.1 yes 4 7.5 odd 6
133.2.p.b.27.1 yes 4 133.103 even 6
133.2.p.b.69.1 yes 4 7.2 even 3
931.2.i.c.411.1 4 7.6 odd 2
931.2.i.c.521.2 4 133.46 odd 6
931.2.i.e.411.1 4 1.1 even 1 trivial
931.2.i.e.521.2 4 133.122 even 6 inner
931.2.s.d.31.2 4 7.4 even 3
931.2.s.d.901.2 4 133.27 even 6
931.2.s.e.31.2 4 7.3 odd 6
931.2.s.e.901.2 4 19.8 odd 6