Properties

Label 925.2.o.c.824.8
Level $925$
Weight $2$
Character 925.824
Analytic conductor $7.386$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(174,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.174"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,16,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 824.8
Character \(\chi\) \(=\) 925.824
Dual form 925.2.o.c.174.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.268684 + 0.155125i) q^{2} +(1.78566 - 1.03095i) q^{3} +(-0.951873 - 1.64869i) q^{4} +0.639704 q^{6} +(1.83659 - 1.06035i) q^{7} -1.21113i q^{8} +(0.625722 - 1.08378i) q^{9} +5.48703 q^{11} +(-3.39944 - 1.96267i) q^{12} +(1.43093 - 0.826151i) q^{13} +0.657948 q^{14} +(-1.71587 + 2.97197i) q^{16} +(-2.46379 - 1.42247i) q^{17} +(0.336243 - 0.194130i) q^{18} +(-1.19568 - 2.07098i) q^{19} +(2.18635 - 3.78686i) q^{21} +(1.47428 + 0.851174i) q^{22} +1.29182i q^{23} +(-1.24862 - 2.16267i) q^{24} +0.512625 q^{26} +3.60535i q^{27} +(-3.49639 - 2.01864i) q^{28} +0.459480 q^{29} -7.00913 q^{31} +(-3.01980 + 1.74348i) q^{32} +(9.79798 - 5.65686i) q^{33} +(-0.441320 - 0.764389i) q^{34} -2.38243 q^{36} +(5.58343 + 2.41356i) q^{37} -0.741917i q^{38} +(1.70344 - 2.95045i) q^{39} +(-3.63843 - 6.30194i) q^{41} +(1.17487 - 0.678313i) q^{42} -4.39190i q^{43} +(-5.22296 - 9.04642i) q^{44} +(-0.200394 + 0.347092i) q^{46} +0.310249i q^{47} +7.07591i q^{48} +(-1.25130 + 2.16731i) q^{49} -5.86599 q^{51} +(-2.72414 - 1.57278i) q^{52} +(10.4052 + 6.00746i) q^{53} +(-0.559279 + 0.968700i) q^{54} +(-1.28423 - 2.22435i) q^{56} +(-4.27015 - 2.46537i) q^{57} +(0.123455 + 0.0712767i) q^{58} +(4.14947 - 7.18709i) q^{59} +(-5.10365 - 8.83978i) q^{61} +(-1.88324 - 1.08729i) q^{62} -2.65395i q^{63} +5.78165 q^{64} +3.51008 q^{66} +(-1.15098 + 0.664518i) q^{67} +5.41604i q^{68} +(1.33181 + 2.30676i) q^{69} +(-0.293650 - 0.508617i) q^{71} +(-1.31261 - 0.757834i) q^{72} +10.8030i q^{73} +(1.12578 + 1.51461i) q^{74} +(-2.27627 + 3.94261i) q^{76} +(10.0774 - 5.81820i) q^{77} +(0.915375 - 0.528492i) q^{78} +(-1.41967 - 2.45893i) q^{79} +(5.59411 + 9.68928i) q^{81} -2.25764i q^{82} +(-10.2381 - 5.91099i) q^{83} -8.32450 q^{84} +(0.681292 - 1.18003i) q^{86} +(0.820476 - 0.473702i) q^{87} -6.64553i q^{88} +(-8.40980 + 14.5662i) q^{89} +(1.75202 - 3.03459i) q^{91} +(2.12982 - 1.22965i) q^{92} +(-12.5159 + 7.22607i) q^{93} +(-0.0481273 + 0.0833590i) q^{94} +(-3.59489 + 6.22653i) q^{96} +18.5979i q^{97} +(-0.672407 + 0.388215i) q^{98} +(3.43336 - 5.94675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 16 q^{4} + 8 q^{6} + 10 q^{9} - 20 q^{11} + 72 q^{14} - 28 q^{16} - 12 q^{19} + 26 q^{21} + 42 q^{24} + 4 q^{26} + 24 q^{29} - 16 q^{31} + 22 q^{34} - 16 q^{36} - 46 q^{39} - 6 q^{41} - 50 q^{44}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.268684 + 0.155125i 0.189988 + 0.109690i 0.591977 0.805955i \(-0.298348\pi\)
−0.401989 + 0.915645i \(0.631681\pi\)
\(3\) 1.78566 1.03095i 1.03095 0.595220i 0.113694 0.993516i \(-0.463732\pi\)
0.917257 + 0.398296i \(0.130398\pi\)
\(4\) −0.951873 1.64869i −0.475936 0.824346i
\(5\) 0 0
\(6\) 0.639704 0.261158
\(7\) 1.83659 1.06035i 0.694165 0.400776i −0.111006 0.993820i \(-0.535407\pi\)
0.805170 + 0.593044i \(0.202074\pi\)
\(8\) 1.21113i 0.428201i
\(9\) 0.625722 1.08378i 0.208574 0.361261i
\(10\) 0 0
\(11\) 5.48703 1.65440 0.827201 0.561906i \(-0.189932\pi\)
0.827201 + 0.561906i \(0.189932\pi\)
\(12\) −3.39944 1.96267i −0.981335 0.566574i
\(13\) 1.43093 0.826151i 0.396870 0.229133i −0.288263 0.957551i \(-0.593078\pi\)
0.685133 + 0.728418i \(0.259744\pi\)
\(14\) 0.657948 0.175844
\(15\) 0 0
\(16\) −1.71587 + 2.97197i −0.428967 + 0.742993i
\(17\) −2.46379 1.42247i −0.597557 0.345000i 0.170523 0.985354i \(-0.445454\pi\)
−0.768080 + 0.640354i \(0.778788\pi\)
\(18\) 0.336243 0.194130i 0.0792532 0.0457568i
\(19\) −1.19568 2.07098i −0.274308 0.475115i 0.695653 0.718378i \(-0.255115\pi\)
−0.969960 + 0.243264i \(0.921782\pi\)
\(20\) 0 0
\(21\) 2.18635 3.78686i 0.477100 0.826362i
\(22\) 1.47428 + 0.851174i 0.314317 + 0.181471i
\(23\) 1.29182i 0.269364i 0.990889 + 0.134682i \(0.0430013\pi\)
−0.990889 + 0.134682i \(0.956999\pi\)
\(24\) −1.24862 2.16267i −0.254874 0.441454i
\(25\) 0 0
\(26\) 0.512625 0.100534
\(27\) 3.60535i 0.693850i
\(28\) −3.49639 2.01864i −0.660756 0.381488i
\(29\) 0.459480 0.0853234 0.0426617 0.999090i \(-0.486416\pi\)
0.0426617 + 0.999090i \(0.486416\pi\)
\(30\) 0 0
\(31\) −7.00913 −1.25888 −0.629438 0.777051i \(-0.716715\pi\)
−0.629438 + 0.777051i \(0.716715\pi\)
\(32\) −3.01980 + 1.74348i −0.533830 + 0.308207i
\(33\) 9.79798 5.65686i 1.70561 0.984734i
\(34\) −0.441320 0.764389i −0.0756858 0.131092i
\(35\) 0 0
\(36\) −2.38243 −0.397072
\(37\) 5.58343 + 2.41356i 0.917911 + 0.396786i
\(38\) 0.741917i 0.120355i
\(39\) 1.70344 2.95045i 0.272769 0.472450i
\(40\) 0 0
\(41\) −3.63843 6.30194i −0.568227 0.984198i −0.996741 0.0806634i \(-0.974296\pi\)
0.428514 0.903535i \(-0.359037\pi\)
\(42\) 1.17487 0.678313i 0.181287 0.104666i
\(43\) 4.39190i 0.669758i −0.942261 0.334879i \(-0.891304\pi\)
0.942261 0.334879i \(-0.108696\pi\)
\(44\) −5.22296 9.04642i −0.787390 1.36380i
\(45\) 0 0
\(46\) −0.200394 + 0.347092i −0.0295464 + 0.0511759i
\(47\) 0.310249i 0.0452545i 0.999744 + 0.0226273i \(0.00720309\pi\)
−0.999744 + 0.0226273i \(0.992797\pi\)
\(48\) 7.07591i 1.02132i
\(49\) −1.25130 + 2.16731i −0.178757 + 0.309616i
\(50\) 0 0
\(51\) −5.86599 −0.821403
\(52\) −2.72414 1.57278i −0.377770 0.218105i
\(53\) 10.4052 + 6.00746i 1.42927 + 0.825188i 0.997063 0.0765878i \(-0.0244026\pi\)
0.432204 + 0.901776i \(0.357736\pi\)
\(54\) −0.559279 + 0.968700i −0.0761082 + 0.131823i
\(55\) 0 0
\(56\) −1.28423 2.22435i −0.171613 0.297242i
