Properties

Label 931.2.i.c.411.1
Level $931$
Weight $2$
Character 931.411
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(411,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.411"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 411.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 931.411
Dual form 931.2.i.c.521.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18890i q^{2} +(-0.500000 + 0.866025i) q^{3} -2.79129 q^{4} -2.64575i q^{5} +(1.89564 + 1.09445i) q^{6} +1.73205i q^{8} +(1.00000 + 1.73205i) q^{9} -5.79129 q^{10} +(1.39564 - 2.41733i) q^{12} +(2.29129 - 3.96863i) q^{13} +(2.29129 + 1.32288i) q^{15} -1.79129 q^{16} +(-5.29129 - 3.05493i) q^{17} +(3.79129 - 2.18890i) q^{18} +(0.500000 - 4.33013i) q^{19} +7.38505i q^{20} +(2.29129 + 3.96863i) q^{23} +(-1.50000 - 0.866025i) q^{24} -2.00000 q^{25} +(-8.68693 - 5.01540i) q^{26} -5.00000 q^{27} +(-6.08258 - 3.51178i) q^{29} +(2.89564 - 5.01540i) q^{30} +7.38505i q^{32} +(-6.68693 + 11.5821i) q^{34} +(-2.79129 - 4.83465i) q^{36} +(-9.47822 - 1.09445i) q^{38} +(2.29129 + 3.96863i) q^{39} +4.58258 q^{40} +(0.708712 + 1.22753i) q^{41} +(-0.708712 - 1.22753i) q^{43} +(4.58258 - 2.64575i) q^{45} +(8.68693 - 5.01540i) q^{46} +(-3.08258 + 1.77973i) q^{47} +(0.895644 - 1.55130i) q^{48} +4.37780i q^{50} +(5.29129 - 3.05493i) q^{51} +(-6.39564 + 11.0776i) q^{52} -10.4877i q^{53} +10.9445i q^{54} +(3.50000 + 2.59808i) q^{57} +(-7.68693 + 13.3142i) q^{58} +(1.50000 - 2.59808i) q^{59} +(-6.39564 - 3.69253i) q^{60} +(-12.8739 + 7.43273i) q^{61} +12.5826 q^{64} +(-10.5000 - 6.06218i) q^{65} +11.4014i q^{67} +(14.7695 + 8.52718i) q^{68} -4.58258 q^{69} +(-3.70871 + 2.14123i) q^{71} +(-3.00000 + 1.73205i) q^{72} +(3.87386 + 2.23658i) q^{73} +(1.00000 - 1.73205i) q^{75} +(-1.39564 + 12.0866i) q^{76} +(8.68693 - 5.01540i) q^{78} -1.00905i q^{79} +4.73930i q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.68693 - 1.55130i) q^{82} -7.11890i q^{83} +(-8.08258 + 13.9994i) q^{85} +(-2.68693 + 1.55130i) q^{86} +(6.08258 - 3.51178i) q^{87} +(0.708712 + 1.22753i) q^{89} +(-5.79129 - 10.0308i) q^{90} +(-6.39564 - 11.0776i) q^{92} +(3.89564 + 6.74745i) q^{94} +(-11.4564 - 1.32288i) q^{95} +(-6.39564 - 3.69253i) q^{96} +(7.87386 + 13.6379i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} + 3 q^{6} + 4 q^{9} - 14 q^{10} + q^{12} + 2 q^{16} - 12 q^{17} + 6 q^{18} + 2 q^{19} - 6 q^{24} - 8 q^{25} - 21 q^{26} - 20 q^{27} - 6 q^{29} + 7 q^{30} - 13 q^{34} - 2 q^{36}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890i 1.54779i −0.633316 0.773893i \(-0.718307\pi\)
0.633316 0.773893i \(-0.281693\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) −2.79129 −1.39564
\(5\) 2.64575i 1.18322i −0.806226 0.591608i \(-0.798493\pi\)
0.806226 0.591608i \(-0.201507\pi\)
\(6\) 1.89564 + 1.09445i 0.773893 + 0.446808i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) −5.79129 −1.83137
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 1.39564 2.41733i 0.402888 0.697822i
\(13\) 2.29129 3.96863i 0.635489 1.10070i −0.350922 0.936405i \(-0.614132\pi\)
0.986411 0.164295i \(-0.0525348\pi\)
\(14\) 0 0
\(15\) 2.29129 + 1.32288i 0.591608 + 0.341565i
\(16\) −1.79129 −0.447822
\(17\) −5.29129 3.05493i −1.28333 0.740928i −0.305871 0.952073i \(-0.598948\pi\)
−0.977455 + 0.211144i \(0.932281\pi\)
\(18\) 3.79129 2.18890i 0.893615 0.515929i
\(19\) 0.500000 4.33013i 0.114708 0.993399i
\(20\) 7.38505i 1.65135i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.29129 + 3.96863i 0.477767 + 0.827516i 0.999675 0.0254855i \(-0.00811315\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) −2.00000 −0.400000
\(26\) −8.68693 5.01540i −1.70365 0.983601i
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −6.08258 3.51178i −1.12951 0.652121i −0.185695 0.982607i \(-0.559454\pi\)
−0.943811 + 0.330487i \(0.892787\pi\)
\(30\) 2.89564 5.01540i 0.528670 0.915683i
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 7.38505i 1.30551i
\(33\) 0 0
\(34\) −6.68693 + 11.5821i −1.14680 + 1.98631i
\(35\) 0 0
\(36\) −2.79129 4.83465i −0.465215 0.805775i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −9.47822 1.09445i −1.53757 0.177543i
\(39\) 2.29129 + 3.96863i 0.366900 + 0.635489i
\(40\) 4.58258 0.724569
\(41\) 0.708712 + 1.22753i 0.110682 + 0.191707i 0.916046 0.401074i \(-0.131363\pi\)
−0.805363 + 0.592782i \(0.798030\pi\)
\(42\) 0 0
\(43\) −0.708712 1.22753i −0.108078 0.187196i 0.806914 0.590669i \(-0.201136\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 4.58258 2.64575i 0.683130 0.394405i
\(46\) 8.68693 5.01540i 1.28082 0.739481i
\(47\) −3.08258 + 1.77973i −0.449640 + 0.259600i −0.707678 0.706535i \(-0.750257\pi\)
0.258038 + 0.966135i \(0.416924\pi\)
\(48\) 0.895644 1.55130i 0.129275 0.223911i
\(49\) 0 0
\(50\) 4.37780i 0.619115i
\(51\) 5.29129 3.05493i 0.740928 0.427775i
\(52\) −6.39564 + 11.0776i −0.886916 + 1.53618i
\(53\) 10.4877i 1.44059i −0.693668 0.720295i \(-0.744006\pi\)
0.693668 0.720295i \(-0.255994\pi\)
\(54\) 10.9445i 1.48936i
\(55\) 0 0
\(56\) 0 0
\(57\) 3.50000 + 2.59808i 0.463586 + 0.344124i
\(58\) −7.68693 + 13.3142i −1.00934 + 1.74823i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) −6.39564 3.69253i −0.825674 0.476703i
\(61\) −12.8739 + 7.43273i −1.64833 + 0.951663i −0.670593 + 0.741825i \(0.733960\pi\)
−0.977736 + 0.209838i \(0.932706\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 12.5826 1.57282
\(65\) −10.5000 6.06218i −1.30236 0.751921i
\(66\) 0 0
\(67\) 11.4014i 1.39290i 0.717607 + 0.696449i \(0.245238\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 14.7695 + 8.52718i 1.79107 + 1.03407i
\(69\) −4.58258 −0.551677
\(70\) 0 0
\(71\) −3.70871 + 2.14123i −0.440143 + 0.254117i −0.703658 0.710538i \(-0.748451\pi\)
0.263515 + 0.964655i \(0.415118\pi\)
\(72\) −3.00000 + 1.73205i −0.353553 + 0.204124i
\(73\) 3.87386 + 2.23658i 0.453401 + 0.261771i 0.709266 0.704941i \(-0.249027\pi\)
−0.255864 + 0.966713i \(0.582360\pi\)
\(74\) 0 0
\(75\) 1.00000 1.73205i 0.115470 0.200000i
\(76\) −1.39564 + 12.0866i −0.160091 + 1.38643i
\(77\) 0 0
