Properties

Label 931.2.i
Level $931$
Weight $2$
Character orbit 931.i
Rep. character $\chi_{931}(411,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $124$
Newform subspaces $8$
Sturm bound $186$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.i (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 8 \)
Sturm bound: \(186\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(931, [\chi])\).

Total New Old
Modular forms 204 140 64
Cusp forms 172 124 48
Eisenstein series 32 16 16

Trace form

\( 124 q + 3 q^{3} - 110 q^{4} - 12 q^{6} - 53 q^{9} - 12 q^{10} + 3 q^{11} - 6 q^{12} + 6 q^{13} + 21 q^{15} + 86 q^{16} + 18 q^{17} + 15 q^{18} + 12 q^{22} + 15 q^{23} + 18 q^{24} - 76 q^{25} + 3 q^{26}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(931, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
931.2.i.a 931.i 133.i $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 133.2.i.b \(0\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+2\zeta_{6})q^{2}-\zeta_{6}q^{3}-q^{4}+(2+\cdots)q^{6}+\cdots\)
931.2.i.b 931.i 133.i $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 133.2.i.a \(0\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-2\zeta_{6})q^{2}+\zeta_{6}q^{3}-q^{4}+(2-\zeta_{6})q^{6}+\cdots\)
931.2.i.c 931.i 133.i $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 133.2.p.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+(-1+\beta _{2})q^{3}+(-1+\cdots)q^{4}+\cdots\)
931.2.i.d 931.i 133.i $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 133.2.i.c \(0\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+(-1+2\beta _{1}+\beta _{2}-\beta _{3})q^{3}+\cdots\)
931.2.i.e 931.i 133.i $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 133.2.p.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+(1-\beta _{2})q^{3}+(-1+\beta _{1}+\cdots)q^{4}+\cdots\)
931.2.i.f 931.i 133.i $12$ $7.434$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 133.2.p.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{2}-\beta _{6}+\beta _{9})q^{2}+(-\beta _{3}+\beta _{7}+\beta _{8}+\cdots)q^{3}+\cdots\)
931.2.i.g 931.i 133.i $16$ $7.434$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 133.2.i.d \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+(-1-\beta _{4}+\beta _{6}-\beta _{9})q^{3}+\cdots\)
931.2.i.h 931.i 133.i $80$ $7.434$ None 931.2.p.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(931, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(931, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)