\(57\) −4.27015 2.46537i −0.565596 0.326547i
\(58\) 0.123455 + 0.0712767i 0.0162104 + 0.00935910i
\(59\) 4.14947 7.18709i 0.540215 0.935680i −0.458676 0.888603i \(-0.651676\pi\)
0.998891 0.0470765i \(-0.0149905\pi\)
\(60\) 0 0
\(61\) −5.10365 8.83978i −0.653456 1.13182i −0.982279 0.187427i \(-0.939985\pi\)
0.328823 0.944392i \(-0.393348\pi\)
\(62\) −1.88324 1.08729i −0.239172 0.138086i
\(63\) 2.65395i 0.334366i
\(64\) 5.78165 0.722706
\(65\) 0 0
\(66\) 3.51008 0.432061
\(67\) −1.15098 + 0.664518i −0.140614 + 0.0811838i −0.568657 0.822575i \(-0.692537\pi\)
0.428042 + 0.903759i \(0.359203\pi\)
\(68\) 5.41604i 0.656792i
\(69\) 1.33181 + 2.30676i 0.160331 + 0.277701i
\(70\) 0 0
\(71\) −0.293650 0.508617i −0.0348498 0.0603617i 0.848074 0.529877i \(-0.177762\pi\)
−0.882924 + 0.469515i \(0.844429\pi\)
\(72\) −1.31261 0.757834i −0.154692 0.0893115i
\(73\) 10.8030i 1.26439i 0.774808 + 0.632197i \(0.217847\pi\)
−0.774808 + 0.632197i \(0.782153\pi\)
\(74\) 1.12578 + 1.51461i 0.130869 + 0.176070i
\(75\) 0 0
\(76\) −2.27627 + 3.94261i −0.261106 + 0.452249i
\(77\) 10.0774 5.81820i 1.14843 0.663045i
\(78\) 0.915375 0.528492i 0.103646 0.0598399i
\(79\) −1.41967 2.45893i −0.159725 0.276652i 0.775045 0.631907i \(-0.217727\pi\)
−0.934769 + 0.355255i \(0.884394\pi\)
\(80\) 0 0
\(81\) 5.59411 + 9.68928i 0.621568 + 1.07659i
\(82\) 2.25764i 0.249315i
\(83\) −10.2381 5.91099i −1.12378 0.648815i −0.181417 0.983406i \(-0.558068\pi\)
−0.942363 + 0.334591i \(0.891402\pi\)
\(84\) −8.32450 −0.908277
\(85\) 0 0
\(86\) 0.681292 1.18003i 0.0734656 0.127246i
\(87\) 0.820476 0.473702i 0.0879643 0.0507862i
\(88\) 6.64553i 0.708416i
\(89\) −8.40980 + 14.5662i −0.891437 + 1.54401i −0.0532843 + 0.998579i \(0.516969\pi\)
−0.838153 + 0.545435i \(0.816364\pi\)
\(90\) 0 0
\(91\) 1.75202 3.03459i 0.183662 0.318112i
\(92\) 2.12982 1.22965i 0.222049 0.128200i
\(93\) −12.5159 + 7.22607i −1.29784 + 0.749308i
\(94\) −0.0481273 + 0.0833590i −0.00496395 + 0.00859782i
\(95\) 0 0
\(96\) −3.59489 + 6.22653i −0.366902 + 0.635493i
\(97\) 18.5979i 1.88833i 0.329472 + 0.944165i \(0.393129\pi\)
−0.329472 + 0.944165i \(0.606871\pi\)
\(98\) −0.672407 + 0.388215i −0.0679234 + 0.0392156i
\(99\) 3.43336 5.94675i 0.345065 0.597671i
\(100\) 0 0
\(101\) −8.79352 −0.874988 −0.437494 0.899221i \(-0.644134\pi\)
−0.437494 + 0.899221i \(0.644134\pi\)
\(102\) −1.57610 0.909960i −0.156057 0.0900994i
\(103\) 5.36532i 0.528660i 0.964432 + 0.264330i \(0.0851509\pi\)
−0.964432 + 0.264330i \(0.914849\pi\)
\(104\) −1.00058 1.73305i −0.0981149 0.169940i
\(105\) 0 0
\(106\) 1.86381 + 3.22821i 0.181029 + 0.313552i
\(107\) 2.47158 1.42697i 0.238937 0.137950i −0.375751 0.926721i \(-0.622615\pi\)
0.614688 + 0.788770i \(0.289282\pi\)
\(108\) 5.94412 3.43184i 0.571973 0.330229i
\(109\) 4.37956 7.58562i 0.419486 0.726571i −0.576402 0.817166i \(-0.695544\pi\)
0.995888 + 0.0905956i \(0.0288771\pi\)
\(110\) 0 0
\(111\) 12.4584 1.44646i 1.18250 0.137292i
\(112\) 7.27771i 0.687679i
\(113\) 13.6527 + 7.88239i 1.28434 + 0.741513i 0.977638 0.210294i \(-0.0674421\pi\)
0.306699 + 0.951806i \(0.400775\pi\)
\(114\) −0.764881 1.32481i −0.0716376 0.124080i
\(115\) 0 0
\(116\) −0.437367 0.757542i −0.0406085 0.0703360i
\(117\) 2.06776i 0.191165i
\(118\) 2.22979 1.28737i 0.205269 0.118512i
\(119\) −6.03329 −0.553071
\(120\) 0 0
\(121\) 19.1075 1.73705
\(122\) 3.16681i 0.286709i
\(123\) −12.9940 7.50209i −1.17163 0.676441i
\(124\) 6.67180 + 11.5559i 0.599145 + 1.03775i
\(125\) 0 0
\(126\) 0.411693 0.713073i 0.0366765 0.0635256i
\(127\) 3.46973 + 2.00325i 0.307889 + 0.177760i 0.645981 0.763353i \(-0.276448\pi\)
−0.338093 + 0.941113i \(0.609782\pi\)
\(128\) 7.59303 + 4.38384i 0.671135 + 0.387480i
\(129\) −4.52784 7.84244i −0.398654 0.690489i
\(130\) 0 0
\(131\) 10.2080 17.6807i 0.891873 1.54477i 0.0542464 0.998528i \(-0.482724\pi\)
0.837627 0.546243i \(-0.183942\pi\)
\(132\) −18.6529 10.7692i −1.62352 0.937341i
\(133\) −4.39194 2.53569i −0.380829 0.219872i
\(134\) −0.412332 −0.0356201
\(135\) 0 0
\(136\) −1.72280 + 2.98398i −0.147729 + 0.255874i
\(137\) 5.52931i 0.472401i 0.971704 + 0.236200i \(0.0759022\pi\)
−0.971704 + 0.236200i \(0.924098\pi\)
\(138\) 0.826385i 0.0703465i
\(139\) −10.4632 + 18.1228i −0.887477 + 1.53716i −0.0446295 + 0.999004i \(0.514211\pi\)
−0.842848 + 0.538152i \(0.819123\pi\)
\(140\) 0 0
\(141\) 0.319852 + 0.554000i 0.0269364 + 0.0466552i
\(142\) 0.182209i 0.0152907i
\(143\) 7.85158 4.53311i 0.656582 0.379078i
\(144\) 2.14731 + 3.71926i 0.178943 + 0.309938i
\(145\) 0 0
\(146\) −1.67581 + 2.90259i −0.138691 + 0.240220i
\(147\) 5.16011i 0.425599i
\(148\) −1.33551 11.5028i −0.109778 0.945521i
\(149\) 4.87785 0.399609 0.199804 0.979836i \(-0.435969\pi\)
0.199804 + 0.979836i \(0.435969\pi\)
\(150\) 0 0
\(151\) 11.8485 + 20.5222i 0.964216 + 1.67007i 0.711708 + 0.702475i \(0.247922\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(152\) −2.50823 + 1.44813i −0.203444 + 0.117459i
\(153\) −3.08330 + 1.78014i −0.249270 + 0.143916i
\(154\) 3.61018 0.290917
\(155\) 0 0
\(156\) −6.48584 −0.519283
\(157\) 18.2533 + 10.5385i 1.45677 + 0.841067i 0.998851 0.0479266i \(-0.0152614\pi\)
0.457920 + 0.888994i \(0.348595\pi\)
\(158\) 0.880901i 0.0700807i
\(159\) 24.7736 1.96467
\(160\) 0 0
\(161\) 1.36979 + 2.37255i 0.107955 + 0.186983i
\(162\) 3.47114i 0.272718i
\(163\) −4.51313 2.60566i −0.353496 0.204091i 0.312728 0.949843i \(-0.398757\pi\)
−0.666224 + 0.745752i \(0.732090\pi\)
\(164\) −6.92664 + 11.9973i −0.540880 + 0.936832i
\(165\) 0 0
\(166\) −1.83388 3.17637i −0.142337 0.246534i
\(167\) 9.15526 5.28579i 0.708455 0.409027i −0.102034 0.994781i \(-0.532535\pi\)
0.810489 + 0.585754i \(0.199202\pi\)
\(168\) −4.58640 2.64796i −0.353849 0.204295i