\(78\) 8.68693 5.01540i 0.983601 0.567882i
\(79\) 1.00905i 0.113527i −0.998388 0.0567635i \(-0.981922\pi\)
0.998388 0.0567635i \(-0.0180781\pi\)
\(80\) 4.73930i 0.529870i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.68693 1.55130i 0.296722 0.171313i
\(83\) 7.11890i 0.781401i −0.920518 0.390701i \(-0.872233\pi\)
0.920518 0.390701i \(-0.127767\pi\)
\(84\) 0 0
\(85\) −8.08258 + 13.9994i −0.876678 + 1.51845i
\(86\) −2.68693 + 1.55130i −0.289739 + 0.167281i
\(87\) 6.08258 3.51178i 0.652121 0.376502i
\(88\) 0 0
\(89\) 0.708712 + 1.22753i 0.0751233 + 0.130117i 0.901140 0.433528i \(-0.142732\pi\)
−0.826017 + 0.563646i \(0.809398\pi\)
\(90\) −5.79129 10.0308i −0.610455 1.05734i
\(91\) 0 0
\(92\) −6.39564 11.0776i −0.666792 1.15492i
\(93\) 0 0
\(94\) 3.89564 + 6.74745i 0.401805 + 0.695947i
\(95\) −11.4564 1.32288i −1.17541 0.135724i
\(96\) −6.39564 3.69253i −0.652753 0.376867i
\(97\) 7.87386 + 13.6379i 0.799470 + 1.38472i 0.919962 + 0.392008i \(0.128219\pi\)
−0.120492 + 0.992714i \(0.538447\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.58258 0.558258
\(101\) 11.2107i 1.11550i −0.830008 0.557751i \(-0.811664\pi\)
0.830008 0.557751i \(-0.188336\pi\)
\(102\) −6.68693 11.5821i −0.662105 1.14680i
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) 6.87386 + 3.96863i 0.674038 + 0.389156i
\(105\) 0 0
\(106\) −22.9564 −2.22973
\(107\) 1.41742 + 0.818350i 0.137028 + 0.0791129i 0.566947 0.823755i \(-0.308125\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(108\) 13.9564 1.34296
\(109\) −12.2477 7.07123i −1.17312 0.677301i −0.218707 0.975791i \(-0.570184\pi\)
−0.954413 + 0.298490i \(0.903517\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5830i 0.995565i −0.867302 0.497783i \(-0.834148\pi\)
0.867302 0.497783i \(-0.165852\pi\)
\(114\) 5.68693 7.66115i 0.532630 0.717533i
\(115\) 10.5000 6.06218i 0.979130 0.565301i
\(116\) 16.9782 + 9.80238i 1.57639 + 0.910128i
\(117\) 9.16515 0.847319
\(118\) −5.68693 3.28335i −0.523525 0.302257i
\(119\) 0 0
\(120\) −2.29129 + 3.96863i −0.209165 + 0.362284i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 16.2695 + 28.1796i 1.47297 + 2.55126i
\(123\) −1.41742 −0.127805
\(124\) 0 0
\(125\) 7.93725i 0.709930i
\(126\) 0 0
\(127\) 12.8739 + 7.43273i 1.14237 + 0.659548i 0.947017 0.321185i \(-0.104081\pi\)
0.195354 + 0.980733i \(0.437414\pi\)
\(128\) 12.7719i 1.12889i
\(129\) 1.41742 0.124797
\(130\) −13.2695 + 22.9835i −1.16381 + 2.01578i
\(131\) 19.2433i 1.68129i −0.541585 0.840646i \(-0.682176\pi\)
0.541585 0.840646i \(-0.317824\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 24.9564 2.15591
\(135\) 13.2288i 1.13855i
\(136\) 5.29129 9.16478i 0.453724 0.785873i
\(137\) 21.3303 1.82237 0.911185 0.411997i \(-0.135168\pi\)
0.911185 + 0.411997i \(0.135168\pi\)
\(138\) 10.0308i 0.853879i
\(139\) 1.50000 + 0.866025i 0.127228 + 0.0734553i 0.562263 0.826958i \(-0.309931\pi\)
−0.435035 + 0.900414i \(0.643264\pi\)
\(140\) 0 0
\(141\) 3.55945i 0.299760i
\(142\) 4.68693 + 8.11800i 0.393319 + 0.681248i
\(143\) 0 0
\(144\) −1.79129 3.10260i −0.149274 0.258550i
\(145\) −9.29129 + 16.0930i −0.771599 + 1.33645i
\(146\) 4.89564 8.47950i 0.405166 0.701769i
\(147\) 0 0
\(148\) 0 0
\(149\) −12.1652 −0.996608 −0.498304 0.867002i \(-0.666044\pi\)
−0.498304 + 0.867002i \(0.666044\pi\)
\(150\) −3.79129 2.18890i −0.309557 0.178723i
\(151\) 19.7477 11.4014i 1.60705 0.927829i 0.617021 0.786947i \(-0.288339\pi\)
0.990026 0.140882i \(-0.0449939\pi\)
\(152\) 7.50000 + 0.866025i 0.608330 + 0.0702439i
\(153\) 12.2197i 0.987905i
\(154\) 0 0
\(155\) 0 0
\(156\) −6.39564 11.0776i −0.512061 0.886916i
\(157\) −6.87386 3.96863i −0.548594 0.316731i 0.199961 0.979804i \(-0.435919\pi\)
−0.748555 + 0.663073i \(0.769252\pi\)
\(158\) −2.20871 −0.175716
\(159\) 9.08258 + 5.24383i 0.720295 + 0.415863i
\(160\) 19.5390 1.54469
\(161\) 0 0
\(162\) 1.89564 + 1.09445i 0.148936 + 0.0859882i
\(163\) 6.00000 10.3923i 0.469956 0.813988i −0.529454 0.848339i \(-0.677603\pi\)
0.999410 + 0.0343508i \(0.0109363\pi\)
\(164\) −1.97822 3.42638i −0.154473 0.267555i
\(165\) 0 0
\(166\) −15.5826 −1.20944
\(167\) 2.91742 5.05313i 0.225757 0.391023i −0.730789 0.682603i \(-0.760848\pi\)
0.956546 + 0.291580i \(0.0941811\pi\)
\(168\) 0 0
\(169\) −4.00000 6.92820i −0.307692 0.532939i
\(170\) 30.6434 + 17.6920i 2.35024 + 1.35691i
\(171\) 8.00000 3.46410i 0.611775 0.264906i
\(172\) 1.97822 + 3.42638i 0.150838 + 0.261259i
\(173\) 7.41742 0.563936 0.281968 0.959424i \(-0.409013\pi\)
0.281968 + 0.959424i \(0.409013\pi\)
\(174\) −7.68693 13.3142i −0.582745 1.00934i
\(175\) 0 0
\(176\) 0 0
\(177\) 1.50000 + 2.59808i 0.112747 + 0.195283i
\(178\) 2.68693 1.55130i 0.201394 0.116275i
\(179\) 10.5826 6.10985i 0.790979 0.456672i −0.0493282 0.998783i \(-0.515708\pi\)
0.840307 + 0.542111i \(0.182375\pi\)
\(180\) −12.7913 + 7.38505i −0.953406 + 0.550449i
\(181\) −4.87386 + 8.44178i −0.362271 + 0.627473i −0.988334 0.152300i \(-0.951332\pi\)
0.626063 + 0.779773i \(0.284665\pi\)
\(182\) 0 0
\(183\) 14.8655i 1.09889i
\(184\) −6.87386 + 3.96863i −0.506748 + 0.292571i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 8.60436 4.96773i 0.627537 0.362309i
\(189\) 0 0
\(190\) −2.89564 + 25.0770i −0.210072 + 1.81928i
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) −6.29129 + 10.8968i −0.454035 + 0.786411i
\(193\) −1.50000 0.866025i −0.107972 0.0623379i 0.445041 0.895510i \(-0.353189\pi\)
−0.553014 + 0.833172i \(0.686522\pi\)
\(194\) 29.8521 17.2351i 2.14325 1.23741i
\(195\) 10.5000 6.06218i 0.751921 0.434122i
\(196\) 0 0
\(197\) −12.3303 −0.878498 −0.439249 0.898365i \(-0.644755\pi\)
−0.439249 + 0.898365i \(0.644755\pi\)
\(198\) 0 0
\(199\) 10.6784i 0.756969i 0.925608 + 0.378484i \(0.123555\pi\)
−0.925608 + 0.378484i \(0.876445\pi\)
\(200\) 3.46410i 0.244949i
\(201\) −9.87386 5.70068i −0.696449 0.402095i
\(202\) −24.5390 −1.72656
\(203\) 0 0
\(204\) −14.7695 + 8.52718i −1.03407 + 0.597022i
\(205\) 3.24773 1.87508i 0.226831 0.130961i
\(206\) −15.1652 8.75560i −1.05661 0.610032i
\(207\) −4.58258 + 7.93725i −0.318511 + 0.551677i