\(169\) −5.13495 + 8.89400i −0.394996 + 0.684153i
\(170\) 0 0
\(171\) −2.99265 −0.228854
\(172\) −7.24089 + 4.18053i −0.552113 + 0.318762i
\(173\) −11.7250 6.76942i −0.891434 0.514670i −0.0170229 0.999855i \(-0.505419\pi\)
−0.874411 + 0.485185i \(0.838752\pi\)
\(174\) 0.293931 0.0222829
\(175\) 0 0
\(176\) −9.41503 + 16.3073i −0.709684 + 1.22921i
\(177\) 17.1116i 1.28619i
\(178\) −4.51915 + 2.60914i −0.338725 + 0.195563i
\(179\) 14.8133 1.10720 0.553599 0.832783i \(-0.313254\pi\)
0.553599 + 0.832783i \(0.313254\pi\)
\(180\) 0 0
\(181\) −2.30881 3.99897i −0.171612 0.297241i 0.767371 0.641203i \(-0.221564\pi\)
−0.938984 + 0.343962i \(0.888231\pi\)
\(182\) 0.941481 0.543564i 0.0697872 0.0402917i
\(183\) −18.2268 10.5232i −1.34736 0.777900i
\(184\) 1.56457 0.115342
\(185\) 0 0
\(186\) −4.48377 −0.328766
\(187\) −13.5189 7.80514i −0.988600 0.570768i
\(188\) 0.511505 0.295318i 0.0373054 0.0215383i
\(189\) 3.82295 + 6.62154i 0.278079 + 0.481646i
\(190\) 0 0
\(191\) −11.6768 −0.844902 −0.422451 0.906386i \(-0.638830\pi\)
−0.422451 + 0.906386i \(0.638830\pi\)
\(192\) 10.3241 5.96060i 0.745075 0.430169i
\(193\) 15.2222i 1.09572i −0.836570 0.547859i \(-0.815443\pi\)
0.836570 0.547859i \(-0.184557\pi\)
\(194\) −2.88499 + 4.99695i −0.207130 + 0.358760i
\(195\) 0 0
\(196\) 4.76431 0.340308
\(197\) 9.25567 + 5.34376i 0.659439 + 0.380727i 0.792063 0.610439i \(-0.209007\pi\)
−0.132624 + 0.991166i \(0.542340\pi\)
\(198\) 1.84497 1.06520i 0.131117 0.0757002i
\(199\) 3.95137 0.280105 0.140052 0.990144i \(-0.455273\pi\)
0.140052 + 0.990144i \(0.455273\pi\)
\(200\) 0 0
\(201\) −1.37017 + 2.37321i −0.0966444 + 0.167393i
\(202\) −2.36268 1.36409i −0.166237 0.0959771i
\(203\) 0.843876 0.487212i 0.0592285 0.0341956i
\(204\) 5.58368 + 9.67121i 0.390936 + 0.677120i
\(205\) 0 0
\(206\) −0.832293 + 1.44157i −0.0579886 + 0.100439i
\(207\) 1.40006 + 0.808323i 0.0973106 + 0.0561823i
\(208\) 5.67026i 0.393162i
\(209\) −6.56073 11.3635i −0.453815 0.786031i
\(210\) 0 0
\(211\) 8.40966 0.578945 0.289472 0.957186i \(-0.406520\pi\)
0.289472 + 0.957186i \(0.406520\pi\)
\(212\) 22.8733i 1.57095i
\(213\) −1.04872 0.605478i −0.0718570 0.0414867i
\(214\) 0.885432 0.0605269
\(215\) 0 0
\(216\) 4.36657 0.297107
\(217\) −12.8729 + 7.43216i −0.873867 + 0.504528i
\(218\) 2.35343 1.35876i 0.159395 0.0920265i
\(219\) 11.1374 + 19.2905i 0.752593 + 1.30353i
\(220\) 0 0
\(221\) −4.70070 −0.316203
\(222\) 3.57175 + 1.54396i 0.239720 + 0.103624i
\(223\) 16.4686i 1.10282i 0.834234 + 0.551411i \(0.185910\pi\)
−0.834234 + 0.551411i \(0.814090\pi\)
\(224\) −3.69741 + 6.40411i −0.247044 + 0.427893i
\(225\) 0 0
\(226\) 2.44551 + 4.23574i 0.162673 + 0.281757i
\(227\) 11.7627 6.79120i 0.780719 0.450748i −0.0559663 0.998433i \(-0.517824\pi\)
0.836685 + 0.547685i \(0.184491\pi\)
\(228\) 9.38689i 0.621662i
\(229\) −10.9009 18.8809i −0.720351 1.24768i −0.960859 0.277037i \(-0.910648\pi\)
0.240509 0.970647i \(-0.422686\pi\)
\(230\) 0 0
\(231\) 11.9966 20.7786i 0.789316 1.36713i
\(232\) 0.556493i 0.0365355i
\(233\) 13.2237i 0.866313i 0.901319 + 0.433156i \(0.142600\pi\)
−0.901319 + 0.433156i \(0.857400\pi\)
\(234\) 0.320761 0.555574i 0.0209688 0.0363190i
\(235\) 0 0
\(236\) −15.7991 −1.02843
\(237\) −5.07008 2.92721i −0.329337 0.190143i
\(238\) −1.62105 0.935912i −0.105077 0.0606661i
\(239\) 6.04811 10.4756i 0.391220 0.677613i −0.601391 0.798955i \(-0.705387\pi\)
0.992611 + 0.121342i \(0.0387199\pi\)
\(240\) 0 0
\(241\) 7.34971 + 12.7301i 0.473436 + 0.820016i 0.999538 0.0304061i \(-0.00968004\pi\)
−0.526101 + 0.850422i \(0.676347\pi\)
\(242\) 5.13388 + 2.96405i 0.330018 + 0.190536i
\(243\) 10.6114 + 6.12648i 0.680720 + 0.393014i
\(244\) −9.71605 + 16.8287i −0.622007 + 1.07735i
\(245\) 0 0
\(246\) −2.32752 4.03138i −0.148397 0.257031i
\(247\) −3.42188 1.97562i −0.217729 0.125706i
\(248\) 8.48899i 0.539052i
\(249\) −24.3758 −1.54475
\(250\) 0 0
\(251\) −27.4854 −1.73486 −0.867430 0.497559i \(-0.834230\pi\)
−0.867430 + 0.497559i \(0.834230\pi\)
\(252\) −4.37554 + 2.52622i −0.275633 + 0.159137i
\(253\) 7.08828i 0.445636i
\(254\) 0.621507 + 1.07648i 0.0389968 + 0.0675445i
\(255\) 0 0
\(256\) −4.42156 7.65837i −0.276348 0.478648i
\(257\) −20.5056 11.8389i −1.27910 0.738491i −0.302421 0.953174i \(-0.597795\pi\)
−0.976684 + 0.214683i \(0.931128\pi\)
\(258\) 2.80952i 0.174913i
\(259\) 12.8137 1.48771i 0.796204 0.0924417i
\(260\) 0 0
\(261\) 0.287507 0.497977i 0.0177962 0.0308240i
\(262\) 5.48543 3.16701i 0.338891 0.195659i
\(263\) −16.2561 + 9.38548i −1.00240 + 0.578733i −0.908956 0.416892i \(-0.863119\pi\)
−0.0934393 + 0.995625i \(0.529786\pi\)
\(264\) −6.85122 11.8667i −0.421664 0.730343i
\(265\) 0 0
\(266\) −0.786695 1.36260i −0.0482354 0.0835461i
\(267\) 34.6804i 2.12241i
\(268\) 2.19117 + 1.26507i 0.133847 + 0.0772766i
\(269\) −2.86020 −0.174389 −0.0871947 0.996191i \(-0.527790\pi\)
−0.0871947 + 0.996191i \(0.527790\pi\)
\(270\) 0 0
\(271\) 11.3218 19.6099i 0.687750 1.19122i −0.284814 0.958583i \(-0.591932\pi\)
0.972564 0.232635i \(-0.0747349\pi\)
\(272\) 8.45508 4.88154i 0.512665 0.295987i
\(273\) 7.22501i 0.437277i
\(274\) −0.857732 + 1.48564i −0.0518175 + 0.0897506i
\(275\) 0 0
\(276\) 2.53542 4.39148i 0.152615 0.264336i
\(277\) −0.142361 + 0.0821921i −0.00855364 + 0.00493844i −0.504271 0.863546i \(-0.668239\pi\)
0.495717 + 0.868484i \(0.334905\pi\)
\(278\) −5.62259 + 3.24620i −0.337220 + 0.194694i
\(279\) −4.38577 + 7.59637i −0.262569 + 0.454783i
\(280\) 0 0
\(281\) −12.2966 + 21.2983i −0.733554 + 1.27055i 0.221801 + 0.975092i \(0.428807\pi\)
−0.955355 + 0.295461i \(0.904527\pi\)
\(282\) 0.198468i 0.0118186i
\(283\) −18.0290 + 10.4090i −1.07171 + 0.618752i −0.928648 0.370962i \(-0.879028\pi\)
−0.143062 + 0.989714i \(0.545695\pi\)
\(284\) −0.559035 + 0.968277i −0.0331726 + 0.0574567i
\(285\) 0 0
\(286\) 2.81279 0.166324
\(287\) −13.3646 7.71605i −0.788887 0.455464i
\(288\) 4.36374i 0.257136i
\(289\) −4.45316 7.71309i −0.261950 0.453711i
\(290\) 0 0
\(291\) 19.1735 + 33.2095i 1.12397 + 1.94678i
\(292\) 17.8108 10.2831i 1.04230 0.601771i
\(293\) 10.1004 5.83149i 0.590074 0.340679i −0.175053 0.984559i \(-0.556010\pi\)
0.765127 + 0.643880i \(0.222676\pi\)
\(294\) −0.800461 + 1.38644i −0.0466838 + 0.0808587i
\(295\) 0 0
\(296\) 2.92314 6.76229i 0.169904 0.393050i
\(297\) 19.7827i 1.14791i
\(298\) 1.31060 + 0.756674i 0.0759209 + 0.0438330i
\(299\) 1.06724 + 1.84852i 0.0617201 + 0.106902i
\(300\) 0 0
\(301\) −4.65697 8.06611i −0.268423 0.464923i
\(302\) 7.35196i 0.423058i
\(303\) −15.7022 + 9.06569i −0.902070 + 0.520810i
\(304\) 8.20651 0.470676
\(305\) 0 0
\(306\) −1.10458 −0.0631444
\(307\) 13.5798i 0.775039i 0.921861 + 0.387520i \(0.126668\pi\)
−0.921861 + 0.387520i \(0.873332\pi\)
\(308\) −19.1848 11.0764i −1.09316 0.631134i
\(309\) 5.53138 + 9.58063i 0.314669 + 0.545023i
\(310\) 0 0
\(311\) 1.32600 2.29670i 0.0751907 0.130234i −0.825978 0.563702i \(-0.809377\pi\)
0.901169 + 0.433468i \(0.142710\pi\)
\(312\) −3.57339 2.06310i −0.202303 0.116800i
\(313\) 0.514255 + 0.296906i 0.0290674 + 0.0167821i 0.514463 0.857512i \(-0.327991\pi\)
−0.485396 + 0.874294i \(0.661325\pi\)
\(314\) 3.26957 + 5.66307i 0.184513 + 0.319585i
\(315\) 0 0
\(316\) −2.70268 + 4.68118i −0.152038 + 0.263337i
\(317\) −5.86825 3.38803i −0.329594 0.190291i 0.326067 0.945347i \(-0.394276\pi\)
−0.655661 + 0.755056i \(0.727610\pi\)
\(318\) 6.65626 + 3.84299i 0.373265 + 0.215504i
\(319\) 2.52118 0.141159
\(320\) 0 0
\(321\) 2.94227 5.09616i 0.164221 0.284440i
\(322\) 0.849953i 0.0473660i
\(323\) 6.80327i 0.378544i
\(324\) 10.6498 18.4459i 0.591653 1.02477i
\(325\) 0 0
\(326\) −0.808404 1.40020i −0.0447733 0.0775497i
\(327\) 18.0605i 0.998746i
\(328\) −7.63250 + 4.40663i −0.421434 + 0.243315i
\(329\) 0.328974 + 0.569800i 0.0181369 + 0.0314141i
\(330\) 0 0
\(331\) 1.40790 2.43855i 0.0773850 0.134035i −0.824736 0.565518i \(-0.808676\pi\)
0.902121 + 0.431483i \(0.142010\pi\)
\(332\) 22.5060i 1.23518i
\(333\) 6.10945 4.54101i 0.334796 0.248846i
\(334\) 3.27983 0.179464
\(335\) 0 0
\(336\) 7.50297 + 12.9955i 0.409321 + 0.708964i
\(337\) 21.3498 12.3263i 1.16300 0.671457i 0.210976 0.977491i \(-0.432336\pi\)
0.952020 + 0.306035i \(0.0990023\pi\)
\(338\) −2.75936 + 1.59311i −0.150089 + 0.0866540i
\(339\) 32.5054 1.76545
\(340\) 0 0
\(341\) −38.4593 −2.08269
\(342\) −0.804077 0.464234i −0.0434795 0.0251029i
\(343\) 20.1522i 1.08812i
\(344\) −5.31918 −0.286791
\(345\) 0 0
\(346\) −2.10021 3.63767i −0.112908 0.195562i
\(347\) 8.80294i 0.472566i −0.971684 0.236283i \(-0.924071\pi\)
0.971684 0.236283i \(-0.0759293\pi\)
\(348\) −1.56198 0.901808i −0.0837308 0.0483420i
\(349\) −1.42867 + 2.47454i −0.0764752 + 0.132459i −0.901727 0.432306i \(-0.857700\pi\)
0.825252 + 0.564765i \(0.191033\pi\)
\(350\) 0 0
\(351\) 2.97856 + 5.15902i 0.158984 + 0.275368i
\(352\) −16.5697 + 9.56654i −0.883170 + 0.509898i
\(353\) 10.7525 + 6.20795i 0.572297 + 0.330416i 0.758066 0.652177i \(-0.226144\pi\)
−0.185769 + 0.982593i \(0.559478\pi\)
\(354\) 2.65443 4.59761i 0.141082 0.244360i
\(355\) 0 0
\(356\) 32.0202 1.69707
\(357\) −10.7734 + 6.22003i −0.570189 + 0.329199i
\(358\) 3.98010 + 2.29791i 0.210355 + 0.121448i
\(359\) −21.7819 −1.14961 −0.574803 0.818292i \(-0.694921\pi\)
−0.574803 + 0.818292i \(0.694921\pi\)
\(360\) 0 0
\(361\) 6.64070 11.5020i 0.349511 0.605370i
\(362\) 1.43261i 0.0752964i
\(363\) 34.1195 19.6989i 1.79081 1.03393i
\(364\) −6.67082 −0.349646
\(365\) 0 0
\(366\) −3.26483 5.65484i −0.170655 0.295583i
\(367\) −20.2050 + 11.6653i −1.05469 + 0.608926i −0.923959 0.382492i \(-0.875066\pi\)
−0.130732 + 0.991418i \(0.541733\pi\)
\(368\) −3.83926 2.21660i −0.200135 0.115548i
\(369\) −9.10658 −0.474070
\(370\) 0 0
\(371\) 25.4801 1.32286
\(372\) 23.8271 + 13.7566i 1.23538 + 0.713246i
\(373\) 25.0981 14.4904i 1.29953 0.750283i 0.319206 0.947685i \(-0.396584\pi\)
0.980323 + 0.197402i \(0.0632505\pi\)
\(374\) −2.42154 4.19423i −0.125215 0.216878i
\(375\) 0 0
\(376\) 0.375754 0.0193780
\(377\) 0.657487 0.379600i 0.0338623 0.0195504i
\(378\) 2.37214i 0.122009i
\(379\) −8.18583 + 14.1783i −0.420478 + 0.728289i −0.995986 0.0895072i \(-0.971471\pi\)
0.575509 + 0.817796i \(0.304804\pi\)
\(380\) 0 0
\(381\) 8.26102 0.423225
\(382\) −3.13736 1.81136i −0.160521 0.0926770i
\(383\) −3.47188 + 2.00449i −0.177405 + 0.102425i −0.586073 0.810258i \(-0.699327\pi\)
0.408668 + 0.912683i \(0.365993\pi\)
\(384\) 18.0781 0.922544
\(385\) 0 0
\(386\) 2.36134 4.08996i 0.120189 0.208174i
\(387\) −4.75986 2.74811i −0.241958 0.139694i
\(388\) 30.6622 17.7028i 1.55664 0.898725i
\(389\) −9.11602 15.7894i −0.462200 0.800555i 0.536870 0.843665i \(-0.319607\pi\)
−0.999070 + 0.0431105i \(0.986273\pi\)
\(390\) 0 0
\(391\) 1.83758 3.18278i 0.0929305 0.160960i
\(392\) 2.62491 + 1.51549i 0.132578 + 0.0765438i
\(393\) 42.0956i 2.12344i
\(394\) 1.65790 + 2.87156i 0.0835237 + 0.144667i
\(395\) 0 0
\(396\) −13.0725 −0.656917
\(397\) 25.9749i 1.30364i −0.758372 0.651822i \(-0.774005\pi\)
0.758372 0.651822i \(-0.225995\pi\)
\(398\) 1.06167 + 0.612954i 0.0532166 + 0.0307246i
\(399\) −10.4567 −0.523489
\(400\) 0 0
\(401\) −16.7311 −0.835510 −0.417755 0.908560i \(-0.637183\pi\)
−0.417755 + 0.908560i \(0.637183\pi\)
\(402\) −0.736286 + 0.425095i −0.0367226 + 0.0212018i
\(403\) −10.0296 + 5.79059i −0.499610 + 0.288450i
\(404\) 8.37031 + 14.4978i 0.416439 + 0.721293i
\(405\) 0 0
\(406\) 0.302314 0.0150036
\(407\) 30.6365 + 13.2433i 1.51859 + 0.656444i