\(208\) −4.10436 + 7.10895i −0.284586 + 0.492917i
\(209\) 0 0
\(210\) 0 0
\(211\) 15.8739 9.16478i 1.09280 0.630929i 0.158481 0.987362i \(-0.449340\pi\)
0.934321 + 0.356433i \(0.116007\pi\)
\(212\) 29.2741i 2.01055i
\(213\) 4.28245i 0.293429i
\(214\) 1.79129 3.10260i 0.122450 0.212089i
\(215\) −3.24773 + 1.87508i −0.221493 + 0.127879i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −15.4782 + 26.8091i −1.04832 + 1.81574i
\(219\) −3.87386 + 2.23658i −0.261771 + 0.151134i
\(220\) 0 0
\(221\) −24.2477 + 13.9994i −1.63108 + 0.941704i
\(222\) 0 0
\(223\) 3.08258 + 5.33918i 0.206425 + 0.357538i 0.950586 0.310462i \(-0.100484\pi\)
−0.744161 + 0.668000i \(0.767151\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) −23.1652 −1.54092
\(227\) −9.16515 15.8745i −0.608312 1.05363i −0.991519 0.129965i \(-0.958513\pi\)
0.383206 0.923663i \(-0.374820\pi\)
\(228\) −9.76951 7.25198i −0.647001 0.480274i
\(229\) 6.00000 + 3.46410i 0.396491 + 0.228914i 0.684969 0.728572i \(-0.259816\pi\)
−0.288478 + 0.957487i \(0.593149\pi\)
\(230\) −13.2695 22.9835i −0.874965 1.51548i
\(231\) 0 0
\(232\) 6.08258 10.5353i 0.399341 0.691678i
\(233\) 3.00000 0.196537 0.0982683 0.995160i \(-0.468670\pi\)
0.0982683 + 0.995160i \(0.468670\pi\)
\(234\) 20.0616i 1.31147i
\(235\) 4.70871 + 8.15573i 0.307163 + 0.532021i
\(236\) −4.18693 + 7.25198i −0.272546 + 0.472064i
\(237\) 0.873864 + 0.504525i 0.0567635 + 0.0327724i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) −4.10436 2.36965i −0.264935 0.152960i
\(241\) −11.7477 −0.756738 −0.378369 0.925655i \(-0.623515\pi\)
−0.378369 + 0.925655i \(0.623515\pi\)
\(242\) −20.8521 12.0390i −1.34042 0.773893i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) 35.9347 20.7469i 2.30048 1.32818i
\(245\) 0 0
\(246\) 3.10260i 0.197815i
\(247\) −16.0390 11.9059i −1.02054 0.757553i
\(248\) 0 0
\(249\) 6.16515 + 3.55945i 0.390701 + 0.225571i
\(250\) −17.3739 −1.09882
\(251\) −7.66515 4.42548i −0.483820 0.279334i 0.238187 0.971219i \(-0.423447\pi\)
−0.722007 + 0.691886i \(0.756780\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.2695 28.1796i 1.02084 1.76815i
\(255\) −8.08258 13.9994i −0.506151 0.876678i
\(256\) −2.79129 −0.174455
\(257\) 9.87386 + 17.1020i 0.615915 + 1.06680i 0.990223 + 0.139491i \(0.0445467\pi\)
−0.374309 + 0.927304i \(0.622120\pi\)
\(258\) 3.10260i 0.193160i
\(259\) 0 0
\(260\) 29.3085 + 16.9213i 1.81764 + 1.04941i
\(261\) 14.0471i 0.869494i
\(262\) −42.1216 −2.60228
\(263\) 3.70871 6.42368i 0.228689 0.396101i −0.728731 0.684800i \(-0.759889\pi\)
0.957420 + 0.288699i \(0.0932228\pi\)
\(264\) 0 0
\(265\) −27.7477 −1.70453
\(266\) 0 0
\(267\) −1.41742 −0.0867450
\(268\) 31.8245i 1.94399i
\(269\) 8.29129 14.3609i 0.505529 0.875601i −0.494451 0.869206i \(-0.664631\pi\)
0.999980 0.00639585i \(-0.00203588\pi\)
\(270\) 28.9564 1.76223
\(271\) 14.1425i 0.859093i −0.903045 0.429547i \(-0.858673\pi\)
0.903045 0.429547i \(-0.141327\pi\)
\(272\) 9.47822 + 5.47225i 0.574701 + 0.331804i
\(273\) 0 0
\(274\) 46.6899i 2.82064i
\(275\) 0 0
\(276\) 12.7913 0.769945
\(277\) −12.1652 21.0707i −0.730933 1.26601i −0.956485 0.291782i \(-0.905752\pi\)
0.225552 0.974231i \(-0.427582\pi\)
\(278\) 1.89564 3.28335i 0.113693 0.196922i
\(279\) 0 0
\(280\) 0 0
\(281\) 13.8303 + 7.98493i 0.825047 + 0.476341i 0.852154 0.523292i \(-0.175296\pi\)
−0.0271070 + 0.999633i \(0.508629\pi\)
\(282\) −7.79129 −0.463964
\(283\) 13.5000 + 7.79423i 0.802492 + 0.463319i 0.844342 0.535805i \(-0.179992\pi\)
−0.0418500 + 0.999124i \(0.513325\pi\)
\(284\) 10.3521 5.97678i 0.614283 0.354657i
\(285\) 6.87386 9.26013i 0.407173 0.548523i
\(286\) 0 0
\(287\) 0 0
\(288\) −12.7913 + 7.38505i −0.753734 + 0.435168i
\(289\) 10.1652 + 17.6066i 0.597950 + 1.03568i
\(290\) 35.2259 + 20.3377i 2.06854 + 1.19427i
\(291\) −15.7477 −0.923148
\(292\) −10.8131 6.24293i −0.632787 0.365340i
\(293\) 9.16515 0.535434 0.267717 0.963498i \(-0.413731\pi\)
0.267717 + 0.963498i \(0.413731\pi\)
\(294\) 0 0
\(295\) −6.87386 3.96863i −0.400212 0.231062i
\(296\) 0 0
\(297\) 0 0
\(298\) 26.6283i 1.54254i
\(299\) 21.0000 1.21446
\(300\) −2.79129 + 4.83465i −0.161155 + 0.279129i
\(301\) 0 0
\(302\) −24.9564 43.2258i −1.43608 2.48737i
\(303\) 9.70871 + 5.60533i 0.557751 + 0.322018i
\(304\) −0.895644 + 7.75650i −0.0513687 + 0.444866i
\(305\) 19.6652 + 34.0610i 1.12602 + 1.95033i
\(306\) −26.7477 −1.52907
\(307\) 16.6652 + 28.8649i 0.951130 + 1.64741i 0.742985 + 0.669308i \(0.233409\pi\)
0.208146 + 0.978098i \(0.433257\pi\)
\(308\) 0 0
\(309\) 4.00000 + 6.92820i 0.227552 + 0.394132i
\(310\) 0 0
\(311\) −24.1652 + 13.9518i −1.37028 + 0.791132i −0.990963 0.134135i \(-0.957174\pi\)
−0.379317 + 0.925267i \(0.623841\pi\)
\(312\) −6.87386 + 3.96863i −0.389156 + 0.224679i
\(313\) 9.87386 5.70068i 0.558104 0.322221i −0.194280 0.980946i \(-0.562237\pi\)
0.752384 + 0.658725i \(0.228904\pi\)
\(314\) −8.68693 + 15.0462i −0.490232 + 0.849107i
\(315\) 0 0
\(316\) 2.81655i 0.158443i
\(317\) −5.91742 + 3.41643i −0.332356 + 0.191886i −0.656886 0.753989i \(-0.728127\pi\)
0.324531 + 0.945875i \(0.394794\pi\)
\(318\) 11.4782 19.8809i 0.643667 1.11486i
\(319\) 0 0
\(320\) 33.2904i 1.86099i
\(321\) −1.41742 + 0.818350i −0.0791129 + 0.0456759i
\(322\) 0 0
\(323\) −15.8739 + 21.3845i −0.883245 + 1.18986i
\(324\) 1.39564 2.41733i 0.0775358 0.134296i
\(325\) −4.58258 + 7.93725i −0.254196 + 0.440280i
\(326\) −22.7477 13.1334i −1.25988 0.727392i
\(327\) 12.2477 7.07123i 0.677301 0.391040i
\(328\) −2.12614 + 1.22753i −0.117396 + 0.0677788i
\(329\) 0 0
\(330\) 0 0
\(331\) 19.7477 + 11.4014i 1.08543 + 0.626675i 0.932357 0.361539i \(-0.117749\pi\)
0.153076 + 0.988214i \(0.451082\pi\)
\(332\) 19.8709i 1.09056i
\(333\) 0 0
\(334\) −11.0608 6.38595i −0.605220 0.349424i
\(335\) 30.1652 1.64810
\(336\) 0 0
\(337\) 1.50000 0.866025i 0.0817102 0.0471754i −0.458588 0.888649i \(-0.651645\pi\)
0.540298 + 0.841473i \(0.318311\pi\)
\(338\) −15.1652 + 8.75560i −0.824875 + 0.476242i
\(339\) 9.16515 + 5.29150i 0.497783 + 0.287395i
\(340\) 22.5608 39.0764i 1.22353 2.11922i
\(341\) 0 0
\(342\) −7.58258 17.5112i −0.410019 0.946898i
\(343\) 0 0
\(344\) 2.12614 1.22753i 0.114634 0.0661837i
\(345\) 12.1244i 0.652753i
\(346\) 16.2360i 0.872853i
\(347\) −0.708712 + 1.22753i −0.0380457 + 0.0658970i −0.884421 0.466689i \(-0.845447\pi\)
0.846376 + 0.532587i \(0.178780\pi\)
\(348\) −16.9782 + 9.80238i −0.910128 + 0.525463i
\(349\) 6.92820i 0.370858i −0.982658 0.185429i \(-0.940632\pi\)
0.982658 0.185429i \(-0.0593675\pi\)
\(350\) 0 0
\(351\) −11.4564 + 19.8431i −0.611499 + 1.05915i
\(352\) 0 0
\(353\) 24.3303 14.0471i 1.29497 0.747652i 0.315440 0.948945i \(-0.397848\pi\)
0.979531 + 0.201293i \(0.0645144\pi\)
\(354\) 5.68693 3.28335i 0.302257 0.174508i
\(355\) 5.66515 + 9.81233i 0.300675 + 0.520784i
\(356\) −1.97822 3.42638i −0.104845 0.181598i
\(357\) 0 0
\(358\) −13.3739 23.1642i −0.706831 1.22427i
\(359\) −19.4174 −1.02481 −0.512406 0.858743i \(-0.671246\pi\)
−0.512406 + 0.858743i \(0.671246\pi\)
\(360\) 4.58258 + 7.93725i 0.241523 + 0.418330i
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) 18.4782 + 10.6684i 0.971194 + 0.560719i
\(363\) 5.50000 + 9.52628i 0.288675 + 0.500000i
\(364\) 0 0
\(365\) 5.91742 10.2493i 0.309732 0.536472i
\(366\) −32.5390 −1.70084
\(367\) 31.4630i 1.64235i 0.570674 + 0.821177i \(0.306682\pi\)
−0.570674 + 0.821177i \(0.693318\pi\)
\(368\) −4.10436 7.10895i −0.213954 0.370580i
\(369\) −1.41742 + 2.45505i −0.0737882 + 0.127805i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.0000 + 6.92820i 0.621336 + 0.358729i 0.777389 0.629020i \(-0.216544\pi\)
−0.156053 + 0.987749i \(0.549877\pi\)
\(374\) 0 0
\(375\) 6.87386 + 3.96863i 0.354965 + 0.204939i
\(376\) −3.08258 5.33918i −0.158972 0.275347i
\(377\) −27.8739 + 16.0930i −1.43558 + 0.828831i
\(378\) 0 0
\(379\) 4.91010i 0.252215i 0.992017 + 0.126107i \(0.0402484\pi\)
−0.992017 + 0.126107i \(0.959752\pi\)
\(380\) 31.9782 + 3.69253i 1.64045 + 0.189423i
\(381\) −12.8739 + 7.43273i −0.659548 + 0.380790i
\(382\) 22.7477 + 13.1334i 1.16387 + 0.671964i
\(383\) 36.1652 1.84795 0.923976 0.382449i \(-0.124919\pi\)
0.923976 + 0.382449i \(0.124919\pi\)
\(384\) 11.0608 + 6.38595i 0.564444 + 0.325882i
\(385\) 0 0
\(386\) −1.89564 + 3.28335i −0.0964857 + 0.167118i
\(387\) 1.41742 2.45505i 0.0720517 0.124797i
\(388\) −21.9782 38.0674i −1.11578 1.93258i
\(389\) −12.1652 −0.616798 −0.308399 0.951257i \(-0.599793\pi\)
−0.308399 + 0.951257i \(0.599793\pi\)
\(390\) −13.2695 22.9835i −0.671928 1.16381i
\(391\) 27.9989i 1.41596i
\(392\) 0 0
\(393\) 16.6652 + 9.62163i 0.840646 + 0.485347i
\(394\) 26.9898i 1.35973i
\(395\) −2.66970 −0.134327
\(396\) 0 0
\(397\) 21.7937i 1.09379i 0.837200 + 0.546896i \(0.184191\pi\)
−0.837200 + 0.546896i \(0.815809\pi\)
\(398\) 23.3739 1.17163
\(399\) 0 0
\(400\) 3.58258 0.179129
\(401\) 15.3978i 0.768927i −0.923140 0.384464i \(-0.874386\pi\)
0.923140 0.384464i \(-0.125614\pi\)
\(402\) −12.4782 + 21.6129i −0.622357 + 1.07795i
\(403\) 0 0
\(404\) 31.2922i 1.55684i
\(405\) 2.29129 + 1.32288i 0.113855 + 0.0657342i
\(406\) 0 0
\(407\) 0 0
\(408\) 5.29129 + 9.16478i 0.261958 + 0.453724i
\(409\) −13.4174 −0.663449 −0.331724 0.943376i \(-0.607630\pi\)
−0.331724 + 0.943376i \(0.607630\pi\)
\(410\) −4.10436 7.10895i −0.202700 0.351086i
\(411\) −10.6652 + 18.4726i −0.526073 + 0.911185i
\(412\) −11.1652 + 19.3386i −0.550068 + 0.952745i
\(413\) 0 0
\(414\) 17.3739 + 10.0308i 0.853879 + 0.492987i
\(415\) −18.8348 −0.924566
\(416\) 29.3085 + 16.9213i 1.43697 + 0.829634i
\(417\) −1.50000 + 0.866025i −0.0734553 + 0.0424094i
\(418\) 0 0
\(419\) 27.9035i 1.36318i 0.731736 + 0.681588i \(0.238710\pi\)
−0.731736 + 0.681588i \(0.761290\pi\)
\(420\) 0 0
\(421\) 6.24773 3.60713i 0.304496 0.175801i −0.339965 0.940438i \(-0.610415\pi\)
0.644461 + 0.764637i \(0.277082\pi\)
\(422\) −20.0608 34.7463i −0.976544 1.69142i
\(423\) −6.16515 3.55945i −0.299760 0.173066i
\(424\) 18.1652 0.882178
\(425\) 10.5826 + 6.10985i 0.513330 + 0.296371i
\(426\) −9.37386 −0.454165
\(427\) 0 0
\(428\) −3.95644 2.28425i −0.191242 0.110413i
\(429\) 0 0
\(430\) 4.10436 + 7.10895i 0.197930 + 0.342824i
\(431\) 7.55585i 0.363953i −0.983303 0.181976i \(-0.941751\pi\)
0.983303 0.181976i \(-0.0582494\pi\)
\(432\) 8.95644 0.430917
\(433\) −0.126136 + 0.218475i −0.00606173 + 0.0104992i −0.869040 0.494741i \(-0.835263\pi\)
0.862979 + 0.505240i \(0.168596\pi\)
\(434\) 0 0
\(435\) −9.29129 16.0930i −0.445483 0.771599i
\(436\) 34.1869 + 19.7378i 1.63726 + 0.945271i
\(437\) 18.3303 7.93725i 0.876857 0.379690i
\(438\) 4.89564 + 8.47950i 0.233923 + 0.405166i
\(439\) 0.165151 0.00788225 0.00394112 0.999992i \(-0.498745\pi\)
0.00394112 + 0.999992i \(0.498745\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 30.6434 + 53.0759i 1.45756 + 2.52456i
\(443\) −5.29129 9.16478i −0.251397 0.435432i 0.712514 0.701658i \(-0.247557\pi\)
−0.963911 + 0.266226i \(0.914223\pi\)
\(444\) 0 0
\(445\) 3.24773 1.87508i 0.153957 0.0888871i
\(446\) 11.6869 6.74745i 0.553392 0.319501i
\(447\) 6.08258 10.5353i 0.287696 0.498304i
\(448\) 0 0
\(449\) 3.27340i 0.154481i −0.997012 0.0772407i \(-0.975389\pi\)
0.997012 0.0772407i \(-0.0246110\pi\)
\(450\) −7.58258 + 4.37780i −0.357446 + 0.206372i
\(451\) 0 0
\(452\) 29.5402i 1.38945i
\(453\) 22.8027i 1.07136i
\(454\) −34.7477 + 20.0616i −1.63079 + 0.941538i
\(455\) 0 0
\(456\) −4.50000 + 6.06218i −0.210732 + 0.283887i
\(457\) −6.16515 + 10.6784i −0.288394 + 0.499512i −0.973426 0.229000i \(-0.926454\pi\)
0.685033 + 0.728512i \(0.259788\pi\)
\(458\) 7.58258 13.1334i 0.354310 0.613684i
\(459\) 26.4564 + 15.2746i 1.23488 + 0.712959i
\(460\) −29.3085 + 16.9213i −1.36652 + 0.788959i
\(461\) −29.4564 + 17.0067i −1.37192 + 0.792080i −0.991170 0.132597i \(-0.957669\pi\)
−0.380753 + 0.924677i \(0.624335\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 10.8956 + 6.29060i 0.505818 + 0.292034i
\(465\) 0 0
\(466\) 6.56670i 0.304197i
\(467\) −5.83485 3.36875i −0.270005 0.155887i 0.358885 0.933382i \(-0.383157\pi\)
−0.628890 + 0.777495i \(0.716490\pi\)
\(468\) −25.5826 −1.18255
\(469\) 0 0
\(470\) 17.8521 10.3069i 0.823455 0.475422i
\(471\) 6.87386 3.96863i 0.316731 0.182865i