\(408\) 7.10450i 0.351725i
\(409\) 0.181239 0.313915i 0.00896170 0.0155221i −0.861510 0.507741i \(-0.830481\pi\)
0.870471 + 0.492219i \(0.163814\pi\)
\(410\) 0 0
\(411\) 5.70045 + 9.87347i 0.281183 + 0.487022i
\(412\) 8.84575 5.10710i 0.435799 0.251609i
\(413\) 17.5996i 0.866021i
\(414\) 0.250782 + 0.434366i 0.0123252 + 0.0213479i
\(415\) 0 0
\(416\) −2.88076 + 4.98962i −0.141241 + 0.244636i
\(417\) 43.1482i 2.11298i
\(418\) 4.07092i 0.199115i
\(419\) 8.20109 14.2047i 0.400649 0.693945i −0.593155 0.805088i \(-0.702118\pi\)
0.993804 + 0.111143i \(0.0354512\pi\)
\(420\) 0 0
\(421\) −5.36363 −0.261407 −0.130704 0.991421i \(-0.541724\pi\)
−0.130704 + 0.991421i \(0.541724\pi\)
\(422\) 2.25954 + 1.30455i 0.109993 + 0.0635043i
\(423\) 0.336243 + 0.194130i 0.0163487 + 0.00943892i
\(424\) 7.27584 12.6021i 0.353346 0.612013i
\(425\) 0 0
\(426\) −0.187849 0.325364i −0.00910132 0.0157639i
\(427\) −18.7466 10.8234i −0.907212 0.523779i
\(428\) −4.70526 2.71658i −0.227437 0.131311i
\(429\) 9.34684 16.1892i 0.451270 0.781622i
\(430\) 0 0
\(431\) −20.0498 34.7272i −0.965763 1.67275i −0.707551 0.706662i \(-0.750200\pi\)
−0.258212 0.966088i \(-0.583133\pi\)
\(432\) −10.7150 6.18631i −0.515526 0.297639i
\(433\) 8.94867i 0.430046i 0.976609 + 0.215023i \(0.0689826\pi\)
−0.976609 + 0.215023i \(0.931017\pi\)
\(434\) −4.61164 −0.221366
\(435\) 0 0
\(436\) −16.6751 −0.798594
\(437\) 2.67534 1.54461i 0.127979 0.0738885i
\(438\) 6.91071i 0.330207i
\(439\) −11.9458 20.6906i −0.570140 0.987511i −0.996551 0.0829815i \(-0.973556\pi\)
0.426411 0.904529i \(-0.359778\pi\)
\(440\) 0 0
\(441\) 1.56593 + 2.71227i 0.0745681 + 0.129156i
\(442\) −1.26300 0.729194i −0.0600748 0.0346842i
\(443\) 40.0576i 1.90320i −0.307346 0.951598i \(-0.599441\pi\)
0.307346 0.951598i \(-0.400559\pi\)
\(444\) −14.2436 19.1632i −0.675969 0.909445i
\(445\) 0 0
\(446\) −2.55469 + 4.42486i −0.120968 + 0.209523i
\(447\) 8.71018 5.02882i 0.411977 0.237855i
\(448\) 10.6185 6.13059i 0.501677 0.289643i
\(449\) −3.83167 6.63665i −0.180828 0.313203i 0.761335 0.648359i \(-0.224544\pi\)
−0.942163 + 0.335156i \(0.891211\pi\)
\(450\) 0 0
\(451\) −19.9642 34.5790i −0.940076 1.62826i
\(452\) 30.0121i 1.41165i
\(453\) 42.3147 + 24.4304i 1.98812 + 1.14784i
\(454\) 4.21393 0.197770
\(455\) 0 0
\(456\) −2.98590 + 5.17173i −0.139828 + 0.242188i
\(457\) −29.3676 + 16.9554i −1.37376 + 0.793141i −0.991399 0.130872i \(-0.958222\pi\)
−0.382361 + 0.924013i \(0.624889\pi\)
\(458\) 6.76398i 0.316060i
\(459\) 5.12851 8.88283i 0.239378 0.414615i
\(460\) 0 0
\(461\) −7.29012 + 12.6269i −0.339535 + 0.588091i −0.984345 0.176251i \(-0.943603\pi\)
0.644811 + 0.764342i \(0.276936\pi\)
\(462\) 6.44656 3.72192i 0.299921 0.173160i
\(463\) 3.45413 1.99424i 0.160527 0.0926802i −0.417585 0.908638i \(-0.637123\pi\)
0.578111 + 0.815958i \(0.303790\pi\)
\(464\) −0.788408 + 1.36556i −0.0366009 + 0.0633947i
\(465\) 0 0
\(466\) −2.05132 + 3.55299i −0.0950256 + 0.164589i
\(467\) 14.7664i 0.683307i −0.939826 0.341653i \(-0.889013\pi\)
0.939826 0.341653i \(-0.110987\pi\)
\(468\) −3.40910 + 1.96825i −0.157586 + 0.0909822i
\(469\) −1.40925 + 2.44089i −0.0650730 + 0.112710i
\(470\) 0 0
\(471\) 43.4589 2.00248
\(472\) −8.70454 5.02557i −0.400659 0.231320i
\(473\) 24.0985i 1.10805i
\(474\) −0.908166 1.57299i −0.0417134 0.0722498i
\(475\) 0 0
\(476\) 5.74292 + 9.94703i 0.263226 + 0.455922i
\(477\) 13.0216 7.51800i 0.596216 0.344226i
\(478\) 3.25006 1.87642i 0.148654 0.0858256i
\(479\) 7.80662 13.5215i 0.356693 0.617811i −0.630713 0.776016i \(-0.717237\pi\)
0.987406 + 0.158205i \(0.0505707\pi\)
\(480\) 0 0
\(481\) 9.98349 1.15911i 0.455208 0.0528511i
\(482\) 4.56048i 0.207724i
\(483\) 4.89196 + 2.82438i 0.222592 + 0.128514i
\(484\) −18.1879 31.5024i −0.826724 1.43193i
\(485\) 0 0
\(486\) 1.90074 + 3.29217i 0.0862192 + 0.149336i
\(487\) 35.6982i 1.61764i −0.588056 0.808820i \(-0.700107\pi\)
0.588056 0.808820i \(-0.299893\pi\)
\(488\) −10.7062 + 6.18121i −0.484645 + 0.279810i
\(489\) −10.7452 −0.485916
\(490\) 0 0
\(491\) −0.411627 −0.0185765 −0.00928823 0.999957i \(-0.502957\pi\)
−0.00928823 + 0.999957i \(0.502957\pi\)
\(492\) 28.5641i 1.28777i
\(493\) −1.13206 0.653597i −0.0509856 0.0294365i
\(494\) −0.612935 1.06163i −0.0275773 0.0477652i
\(495\) 0 0
\(496\) 12.0267 20.8309i 0.540017 0.935336i
\(497\) −1.07863 0.622746i −0.0483831 0.0279340i
\(498\) −6.54937 3.78128i −0.293484 0.169443i
\(499\) 19.0374 + 32.9738i 0.852232 + 1.47611i 0.879190 + 0.476472i \(0.158085\pi\)
−0.0269579 + 0.999637i \(0.508582\pi\)
\(500\) 0 0
\(501\) 10.8988 18.8773i 0.486922 0.843374i
\(502\) −7.38487 4.26366i −0.329603 0.190296i
\(503\) 13.4292 + 7.75338i 0.598780 + 0.345706i 0.768562 0.639776i \(-0.220973\pi\)
−0.169781 + 0.985482i \(0.554306\pi\)
\(504\) −3.21429 −0.143176
\(505\) 0 0
\(506\) −1.09957 + 1.90451i −0.0488817 + 0.0846656i
\(507\) 21.1755i 0.940439i
\(508\) 7.62736i 0.338409i
\(509\) 2.99718 5.19127i 0.132848 0.230099i −0.791926 0.610618i \(-0.790921\pi\)
0.924773 + 0.380519i \(0.124255\pi\)
\(510\) 0 0
\(511\) 11.4550 + 19.8406i 0.506739 + 0.877698i
\(512\) 20.2789i 0.896210i
\(513\) 7.46660 4.31084i 0.329658 0.190328i
\(514\) −3.67302 6.36185i −0.162010 0.280609i
\(515\) 0 0
\(516\) −8.61985 + 14.9300i −0.379468 + 0.657257i
\(517\) 1.70235i 0.0748692i
\(518\) 3.67361 + 1.58800i 0.161409 + 0.0697725i
\(519\) −27.9158 −1.22537
\(520\) 0 0
\(521\) −8.46908 14.6689i −0.371037 0.642655i 0.618688 0.785637i \(-0.287664\pi\)
−0.989725 + 0.142982i \(0.954331\pi\)
\(522\) 0.154497 0.0891989i 0.00676215 0.00390413i
\(523\) −2.97961 + 1.72028i −0.130289 + 0.0752226i −0.563728 0.825960i \(-0.690633\pi\)
0.433439 + 0.901183i \(0.357300\pi\)
\(524\) −38.8667 −1.69790
\(525\) 0 0