\(472\) 4.50000 + 2.59808i 0.207129 + 0.119586i
\(473\) 0 0
\(474\) 1.10436 1.91280i 0.0507248 0.0878579i
\(475\) −1.00000 + 8.66025i −0.0458831 + 0.397360i
\(476\) 0 0
\(477\) 18.1652 10.4877i 0.831725 0.480197i
\(478\) 26.2668i 1.20142i
\(479\) 31.2723i 1.42887i −0.699704 0.714433i \(-0.746685\pi\)
0.699704 0.714433i \(-0.253315\pi\)
\(480\) −9.76951 + 16.9213i −0.445915 + 0.772347i
\(481\) 0 0
\(482\) 25.7146i 1.17127i
\(483\) 0 0
\(484\) −15.3521 + 26.5906i −0.697822 + 1.20866i
\(485\) 36.0826 20.8323i 1.63843 0.945945i
\(486\) −30.3303 + 17.5112i −1.37581 + 0.794325i
\(487\) 31.7477 18.3296i 1.43863 0.830592i 0.440872 0.897570i \(-0.354669\pi\)
0.997754 + 0.0669782i \(0.0213358\pi\)
\(488\) −12.8739 22.2982i −0.582772 1.00939i
\(489\) 6.00000 + 10.3923i 0.271329 + 0.469956i
\(490\) 0 0
\(491\) 11.2913 + 19.5571i 0.509569 + 0.882599i 0.999939 + 0.0110844i \(0.00352836\pi\)
−0.490370 + 0.871514i \(0.663138\pi\)
\(492\) 3.95644 0.178370
\(493\) 21.4564 + 37.1636i 0.966349 + 1.67377i
\(494\) −26.0608 + 35.1078i −1.17253 + 1.57958i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 7.79129 13.4949i 0.349136 0.604721i
\(499\) 27.7477 1.24216 0.621079 0.783748i \(-0.286694\pi\)
0.621079 + 0.783748i \(0.286694\pi\)
\(500\) 22.1552i 0.990809i
\(501\) 2.91742 + 5.05313i 0.130341 + 0.225757i
\(502\) −9.68693 + 16.7783i −0.432349 + 0.748850i
\(503\) 11.9174 + 6.88053i 0.531372 + 0.306788i 0.741575 0.670870i \(-0.234079\pi\)
−0.210203 + 0.977658i \(0.567413\pi\)
\(504\) 0 0
\(505\) −29.6606 −1.31988
\(506\) 0 0
\(507\) 8.00000 0.355292
\(508\) −35.9347 20.7469i −1.59434 0.920494i
\(509\) 2.29129 + 3.96863i 0.101560 + 0.175906i 0.912327 0.409462i \(-0.134283\pi\)
−0.810768 + 0.585368i \(0.800950\pi\)
\(510\) −30.6434 + 17.6920i −1.35691 + 0.783413i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) −2.50000 + 21.6506i −0.110378 + 0.955899i
\(514\) 37.4347 21.6129i 1.65117 0.953305i
\(515\) −18.3303 10.5830i −0.807730 0.466343i
\(516\) −3.95644 −0.174173
\(517\) 0 0
\(518\) 0 0
\(519\) −3.70871 + 6.42368i −0.162794 + 0.281968i
\(520\) 10.5000 18.1865i 0.460455 0.797532i
\(521\) 10.5826 + 18.3296i 0.463631 + 0.803033i 0.999139 0.0414979i \(-0.0132130\pi\)
−0.535508 + 0.844530i \(0.679880\pi\)
\(522\) −30.7477 −1.34579
\(523\) −13.5000 23.3827i −0.590314 1.02245i −0.994190 0.107640i \(-0.965671\pi\)
0.403876 0.914814i \(-0.367663\pi\)
\(524\) 53.7135i 2.34648i
\(525\) 0 0
\(526\) −14.0608 8.11800i −0.613080 0.353962i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.73205i 0.0434783 0.0753066i
\(530\) 60.7370i 2.63825i
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) 6.49545 0.281349
\(534\) 3.10260i 0.134263i
\(535\) 2.16515 3.75015i 0.0936077 0.162133i
\(536\) −19.7477 −0.852972
\(537\) 12.2197i 0.527319i
\(538\) −31.4347 18.1488i −1.35524 0.782451i
\(539\) 0 0
\(540\) 36.9253i 1.58901i
\(541\) −14.2477 24.6778i −0.612558 1.06098i −0.990808 0.135278i \(-0.956807\pi\)
0.378250 0.925703i \(-0.376526\pi\)
\(542\) −30.9564 −1.32969
\(543\) −4.87386 8.44178i −0.209158 0.362271i
\(544\) 22.5608 39.0764i 0.967286 1.67539i
\(545\) −18.7087 + 32.4044i −0.801393 + 1.38805i
\(546\) 0 0
\(547\) −27.8739 16.0930i −1.19180 0.688086i −0.233086 0.972456i \(-0.574882\pi\)
−0.958715 + 0.284370i \(0.908216\pi\)
\(548\) −59.5390 −2.54338
\(549\) −25.7477 14.8655i −1.09889 0.634442i
\(550\) 0 0
\(551\) −18.2477 + 24.5824i −0.777379 + 1.04725i
\(552\) 7.93725i 0.337832i
\(553\) 0 0
\(554\) −46.1216 + 26.6283i −1.95952 + 1.13133i
\(555\) 0 0
\(556\) −4.18693 2.41733i −0.177565 0.102517i
\(557\) −0.165151 −0.00699769 −0.00349884 0.999994i \(-0.501114\pi\)
−0.00349884 + 0.999994i \(0.501114\pi\)
\(558\) 0 0
\(559\) −6.49545 −0.274728
\(560\) 0 0
\(561\) 0 0
\(562\) 17.4782 30.2732i 0.737274 1.27700i
\(563\) 9.16515 + 15.8745i 0.386265 + 0.669031i 0.991944 0.126679i \(-0.0404317\pi\)
−0.605679 + 0.795709i \(0.707098\pi\)
\(564\) 9.93545i 0.418358i
\(565\) −28.0000 −1.17797
\(566\) 17.0608 29.5502i 0.717119 1.24209i
\(567\) 0 0
\(568\) −3.70871 6.42368i −0.155614 0.269532i
\(569\) 2.83485 + 1.63670i 0.118843 + 0.0686141i 0.558243 0.829677i \(-0.311476\pi\)
−0.439400 + 0.898291i \(0.644809\pi\)
\(570\) −20.2695 15.0462i −0.848996 0.630216i
\(571\) 4.00000 + 6.92820i 0.167395 + 0.289936i 0.937503 0.347977i \(-0.113131\pi\)
−0.770108 + 0.637913i \(0.779798\pi\)
\(572\) 0 0
\(573\) −6.00000 10.3923i −0.250654 0.434145i
\(574\) 0 0
\(575\) −4.58258 7.93725i −0.191107 0.331006i
\(576\) 12.5826 + 21.7937i 0.524274 + 0.908069i
\(577\) −12.0000 + 6.92820i −0.499567 + 0.288425i −0.728535 0.685009i \(-0.759798\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 38.5390 22.2505i 1.60301 0.925499i
\(579\) 1.50000 0.866025i 0.0623379 0.0359908i
\(580\) 25.9347 44.9201i 1.07688 1.86521i
\(581\) 0 0
\(582\) 34.4702i 1.42884i
\(583\) 0 0
\(584\) −3.87386 + 6.70973i −0.160302 + 0.277651i
\(585\) 24.2487i 1.00256i
\(586\) 20.0616i 0.828737i
\(587\) 19.6652 11.3537i 0.811668 0.468617i −0.0358670 0.999357i \(-0.511419\pi\)
0.847535 + 0.530740i \(0.178086\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −8.68693 + 15.0462i −0.357635 + 0.619443i
\(591\) 6.16515 10.6784i 0.253600 0.439249i
\(592\) 0 0
\(593\) −17.2913 + 9.98313i −0.710068 + 0.409958i −0.811086 0.584927i \(-0.801123\pi\)
0.101018 + 0.994885i \(0.467790\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 33.9564 1.39091
\(597\) −9.24773 5.33918i −0.378484 0.218518i
\(598\) 45.9669i 1.87973i
\(599\) 25.4485i 1.03980i −0.854228 0.519898i \(-0.825970\pi\)
0.854228 0.519898i \(-0.174030\pi\)
\(600\) 3.00000 + 1.73205i 0.122474 + 0.0707107i
\(601\) 7.49545 0.305746 0.152873 0.988246i \(-0.451147\pi\)
0.152873 + 0.988246i \(0.451147\pi\)
\(602\) 0 0
\(603\) −19.7477 + 11.4014i −0.804190 + 0.464299i
\(604\) −55.1216 + 31.8245i −2.24287 + 1.29492i
\(605\) −25.2042 14.5516i −1.02470 0.591608i
\(606\) 12.2695 21.2514i 0.498415 0.863280i
\(607\) −4.00000 + 6.92820i −0.162355 + 0.281207i −0.935713 0.352763i \(-0.885242\pi\)
0.773358 + 0.633970i \(0.218576\pi\)
\(608\) 31.9782 + 3.69253i 1.29689 + 0.149752i
\(609\) 0 0
\(610\) 74.5562 43.0451i 3.01869 1.74284i
\(611\) 16.3115i 0.659891i
\(612\) 34.1087i 1.37876i
\(613\) −12.2477 + 21.2137i −0.494681 + 0.856813i −0.999981 0.00613096i \(-0.998048\pi\)
0.505300 + 0.862944i \(0.331382\pi\)
\(614\) 63.1824 36.4784i 2.54983 1.47215i
\(615\) 3.75015i 0.151221i
\(616\) 0 0
\(617\) −4.33485 + 7.50818i −0.174514 + 0.302268i −0.939993 0.341193i \(-0.889169\pi\)
0.765479 + 0.643461i \(0.222502\pi\)
\(618\) 15.1652 8.75560i 0.610032 0.352202i
\(619\) −24.4955 + 14.1425i −0.984555 + 0.568433i −0.903642 0.428288i \(-0.859117\pi\)
−0.0809131 + 0.996721i \(0.525784\pi\)
\(620\) 0 0
\(621\) −11.4564 19.8431i −0.459731 0.796278i
\(622\) 30.5390 + 52.8951i 1.22450 + 2.12090i
\(623\) 0 0
\(624\) −4.10436 7.10895i −0.164306 0.284586i
\(625\) −31.0000 −1.24000
\(626\) −12.4782 21.6129i −0.498730 0.863826i
\(627\) 0 0
\(628\) 19.1869 + 11.0776i 0.765642 + 0.442044i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.2913 35.1455i 0.807783 1.39912i −0.106612 0.994301i \(-0.534000\pi\)
0.914396 0.404821i \(-0.132666\pi\)
\(632\) 1.74773 0.0695209
\(633\) 18.3296i 0.728535i
\(634\) 7.47822 + 12.9527i 0.296998 + 0.514416i
\(635\) 19.6652 34.0610i 0.780388 1.35167i
\(636\) −25.3521 14.6370i −1.00528 0.580396i
\(637\) 0 0
\(638\) 0 0
\(639\) −7.41742 4.28245i −0.293429 0.169411i
\(640\) −33.7913 −1.33572
\(641\) 35.1606 + 20.3000i 1.38876 + 0.801801i 0.993176 0.116628i \(-0.0372086\pi\)
0.395585 + 0.918429i \(0.370542\pi\)
\(642\) 1.79129 + 3.10260i 0.0706965 + 0.122450i
\(643\) 4.50000 2.59808i 0.177463 0.102458i −0.408637 0.912697i \(-0.633996\pi\)
0.586100 + 0.810239i \(0.300663\pi\)
\(644\) 0 0
\(645\) 3.75015i 0.147662i
\(646\) 46.8085 + 34.7463i 1.84166 + 1.36708i
\(647\) −17.8348 + 10.2970i −0.701160 + 0.404815i −0.807779 0.589485i \(-0.799331\pi\)
0.106619 + 0.994300i \(0.465997\pi\)
\(648\) −1.50000 0.866025i −0.0589256 0.0340207i
\(649\) 0 0
\(650\) 17.3739 + 10.0308i 0.681459 + 0.393441i
\(651\) 0 0
\(652\) −16.7477 + 29.0079i −0.655892 + 1.13604i
\(653\) −0.165151 + 0.286051i −0.00646287 + 0.0111940i −0.869239 0.494393i \(-0.835391\pi\)
0.862776 + 0.505587i \(0.168724\pi\)
\(654\) −15.4782 26.8091i −0.605246 1.04832i
\(655\) −50.9129 −1.98933
\(656\) −1.26951 2.19885i −0.0495659 0.0858507i
\(657\) 8.94630i 0.349029i
\(658\) 0 0
\(659\) 32.4564 + 18.7387i 1.26432 + 0.729957i 0.973908 0.226943i \(-0.0728732\pi\)
0.290415 + 0.956901i \(0.406207\pi\)
\(660\) 0 0
\(661\) 25.7477 1.00147 0.500735 0.865600i \(-0.333063\pi\)
0.500735 + 0.865600i \(0.333063\pi\)
\(662\) 24.9564 43.2258i 0.969960 1.68002i
\(663\) 27.9989i 1.08739i
\(664\) 12.3303 0.478509
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1860i 1.24625i
\(668\) −8.14337 + 14.1047i −0.315076 + 0.545728i
\(669\) −6.16515 −0.238359
\(670\) 66.0285i 2.55090i
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −1.89564 3.28335i −0.0730175 0.126470i
\(675\) 10.0000 0.384900
\(676\) 11.1652 + 19.3386i 0.429429 + 0.743793i
\(677\) 7.74773 13.4195i 0.297769 0.515752i −0.677856 0.735195i \(-0.737091\pi\)
0.975625 + 0.219443i \(0.0704240\pi\)
\(678\) 11.5826 20.0616i 0.444826 0.770461i
\(679\) 0 0
\(680\) −24.2477 13.9994i −0.929858 0.536854i
\(681\) 18.3303 0.702419
\(682\) 0 0
\(683\) −19.4174 + 11.2107i −0.742987 + 0.428964i −0.823154 0.567818i \(-0.807788\pi\)
0.0801673 + 0.996781i \(0.474455\pi\)
\(684\) −22.3303 + 9.66930i −0.853820 + 0.369715i
\(685\) 56.4347i 2.15626i
\(686\) 0 0
\(687\) −6.00000 + 3.46410i −0.228914 + 0.132164i
\(688\) 1.26951 + 2.19885i 0.0483995 + 0.0838304i
\(689\) −41.6216 24.0302i −1.58566 0.915479i
\(690\) 26.5390 1.01032
\(691\) −18.4955 10.6784i −0.703600 0.406224i 0.105087 0.994463i \(-0.466488\pi\)
−0.808687 + 0.588239i \(0.799821\pi\)
\(692\) −20.7042 −0.787054
\(693\) 0 0
\(694\) 2.68693 + 1.55130i 0.101995 + 0.0588866i
\(695\) 2.29129 3.96863i 0.0869135 0.150539i
\(696\) 6.08258 + 10.5353i 0.230559 + 0.399341i
\(697\) 8.66025i 0.328031i
\(698\) −15.1652 −0.574009
\(699\) −1.50000 + 2.59808i −0.0567352 + 0.0982683i
\(700\) 0 0
\(701\) −21.0826 36.5161i −0.796278 1.37919i −0.922025 0.387131i \(-0.873466\pi\)
0.125747 0.992062i \(-0.459867\pi\)
\(702\) 43.4347 + 25.0770i 1.63934 + 0.946471i
\(703\) 0 0
\(704\) 0 0
\(705\) −9.41742 −0.354681
\(706\) −30.7477 53.2566i −1.15721 2.00434i
\(707\) 0 0
\(708\) −4.18693 7.25198i −0.157355 0.272546i
\(709\) −15.0826 26.1238i −0.566438 0.981099i −0.996914 0.0784975i \(-0.974988\pi\)
0.430476 0.902602i \(-0.358346\pi\)
\(710\) 21.4782 12.4005i 0.806063 0.465381i
\(711\) 1.74773 1.00905i 0.0655449 0.0378424i
\(712\) −2.12614 + 1.22753i −0.0796803 + 0.0460035i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −29.5390 + 17.0544i −1.10392 + 0.637351i
\(717\) −6.00000 + 10.3923i −0.224074 + 0.388108i
\(718\) 42.5028i 1.58619i
\(719\) 20.6893i 0.771579i −0.922587 0.385790i \(-0.873929\pi\)
0.922587 0.385790i \(-0.126071\pi\)
\(720\) −8.20871 + 4.73930i −0.305921 + 0.176623i
\(721\) 0 0
\(722\) −9.47822 + 40.4947i −0.352743 + 1.50706i
\(723\) 5.87386 10.1738i 0.218451 0.378369i
\(724\) 13.6044 23.5634i 0.505602 0.875728i
\(725\) 12.1652 + 7.02355i 0.451802 + 0.260848i
\(726\) 20.8521 12.0390i 0.773893 0.446808i
\(727\) 9.24773 5.33918i 0.342979 0.198019i −0.318609 0.947886i \(-0.603216\pi\)
0.661589 + 0.749867i \(0.269883\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −22.4347 12.9527i −0.830344 0.479399i
\(731\) 8.66025i 0.320311i
\(732\) 41.4938i 1.53365i
\(733\) 18.0000 + 10.3923i 0.664845 + 0.383849i 0.794121 0.607760i \(-0.207932\pi\)
−0.129275 + 0.991609i \(0.541265\pi\)
\(734\) 68.8693 2.54201
\(735\) 0 0
\(736\) −29.3085 + 16.9213i −1.08033 + 0.623727i
\(737\) 0 0
\(738\) 5.37386 + 3.10260i 0.197815 + 0.114208i
\(739\) 2.12614 3.68258i 0.0782112 0.135466i −0.824267 0.566201i \(-0.808412\pi\)
0.902478 + 0.430736i \(0.141746\pi\)
\(740\) 0 0
\(741\) 18.3303 7.93725i 0.673380 0.291582i
\(742\) 0 0
\(743\) −10.0390 + 5.79603i −0.368296 + 0.212636i −0.672714 0.739903i \(-0.734871\pi\)