\(526\) −5.82368 −0.253924
\(527\) 17.2690 + 9.97027i 0.752250 + 0.434312i
\(528\) 38.8257i 1.68967i
\(529\) 21.3312 0.927443
\(530\) 0 0
\(531\) −5.19283 8.99425i −0.225350 0.390317i
\(532\) 9.65460i 0.418580i
\(533\) −10.4127 6.01178i −0.451025 0.260399i
\(534\) −5.37978 + 9.31806i −0.232806 + 0.403232i
\(535\) 0 0
\(536\) 0.804820 + 1.39399i 0.0347629 + 0.0602112i
\(537\) 26.4515 15.2718i 1.14147 0.659027i
\(538\) −0.768489 0.443687i −0.0331319 0.0191287i
\(539\) −6.86592 + 11.8921i −0.295736 + 0.512230i
\(540\) 0 0
\(541\) 26.7548 1.15028 0.575140 0.818055i \(-0.304948\pi\)
0.575140 + 0.818055i \(0.304948\pi\)
\(542\) 6.08397 3.51258i 0.261329 0.150878i
\(543\) −8.24549 4.76054i −0.353848 0.204294i
\(544\) 9.92020 0.425325
\(545\) 0 0
\(546\) 1.12078 1.94124i 0.0479648 0.0830775i
\(547\) 10.5797i 0.452357i −0.974086 0.226178i \(-0.927377\pi\)
0.974086 0.226178i \(-0.0726233\pi\)
\(548\) 9.11613 5.26320i 0.389422 0.224833i
\(549\) −12.7739 −0.545175
\(550\) 0 0
\(551\) −0.549391 0.951573i −0.0234048 0.0405384i
\(552\) 2.79379 1.61300i 0.118912 0.0686537i
\(553\) −5.21468 3.01070i −0.221751 0.128028i
\(554\) −0.0510001 −0.00216679
\(555\) 0 0
\(556\) 39.8385 1.68953
\(557\) −36.3993 21.0151i −1.54229 0.890440i −0.998694 0.0510917i \(-0.983730\pi\)
−0.543594 0.839349i \(-0.682937\pi\)
\(558\) −2.35677 + 1.36068i −0.0997699 + 0.0576022i
\(559\) −3.62837 6.28452i −0.153464 0.265807i
\(560\) 0 0
\(561\) −32.1869 −1.35893
\(562\) −6.60780 + 3.81501i −0.278733 + 0.160927i
\(563\) 15.1171i 0.637108i 0.947905 + 0.318554i \(0.103197\pi\)
−0.947905 + 0.318554i \(0.896803\pi\)
\(564\) 0.608917 1.05467i 0.0256400 0.0444098i
\(565\) 0 0
\(566\) −6.45878 −0.271483
\(567\) 20.5481 + 11.8635i 0.862941 + 0.498219i
\(568\) −0.616003 + 0.355650i −0.0258469 + 0.0149227i
\(569\) −29.9574 −1.25588 −0.627940 0.778262i \(-0.716102\pi\)
−0.627940 + 0.778262i \(0.716102\pi\)
\(570\) 0 0
\(571\) −15.6228 + 27.0594i −0.653792 + 1.13240i 0.328403 + 0.944538i \(0.393490\pi\)
−0.982195 + 0.187863i \(0.939844\pi\)
\(572\) −14.9474 8.62990i −0.624983 0.360834i
\(573\) −20.8507 + 12.0382i −0.871053 + 0.502902i
\(574\) −2.39390 4.14635i −0.0999194 0.173065i
\(575\) 0 0
\(576\) 3.61770 6.26605i 0.150738 0.261085i
\(577\) 24.8994 + 14.3757i 1.03658 + 0.598467i 0.918861 0.394581i \(-0.129110\pi\)
0.117714 + 0.993048i \(0.462443\pi\)
\(578\) 2.76318i 0.114933i
\(579\) −15.6934 27.1817i −0.652194 1.12963i
\(580\) 0 0
\(581\) −25.0710 −1.04012
\(582\) 11.8971i 0.493153i
\(583\) 57.0938 + 32.9631i 2.36458 + 1.36519i
\(584\) 13.0839 0.541414
\(585\) 0 0
\(586\) 3.61843 0.149476
\(587\) 12.2259 7.05861i 0.504616 0.291340i −0.226002 0.974127i \(-0.572566\pi\)
0.730618 + 0.682787i \(0.239232\pi\)
\(588\) 8.50744 4.91177i 0.350841 0.202558i
\(589\) 8.38066 + 14.5157i 0.345319 + 0.598110i
\(590\) 0 0
\(591\) 22.0366 0.906466
\(592\) −16.7535 + 12.4525i −0.688563 + 0.511793i
\(593\) 5.88296i 0.241584i −0.992678 0.120792i \(-0.961457\pi\)
0.992678 0.120792i \(-0.0385434\pi\)
\(594\) −3.06878 + 5.31529i −0.125914 + 0.218089i
\(595\) 0 0
\(596\) −4.64309 8.04207i −0.190188 0.329416i
\(597\) 7.05580 4.07367i 0.288775 0.166724i
\(598\) 0.662221i 0.0270802i
\(599\) 7.85750 + 13.6096i 0.321049 + 0.556073i 0.980705 0.195495i \(-0.0626313\pi\)
−0.659656 + 0.751568i \(0.729298\pi\)
\(600\) 0 0
\(601\) −7.77357 + 13.4642i −0.317090 + 0.549217i −0.979880 0.199589i \(-0.936039\pi\)
0.662789 + 0.748806i \(0.269373\pi\)
\(602\) 2.88964i 0.117773i
\(603\) 1.66321i 0.0677313i
\(604\) 22.5565 39.0690i 0.917810 1.58969i
\(605\) 0 0
\(606\) −5.62525 −0.228510
\(607\) 18.9989 + 10.9690i 0.771141 + 0.445219i 0.833282 0.552849i \(-0.186459\pi\)
−0.0621402 + 0.998067i \(0.519793\pi\)
\(608\) 7.22142 + 4.16929i 0.292867 + 0.169087i
\(609\) 1.00458 1.73999i 0.0407078 0.0705080i
\(610\) 0 0
\(611\) 0.256313 + 0.443946i 0.0103693 + 0.0179602i
\(612\) 5.86981 + 3.38894i 0.237273 + 0.136990i
\(613\) −24.6605 14.2377i −0.996027 0.575057i −0.0889567 0.996035i \(-0.528353\pi\)
−0.907070 + 0.420979i \(0.861687\pi\)
\(614\) −2.10656 + 3.64867i −0.0850138 + 0.147248i
\(615\) 0 0
\(616\) −7.04662 12.2051i −0.283916 0.491757i
\(617\) −30.8078 17.7869i −1.24027 0.716072i −0.271124 0.962545i \(-0.587395\pi\)
−0.969150 + 0.246472i \(0.920729\pi\)
\(618\) 3.43221i 0.138064i
\(619\) 9.30332 0.373932 0.186966 0.982366i \(-0.440135\pi\)
0.186966 + 0.982366i \(0.440135\pi\)
\(620\) 0 0
\(621\) −4.65748 −0.186898
\(622\) 0.712551 0.411391i 0.0285707 0.0164953i
\(623\) 35.6695i 1.42907i
\(624\) 5.84577 + 10.1252i 0.234018 + 0.405331i
\(625\) 0 0
\(626\) 0.0921147 + 0.159547i 0.00368164 + 0.00637680i
\(627\) −23.4305 13.5276i −0.935723 0.540240i
\(628\) 40.1254i 1.60118i
\(629\) −10.3232 13.8888i −0.411613 0.553782i
\(630\) 0 0
\(631\) −11.6294 + 20.1428i −0.462961 + 0.801872i −0.999107 0.0422534i \(-0.986546\pi\)
0.536146 + 0.844125i \(0.319880\pi\)
\(632\) −2.97810 + 1.71941i −0.118462 + 0.0683943i
\(633\) 15.0168 8.66995i 0.596864 0.344600i
\(634\) −1.05114 1.82062i −0.0417459 0.0723060i
\(635\) 0 0
\(636\) −23.5813 40.8440i −0.935060 1.61957i
\(637\) 4.13504i 0.163836i
\(638\) 0.677401 + 0.391098i 0.0268186 + 0.0154837i
\(639\) −0.734973 −0.0290751
\(640\) 0 0
\(641\) 4.09344 7.09004i 0.161681 0.280040i −0.773791 0.633441i \(-0.781642\pi\)
0.935472 + 0.353402i \(0.114975\pi\)
\(642\) 1.58108 0.912837i 0.0624003 0.0360268i
\(643\) 11.4564i 0.451796i 0.974151 + 0.225898i \(0.0725316\pi\)
−0.974151 + 0.225898i \(0.927468\pi\)
\(644\) 2.60773 4.51672i 0.102759 0.177984i
\(645\) 0 0
\(646\) −1.05535 + 1.82793i −0.0415224 + 0.0719189i
\(647\) −13.7897 + 7.96151i −0.542130 + 0.312999i −0.745942 0.666011i \(-0.768000\pi\)