0.304418 + 0.952539i \(0.401538\pi\)
\(744\) 0 0
\(745\) 32.1860i 1.17920i
\(746\) 15.1652 26.2668i 0.555236 0.961696i
\(747\) 12.3303 7.11890i 0.451142 0.260467i
\(748\) 0 0
\(749\) 0 0
\(750\) 8.68693 15.0462i 0.317202 0.549410i
\(751\) −18.8739 + 10.8968i −0.688717 + 0.397631i −0.803131 0.595802i \(-0.796834\pi\)
0.114414 + 0.993433i \(0.463501\pi\)
\(752\) 5.52178 3.18800i 0.201359 0.116254i
\(753\) 7.66515 4.42548i 0.279334 0.161273i
\(754\) 35.2259 + 61.0131i 1.28285 + 2.22197i
\(755\) −30.1652 52.2476i −1.09782 1.90148i
\(756\) 0 0
\(757\) 7.24773 + 12.5534i 0.263423 + 0.456262i 0.967149 0.254209i \(-0.0818151\pi\)
−0.703726 + 0.710471i \(0.748482\pi\)
\(758\) 10.7477 0.390375
\(759\) 0 0
\(760\) 2.29129 19.8431i 0.0831137 0.719786i
\(761\) −24.3303 14.0471i −0.881973 0.509207i −0.0106644 0.999943i \(-0.503395\pi\)
−0.871308 + 0.490736i \(0.836728\pi\)
\(762\) 16.2695 + 28.1796i 0.589382 + 1.02084i
\(763\) 0 0
\(764\) 16.7477 29.0079i 0.605912 1.04947i
\(765\) −32.3303 −1.16890
\(766\) 79.1619i 2.86024i
\(767\) −6.87386 11.9059i −0.248201 0.429896i
\(768\) 1.39564 2.41733i 0.0503610 0.0872277i
\(769\) −31.3693 18.1111i −1.13121 0.653102i −0.186968 0.982366i \(-0.559866\pi\)
−0.944238 + 0.329264i \(0.893200\pi\)
\(770\) 0 0
\(771\) −19.7477 −0.711197
\(772\) 4.18693 + 2.41733i 0.150691 + 0.0870015i
\(773\) 1.08712 0.0391010 0.0195505 0.999809i \(-0.493776\pi\)
0.0195505 + 0.999809i \(0.493776\pi\)
\(774\) −5.37386 3.10260i −0.193160 0.111521i
\(775\) 0 0
\(776\) −23.6216 + 13.6379i −0.847966 + 0.489573i
\(777\) 0 0
\(778\) 26.6283i 0.954671i
\(779\) 5.66970 2.45505i 0.203138 0.0879613i
\(780\) −29.3085 + 16.9213i −1.04941 + 0.605879i
\(781\) 0 0
\(782\) −61.2867 −2.19161
\(783\) 30.4129 + 17.5589i 1.08687 + 0.627503i
\(784\) 0 0
\(785\) −10.5000 + 18.1865i −0.374761 + 0.649105i
\(786\) 21.0608 36.4784i 0.751214 1.30114i
\(787\) 2.83485 + 4.91010i 0.101051 + 0.175026i 0.912118 0.409927i \(-0.134446\pi\)
−0.811067 + 0.584954i \(0.801113\pi\)
\(788\) 34.4174 1.22607
\(789\) 3.70871 + 6.42368i 0.132034 + 0.228689i
\(790\) 5.84370i 0.207910i
\(791\) 0 0
\(792\) 0 0
\(793\) 68.1221i 2.41909i
\(794\) 47.7042 1.69296
\(795\) 13.8739 24.0302i 0.492055 0.852265i
\(796\) 29.8064i 1.05646i
\(797\) −2.83485 −0.100415 −0.0502077 0.998739i \(-0.515988\pi\)
−0.0502077 + 0.998739i \(0.515988\pi\)
\(798\) 0 0
\(799\) 21.7477 0.769379
\(800\) 14.7701i 0.522202i
\(801\) −1.41742 + 2.45505i −0.0500822 + 0.0867450i
\(802\) −33.7042 −1.19014
\(803\) 0 0
\(804\) 27.5608 + 15.9122i 0.971994 + 0.561181i
\(805\) 0 0
\(806\) 0 0
\(807\) 8.29129 + 14.3609i 0.291867 + 0.505529i
\(808\) 19.4174 0.683103
\(809\) 3.00000 + 5.19615i 0.105474 + 0.182687i 0.913932 0.405868i \(-0.133031\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) 2.89564 5.01540i 0.101743 0.176223i
\(811\) 14.5000 25.1147i 0.509164 0.881898i −0.490780 0.871284i \(-0.663288\pi\)
0.999944 0.0106140i \(-0.00337862\pi\)
\(812\) 0 0
\(813\) 12.2477 + 7.07123i 0.429547 + 0.247999i
\(814\) 0 0
\(815\) −27.4955 15.8745i −0.963124 0.556060i
\(816\) −9.47822 + 5.47225i −0.331804 + 0.191567i
\(817\) −5.66970 + 2.45505i −0.198358 + 0.0858914i
\(818\) 29.3694i 1.02688i
\(819\) 0 0
\(820\) −9.06534 + 5.23388i −0.316575 + 0.182775i
\(821\) 6.08258 + 10.5353i 0.212283 + 0.367686i 0.952429 0.304761i \(-0.0985767\pi\)
−0.740145 + 0.672447i \(0.765243\pi\)
\(822\) 40.4347 + 23.3450i 1.41032 + 0.814249i
\(823\) −40.5826 −1.41462 −0.707310 0.706904i \(-0.750091\pi\)
−0.707310 + 0.706904i \(0.750091\pi\)
\(824\) 12.0000 + 6.92820i 0.418040 + 0.241355i
\(825\) 0 0
\(826\) 0 0
\(827\) −13.0390 7.52808i −0.453411 0.261777i 0.255859 0.966714i \(-0.417642\pi\)
−0.709270 + 0.704937i \(0.750975\pi\)
\(828\) 12.7913 22.1552i 0.444528 0.769945i
\(829\) 5.74773 + 9.95536i 0.199627 + 0.345764i 0.948407 0.317054i \(-0.102694\pi\)
−0.748781 + 0.662818i \(0.769360\pi\)
\(830\) 41.2276i 1.43103i
\(831\) 24.3303 0.844009
\(832\) 28.8303 49.9355i 0.999511 1.73120i
\(833\) 0 0
\(834\) 1.89564 + 3.28335i 0.0656408 + 0.113693i
\(835\) −13.3693 7.71878i −0.462664 0.267119i
\(836\) 0 0
\(837\) 0 0
\(838\) 61.0780 2.10991
\(839\) −12.0826 20.9276i −0.417137 0.722502i 0.578513 0.815673i \(-0.303633\pi\)
−0.995650 + 0.0931707i \(0.970300\pi\)
\(840\) 0 0
\(841\) 10.1652 + 17.6066i 0.350522 + 0.607123i
\(842\) −7.89564 13.6757i −0.272102 0.471294i
\(843\) −13.8303 + 7.98493i −0.476341 + 0.275016i
\(844\) −44.3085 + 25.5815i −1.52516 + 0.880553i
\(845\) −18.3303 + 10.5830i −0.630582 + 0.364066i
\(846\) −7.79129 + 13.4949i −0.267870 + 0.463964i
\(847\) 0 0
\(848\) 18.7864i 0.645128i
\(849\) −13.5000 + 7.79423i −0.463319 + 0.267497i
\(850\) 13.3739 23.1642i 0.458720 0.794526i
\(851\) 0 0
\(852\) 11.9536i 0.409522i
\(853\) −8.62159 + 4.97768i −0.295198 + 0.170432i −0.640284 0.768139i \(-0.721183\pi\)
0.345086 + 0.938571i \(0.387850\pi\)
\(854\) 0 0
\(855\) −9.16515 21.1660i −0.313442 0.723862i
\(856\) −1.41742 + 2.45505i −0.0484466 + 0.0839119i
\(857\) −11.2913 + 19.5571i −0.385703 + 0.668057i −0.991866 0.127283i \(-0.959374\pi\)
0.606163 + 0.795340i \(0.292708\pi\)
\(858\) 0 0
\(859\) −28.9955 + 16.7405i −0.989312 + 0.571180i −0.905069 0.425266i \(-0.860181\pi\)
−0.0842435 + 0.996445i \(0.526847\pi\)
\(860\) 9.06534 5.23388i 0.309126 0.178474i
\(861\) 0 0
\(862\) −16.5390 −0.563321
\(863\) 4.91288 + 2.83645i 0.167236 + 0.0965539i 0.581282 0.813702i \(-0.302551\pi\)
−0.414046 + 0.910256i \(0.635885\pi\)
\(864\) 36.9253i 1.25622i
\(865\) 19.6247i 0.667258i
\(866\) 0.478220 + 0.276100i 0.0162506 + 0.00938227i
\(867\) −20.3303 −0.690453
\(868\) 0 0
\(869\) 0 0
\(870\) −35.2259 + 20.3377i −1.19427 + 0.689513i
\(871\) 45.2477 + 26.1238i 1.53316 + 0.885171i
\(872\) 12.2477 21.2137i 0.414760 0.718386i
\(873\) −15.7477 + 27.2759i −0.532980 + 0.923148i
\(874\) −17.3739 40.1232i −0.587680 1.35719i
\(875\) 0 0
\(876\) 10.8131 6.24293i 0.365340 0.210929i
\(877\) 41.8553i 1.41335i 0.707537 + 0.706676i \(0.249806\pi\)
−0.707537 + 0.706676i \(0.750194\pi\)
\(878\) 0.361500i 0.0122000i