0.203812 + 0.979010i \(0.434667\pi\)
\(648\) 11.7350 6.77522i 0.460995 0.266156i
\(649\) 22.7683 39.4358i 0.893733 1.54799i
\(650\) 0 0
\(651\) −15.3244 + 26.5426i −0.600610 + 1.04029i
\(652\) 9.92102i 0.388537i
\(653\) −18.1677 + 10.4891i −0.710957 + 0.410471i −0.811415 0.584470i \(-0.801302\pi\)
0.100458 + 0.994941i \(0.467969\pi\)
\(654\) 2.80162 4.85255i 0.109552 0.189750i
\(655\) 0 0
\(656\) 24.9723 0.975003
\(657\) 11.7081 + 6.75967i 0.456776 + 0.263720i
\(658\) 0.204128i 0.00795774i
\(659\) −0.598998 1.03749i −0.0233336 0.0404151i 0.854123 0.520071i \(-0.174095\pi\)
−0.877456 + 0.479656i \(0.840761\pi\)
\(660\) 0 0
\(661\) 16.1732 + 28.0129i 0.629066 + 1.08957i 0.987740 + 0.156111i \(0.0498958\pi\)
−0.358674 + 0.933463i \(0.616771\pi\)
\(662\) 0.756558 0.436799i 0.0294045 0.0169767i
\(663\) −8.39385 + 4.84619i −0.325990 + 0.188210i
\(664\) −7.15900 + 12.3997i −0.277823 + 0.481204i
\(665\) 0 0
\(666\) 2.34593 0.272370i 0.0909031 0.0105541i
\(667\) 0.593568i 0.0229830i
\(668\) −17.4293 10.0628i −0.674359 0.389341i
\(669\) 16.9784 + 29.4074i 0.656422 + 1.13696i
\(670\) 0 0
\(671\) −28.0039 48.5042i −1.08108 1.87248i
\(672\) 15.2474i 0.588182i
\(673\) −32.1264 + 18.5482i −1.23838 + 0.714981i −0.968764 0.247986i \(-0.920231\pi\)
−0.269620 + 0.962967i \(0.586898\pi\)
\(674\) 7.64845 0.294607
\(675\) 0 0
\(676\) 19.5513 0.751972
\(677\) 6.39266i 0.245690i −0.992426 0.122845i \(-0.960798\pi\)
0.992426 0.122845i \(-0.0392018\pi\)
\(678\) 8.73368 + 5.04239i 0.335415 + 0.193652i
\(679\) 19.7204 + 34.1567i 0.756798 + 1.31081i
\(680\) 0 0
\(681\) 14.0028 24.2536i 0.536589 0.929399i
\(682\) −10.3334 5.96599i −0.395686 0.228449i
\(683\) −13.1246 7.57751i −0.502200 0.289945i 0.227421 0.973796i \(-0.426970\pi\)
−0.729622 + 0.683851i \(0.760304\pi\)
\(684\) 2.84862 + 4.93396i 0.108920 + 0.188655i
\(685\) 0 0
\(686\) −3.12611 + 5.41458i −0.119355 + 0.206730i
\(687\) −38.9306 22.4766i −1.48529 0.857534i
\(688\) 13.0526 + 7.53592i 0.497626 + 0.287304i
\(689\) 19.8523 0.756311
\(690\) 0 0
\(691\) −19.1544 + 33.1764i −0.728668 + 1.26209i 0.228779 + 0.973478i \(0.426527\pi\)
−0.957447 + 0.288611i \(0.906807\pi\)
\(692\) 25.7745i 0.979800i
\(693\) 14.5623i 0.553176i
\(694\) 1.36555 2.36521i 0.0518357 0.0897820i
\(695\) 0 0
\(696\) −0.573717 0.993707i −0.0217467 0.0376664i
\(697\) 20.7022i 0.784153i
\(698\) −0.767723 + 0.443245i −0.0290587 + 0.0167771i
\(699\) 13.6330 + 23.6130i 0.515647 + 0.893126i
\(700\) 0 0
\(701\) −7.37527 + 12.7743i −0.278560 + 0.482480i −0.971027 0.238969i \(-0.923191\pi\)
0.692467 + 0.721450i \(0.256524\pi\)
\(702\) 1.84819i 0.0697556i
\(703\) −1.67757 14.4490i −0.0632709 0.544954i
\(704\) 31.7241 1.19565
\(705\) 0 0
\(706\) 1.92601 + 3.33595i 0.0724865 + 0.125550i
\(707\) −16.1501 + 9.32424i −0.607386 + 0.350674i
\(708\) −28.2118 + 16.2881i −1.06026 + 0.612143i
\(709\) 15.3282 0.575664 0.287832 0.957681i \(-0.407065\pi\)
0.287832 + 0.957681i \(0.407065\pi\)
\(710\) 0 0
\(711\) −3.55327 −0.133258
\(712\) 17.6416 + 10.1854i 0.661148 + 0.381714i
\(713\) 9.05456i 0.339096i
\(714\) −3.85952 −0.144439
\(715\) 0 0
\(716\) −14.1004 24.4226i −0.526956 0.912715i
\(717\) 24.9412i 0.931448i
\(718\) −5.85245 3.37891i −0.218411 0.126100i
\(719\) −2.50682 + 4.34194i −0.0934885 + 0.161927i −0.908977 0.416847i \(-0.863135\pi\)
0.815488 + 0.578774i \(0.196469\pi\)
\(720\) 0 0
\(721\) 5.68913 + 9.85387i 0.211874 + 0.366977i
\(722\) 3.56850 2.06027i 0.132806 0.0766755i
\(723\) 26.2482 + 15.1544i 0.976180 + 0.563598i
\(724\) −4.39538 + 7.61302i −0.163353 + 0.282936i
\(725\) 0 0
\(726\) 12.2232 0.453644
\(727\) 26.4687 15.2817i 0.981670 0.566767i 0.0788961 0.996883i \(-0.474860\pi\)
0.902774 + 0.430115i \(0.141527\pi\)
\(728\) −3.67530 2.12194i −0.136216 0.0786442i
\(729\) −8.30023 −0.307416
\(730\) 0 0
\(731\) −6.24735 + 10.8207i −0.231066 + 0.400219i
\(732\) 40.0671i 1.48092i
\(733\) −0.111078 + 0.0641308i −0.00410275 + 0.00236872i −0.502050 0.864839i \(-0.667421\pi\)
0.497947 + 0.867207i \(0.334087\pi\)
\(734\) −7.23833 −0.267172
\(735\) 0 0
\(736\) −2.25227 3.90105i −0.0830198 0.143794i
\(737\) −6.31546 + 3.64623i −0.232633 + 0.134311i
\(738\) −2.44679 1.41266i −0.0900676 0.0520006i
\(739\) −3.03253 −0.111553 −0.0557767 0.998443i \(-0.517763\pi\)
−0.0557767 + 0.998443i \(0.517763\pi\)
\(740\) 0 0
\(741\) −8.14708 −0.299290
\(742\) 6.84610 + 3.95260i 0.251328 + 0.145104i
\(743\) 1.66788 0.962952i 0.0611886 0.0353273i −0.469094 0.883148i \(-0.655419\pi\)
0.530282 + 0.847821i \(0.322086\pi\)
\(744\) 8.75174 + 15.1585i 0.320854 + 0.555736i
\(745\) 0 0
\(746\) 8.99126 0.329193
\(747\) −12.8124 + 7.39727i −0.468783 + 0.270652i
\(748\) 29.7180i 1.08660i
\(749\) 3.02618 5.24150i 0.110574 0.191520i
\(750\) 0 0
\(751\) 11.6540 0.425261 0.212630 0.977133i \(-0.431797\pi\)
0.212630 + 0.977133i \(0.431797\pi\)
\(752\) −0.922052 0.532347i −0.0336238 0.0194127i
\(753\) −49.0795 + 28.3361i −1.78856 + 1.03262i
\(754\) 0.235541 0.00857791
\(755\) 0 0
\(756\) 7.27792 12.6057i 0.264696 0.458466i
\(757\) 4.01870 + 2.32020i 0.146062 + 0.0843290i 0.571250 0.820776i \(-0.306459\pi\)
−0.425188 + 0.905105i \(0.639792\pi\)
\(758\) −4.39880 + 2.53965i −0.159771 + 0.0922441i
\(759\) 7.30767 + 12.6573i 0.265252 + 0.459429i
\(760\) 0 0
\(761\) −6.38323 + 11.0561i −0.231392 + 0.400782i −0.958218 0.286039i \(-0.907661\pi\)
0.726826 + 0.686822i \(0.240995\pi\)
\(762\) 2.21960 + 1.28149i 0.0804077 + 0.0464234i
\(763\) 18.5755i 0.672480i
\(764\) 11.1148 + 19.2514i 0.402119 + 0.696491i
\(765\) 0 0
\(766\) −1.24379 −0.0449398
\(767\) 13.7124i 0.495124i
\(768\) −15.7908 9.11684i −0.569802 0.328975i
\(769\) −37.0113 −1.33466 −0.667330 0.744762i \(-0.732563\pi\)
−0.667330 + 0.744762i \(0.732563\pi\)