\(879\) −4.58258 + 7.93725i −0.154566 + 0.267717i
\(880\) 0 0
\(881\) 35.0224i 1.17994i 0.807427 + 0.589968i \(0.200859\pi\)
−0.807427 + 0.589968i \(0.799141\pi\)
\(882\) 0 0
\(883\) 5.87386 10.1738i 0.197671 0.342377i −0.750102 0.661323i \(-0.769995\pi\)
0.947773 + 0.318946i \(0.103329\pi\)
\(884\) 67.6824 39.0764i 2.27640 1.31428i
\(885\) 6.87386 3.96863i 0.231062 0.133404i
\(886\) −20.0608 + 11.5821i −0.673956 + 0.389108i
\(887\) −9.08258 15.7315i −0.304963 0.528211i 0.672290 0.740288i \(-0.265311\pi\)
−0.977253 + 0.212076i \(0.931977\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.10436 7.10895i −0.137578 0.238293i
\(891\) 0 0
\(892\) −8.60436 14.9032i −0.288095 0.498995i
\(893\) 6.16515 + 14.2378i 0.206309 + 0.476450i
\(894\) −23.0608 13.3142i −0.771268 0.445292i
\(895\) −16.1652 27.9989i −0.540341 0.935899i
\(896\) 0 0
\(897\) −10.5000 + 18.1865i −0.350585 + 0.607231i
\(898\) −7.16515 −0.239104
\(899\) 0 0
\(900\) 5.58258 + 9.66930i 0.186086 + 0.322310i
\(901\) −32.0390 + 55.4932i −1.06737 + 1.84875i
\(902\) 0 0
\(903\) 0 0
\(904\) 18.3303 0.609657
\(905\) 22.3348 + 12.8950i 0.742435 + 0.428645i
\(906\) 49.9129 1.65824
\(907\) 41.6216 + 24.0302i 1.38202 + 0.797911i 0.992399 0.123063i \(-0.0392718\pi\)
0.389623 + 0.920974i \(0.372605\pi\)
\(908\) 25.5826 + 44.3103i 0.848988 + 1.47049i
\(909\) 19.4174 11.2107i 0.644035 0.371834i
\(910\) 0 0
\(911\) 12.2197i 0.404857i −0.979297 0.202428i \(-0.935117\pi\)
0.979297 0.202428i \(-0.0648834\pi\)
\(912\) −6.26951 4.65390i −0.207604 0.154106i
\(913\) 0 0
\(914\) 23.3739 + 13.4949i 0.773139 + 0.446372i
\(915\) −39.3303 −1.30022
\(916\) −16.7477 9.66930i −0.553360 0.319483i
\(917\) 0 0
\(918\) 33.4347 57.9105i 1.10351 1.91133i
\(919\) 16.0000 27.7128i 0.527791 0.914161i −0.471684 0.881768i \(-0.656354\pi\)
0.999475 0.0323936i \(-0.0103130\pi\)
\(920\) 10.5000 + 18.1865i 0.346175 + 0.599592i
\(921\) −33.3303 −1.09827
\(922\) 37.2259 + 64.4772i 1.22597 + 2.12344i
\(923\) 19.6247i 0.645954i
\(924\) 0 0
\(925\) 0 0
\(926\) 8.75560i 0.287727i
\(927\) 16.0000 0.525509
\(928\) 25.9347 44.9201i 0.851347 1.47458i
\(929\) 7.74655i 0.254156i −0.991893 0.127078i \(-0.959440\pi\)
0.991893 0.127078i \(-0.0405599\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −8.37386 −0.274295
\(933\) 27.9035i 0.913520i
\(934\) −7.37386 + 12.7719i −0.241280 + 0.417910i
\(935\) 0 0
\(936\) 15.8745i 0.518875i
\(937\) −15.8739 9.16478i −0.518577 0.299400i 0.217776 0.975999i \(-0.430120\pi\)
−0.736352 + 0.676599i \(0.763453\pi\)
\(938\) 0 0
\(939\) 11.4014i 0.372069i
\(940\) −13.1434 22.7650i −0.428689 0.742512i
\(941\) 44.0780 1.43690 0.718451 0.695577i \(-0.244851\pi\)
0.718451 + 0.695577i \(0.244851\pi\)
\(942\) −8.68693 15.0462i −0.283036 0.490232i
\(943\) −3.24773 + 5.62523i −0.105761 + 0.183183i
\(944\) −2.68693 + 4.65390i −0.0874522 + 0.151472i
\(945\) 0 0
\(946\) 0 0
\(947\) 44.4083 1.44308 0.721538 0.692374i \(-0.243435\pi\)
0.721538 + 0.692374i \(0.243435\pi\)
\(948\) −2.43920 1.40828i −0.0792217 0.0457387i
\(949\) 17.7523 10.2493i 0.576263 0.332706i
\(950\) 18.9564 + 2.18890i 0.615028 + 0.0710173i
\(951\) 6.83285i 0.221570i
\(952\) 0 0
\(953\) −10.8303 + 6.25288i −0.350828 + 0.202551i −0.665050 0.746799i \(-0.731590\pi\)
0.314222 + 0.949350i \(0.398256\pi\)
\(954\) −22.9564 39.7617i −0.743242 1.28733i
\(955\) 27.4955 + 15.8745i 0.889732 + 0.513687i
\(956\) −33.4955 −1.08332
\(957\) 0 0
\(958\) −68.4519 −2.21158
\(959\) 0 0
\(960\) 28.8303 + 16.6452i 0.930494 + 0.537221i
\(961\) 15.5000 26.8468i 0.500000 0.866025i
\(962\) 0 0
\(963\) 3.27340i 0.105484i
\(964\) 32.7913 1.05614
\(965\) −2.29129 + 3.96863i −0.0737592 + 0.127755i
\(966\) 0 0
\(967\) −2.29129 3.96863i −0.0736828 0.127622i 0.826830 0.562452i \(-0.190142\pi\)
−0.900513 + 0.434830i \(0.856809\pi\)
\(968\) 16.5000 + 9.52628i 0.530330 + 0.306186i
\(969\) −10.5826 24.4394i −0.339961 0.785107i
\(970\) −45.5998 78.9812i −1.46412 2.53593i
\(971\) 2.66970 0.0856747 0.0428373 0.999082i \(-0.486360\pi\)
0.0428373 + 0.999082i \(0.486360\pi\)
\(972\) 22.3303 + 38.6772i 0.716245 + 1.24057i
\(973\) 0 0
\(974\) −40.1216 69.4926i −1.28558 2.22669i
\(975\) −4.58258 7.93725i −0.146760 0.254196i
\(976\) 23.0608 13.3142i 0.738158 0.426176i
\(977\) 5.66970 3.27340i 0.181390 0.104725i −0.406556 0.913626i \(-0.633270\pi\)
0.587945 + 0.808901i \(0.299937\pi\)
\(978\) 22.7477 13.1334i 0.727392 0.419960i
\(979\) 0 0
\(980\) 0 0
\(981\) 28.2849i 0.903068i
\(982\) 42.8085 24.7155i 1.36607 0.788704i
\(983\) −21.2477 + 36.8021i −0.677697 + 1.17381i 0.297975 + 0.954574i \(0.403689\pi\)
−0.975673 + 0.219233i \(0.929645\pi\)
\(984\) 2.45505i 0.0782642i
\(985\) 32.6229i 1.03945i
\(986\) 81.3475 46.9660i 2.59063 1.49570i
\(987\) 0 0
\(988\) 44.7695 + 33.2327i 1.42431 + 1.05727i
\(989\) 3.24773 5.62523i 0.103272 0.178872i
\(990\) 0 0
\(991\) 0.873864 + 0.504525i 0.0277592 + 0.0160268i 0.513815 0.857901i \(-0.328232\pi\)
−0.486056 + 0.873928i \(0.661565\pi\)
\(992\) 0 0
\(993\) −19.7477 + 11.4014i −0.626675 + 0.361811i
\(994\) 0 0
\(995\) 28.2523 0.895657
\(996\) −17.2087 9.93545i −0.545279 0.314817i
\(997\) 32.7581i 1.03746i −0.854939 0.518729i \(-0.826405\pi\)
0.854939 0.518729i \(-0.173595\pi\)
\(998\) 60.7370i 1.92260i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.2.i.c.411.1 4
7.2 even 3 133.2.p.a.69.1 yes 4
7.3 odd 6 931.2.s.d.31.2 4
7.4 even 3 931.2.s.e.31.2 4
7.5 odd 6 133.2.p.b.69.1 yes 4
7.6 odd 2 931.2.i.e.411.1 4
19.8 odd 6 931.2.s.d.901.2 4
133.27 even 6 931.2.s.e.901.2 4
133.46 odd 6 931.2.i.e.521.2 4
133.65 odd 6 133.2.p.b.27.1 yes 4
133.103 even 6 133.2.p.a.27.1 4
133.122 even 6 inner 931.2.i.c.521.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.p.a.27.1 4 133.103 even 6
133.2.p.a.69.1 yes 4 7.2 even 3
133.2.p.b.27.1 yes 4 133.65 odd 6
133.2.p.b.69.1 yes 4 7.5 odd 6
931.2.i.c.411.1 4 1.1 even 1 trivial
931.2.i.c.521.2 4 133.122 even 6 inner
931.2.i.e.411.1 4 7.6 odd 2
931.2.i.e.521.2 4 133.46 odd 6
931.2.s.d.31.2 4 7.3 odd 6
931.2.s.d.901.2 4 19.8 odd 6
931.2.s.e.31.2 4 7.4 even 3
931.2.s.e.901.2 4 133.27 even 6