\(770\) 0 0
\(771\) −48.8214 −1.75826
\(772\) −25.0967 + 14.4896i −0.903251 + 0.521492i
\(773\) 37.9535 21.9124i 1.36509 0.788136i 0.374795 0.927108i \(-0.377713\pi\)
0.990296 + 0.138972i \(0.0443798\pi\)
\(774\) −0.852599 1.47674i −0.0306460 0.0530805i
\(775\) 0 0
\(776\) 22.5246 0.808584
\(777\) 21.3471 15.8668i 0.765824 0.569220i
\(778\) 5.65648i 0.202794i
\(779\) −8.70079 + 15.0702i −0.311738 + 0.539946i
\(780\) 0 0
\(781\) −1.61127 2.79080i −0.0576557 0.0998625i
\(782\) 0.987456 0.570108i 0.0353114 0.0203870i
\(783\) 1.65659i 0.0592017i
\(784\) −4.29413 7.43765i −0.153362 0.265630i
\(785\) 0 0
\(786\) 6.53007 11.3104i 0.232920 0.403429i
\(787\) 19.9883i 0.712506i 0.934389 + 0.356253i \(0.115946\pi\)
−0.934389 + 0.356253i \(0.884054\pi\)
\(788\) 20.3463i 0.724808i
\(789\) −19.3519 + 33.5186i −0.688947 + 1.19329i
\(790\) 0 0
\(791\) 33.4325 1.18872
\(792\) −7.20231 4.15826i −0.255923 0.147757i
\(793\) −14.6060 8.43277i −0.518674 0.299456i
\(794\) 4.02935 6.97904i 0.142996 0.247677i
\(795\) 0 0
\(796\) −3.76120 6.51459i −0.133312 0.230903i
\(797\) 35.3441 + 20.4059i 1.25195 + 0.722814i 0.971497 0.237053i \(-0.0761816\pi\)
0.280454 + 0.959867i \(0.409515\pi\)
\(798\) −2.80954 1.62209i −0.0994566 0.0574213i
\(799\) 0.441320 0.764389i 0.0156128 0.0270421i
\(800\) 0 0
\(801\) 10.5244 + 18.2288i 0.371861 + 0.644083i
\(802\) −4.49537 2.59540i −0.158737 0.0916468i
\(803\) 59.2763i 2.09182i
\(804\) 5.21691 0.183986
\(805\) 0 0
\(806\) −3.59305 −0.126560
\(807\) −5.10734 + 2.94873i −0.179787 + 0.103800i
\(808\) 10.6501i 0.374670i
\(809\) 1.45711 + 2.52378i 0.0512292 + 0.0887315i 0.890503 0.454978i \(-0.150353\pi\)
−0.839274 + 0.543709i \(0.817019\pi\)
\(810\) 0 0
\(811\) 13.8960 + 24.0686i 0.487956 + 0.845164i 0.999904 0.0138524i \(-0.00440949\pi\)
−0.511949 + 0.859016i \(0.671076\pi\)
\(812\) −1.60652 0.927528i −0.0563780 0.0325498i
\(813\) 46.6889i 1.63745i
\(814\) 6.17717 + 8.31072i 0.216510 + 0.291291i
\(815\) 0 0
\(816\) 10.0653 17.4336i 0.352355 0.610297i
\(817\) −9.09552 + 5.25130i −0.318212 + 0.183720i
\(818\) 0.0973920 0.0562293i 0.00340523 0.00196601i
\(819\) −2.19256 3.79763i −0.0766143 0.132700i
\(820\) 0 0
\(821\) 20.8119 + 36.0473i 0.726342 + 1.25806i 0.958419 + 0.285364i \(0.0921144\pi\)
−0.232077 + 0.972697i \(0.574552\pi\)
\(822\) 3.53712i 0.123371i
\(823\) −20.4659 11.8160i −0.713398 0.411880i 0.0989202 0.995095i \(-0.468461\pi\)
−0.812318 + 0.583215i \(0.801794\pi\)
\(824\) 6.49812 0.226373
\(825\) 0 0
\(826\) 2.73014 4.72874i 0.0949936 0.164534i
\(827\) 10.5499 6.09101i 0.366857 0.211805i −0.305227 0.952279i \(-0.598732\pi\)
0.672085 + 0.740474i \(0.265399\pi\)
\(828\) 3.07768i 0.106957i
\(829\) −3.01060 + 5.21452i −0.104563 + 0.181108i −0.913559 0.406705i \(-0.866678\pi\)
0.808997 + 0.587813i \(0.200011\pi\)
\(830\) 0 0
\(831\) −0.169472 + 0.293534i −0.00587892 + 0.0101826i
\(832\) 8.27316 4.77651i 0.286820 0.165596i
\(833\) 6.16588 3.55987i 0.213635 0.123342i
\(834\) −6.69335 + 11.5932i −0.231772 + 0.401441i
\(835\) 0 0
\(836\) −12.4900 + 21.6332i −0.431974 + 0.748201i
\(837\) 25.2704i 0.873472i
\(838\) 4.40700 2.54438i 0.152237 0.0878942i
\(839\) −4.03238 + 6.98429i −0.139213 + 0.241124i −0.927199 0.374569i \(-0.877791\pi\)
0.787986 + 0.615693i \(0.211124\pi\)
\(840\) 0 0
\(841\) −28.7889 −0.992720
\(842\) −1.44112 0.832031i −0.0496643 0.0286737i
\(843\) 50.7088i 1.74650i
\(844\) −8.00493 13.8649i −0.275541 0.477251i
\(845\) 0 0
\(846\) 0.0602287 + 0.104319i 0.00207070 + 0.00358656i
\(847\) 35.0926 20.2607i 1.20580 0.696167i
\(848\) −35.7080 + 20.6160i −1.22622 + 0.707957i
\(849\) −21.4624 + 37.1740i −0.736587 + 1.27581i
\(850\) 0 0
\(851\) −3.11789 + 7.21281i −0.106880 + 0.247252i
\(852\) 2.30535i 0.0789800i
\(853\) −37.3642 21.5722i −1.27933 0.738619i −0.302602 0.953117i \(-0.597855\pi\)
−0.976724 + 0.214498i \(0.931188\pi\)
\(854\) −3.35794 5.81612i −0.114906 0.199024i
\(855\) 0 0
\(856\) −1.72825 2.99342i −0.0590704 0.102313i
\(857\) 33.4524i 1.14271i 0.820703 + 0.571356i \(0.193582\pi\)
−0.820703 + 0.571356i \(0.806418\pi\)
\(858\) 5.02269 2.89985i 0.171472 0.0989993i
\(859\) −7.52085 −0.256608 −0.128304 0.991735i \(-0.540953\pi\)
−0.128304 + 0.991735i \(0.540953\pi\)
\(860\) 0 0
\(861\) −31.8195 −1.08441
\(862\) 12.4408i 0.423737i
\(863\) 19.9370 + 11.5106i 0.678664 + 0.391827i 0.799351 0.600864i \(-0.205177\pi\)
−0.120688 + 0.992691i \(0.538510\pi\)
\(864\) −6.28586 10.8874i −0.213849 0.370398i
\(865\) 0 0
\(866\) −1.38816 + 2.40436i −0.0471716 + 0.0817036i
\(867\) −15.9037 9.18198i −0.540116 0.311836i
\(868\) 24.5067 + 14.1489i 0.831810 + 0.480246i
\(869\) −7.78975 13.4922i −0.264249 0.457693i
\(870\) 0 0
\(871\) −1.09798 + 1.90176i −0.0372038 + 0.0644388i
\(872\) −9.18721 5.30424i −0.311118 0.179624i
\(873\) 20.1561 + 11.6371i 0.682180 + 0.393857i
\(874\) 0.958426 0.0324192
\(875\) 0 0
\(876\) 21.2027 36.7241i 0.716373 1.24079i
\(877\) 12.6479i 0.427089i −0.976933 0.213545i \(-0.931499\pi\)
0.976933 0.213545i \(-0.0685008\pi\)
\(878\) 7.41232i 0.250154i
\(879\) 12.0240 20.8261i 0.405558 0.702448i
\(880\) 0 0
\(881\) −2.42275 4.19633i −0.0816247 0.141378i 0.822323 0.569021i \(-0.192678\pi\)
−0.903948 + 0.427643i \(0.859344\pi\)
\(882\) 0.971658i 0.0327174i
\(883\) 39.5494 22.8338i 1.33094 0.768420i 0.345498 0.938419i \(-0.387710\pi\)
0.985444 + 0.169999i \(0.0543766\pi\)
\(884\) 4.47447 + 7.75000i 0.150493 + 0.260661i
\(885\) 0 0
\(886\) 6.21393 10.7628i 0.208761 0.361585i
\(887\) 48.0641i 1.61383i −0.590665 0.806917i \(-0.701134\pi\)
0.590665 0.806917i \(-0.298866\pi\)
\(888\) −1.75185 15.0888i −0.0587883 0.506346i
\(889\) 8.49662 0.284967
\(890\) 0 0
\(891\) 30.6951 + 53.1654i 1.02832 + 1.78111i
\(892\) 27.1517 15.6761i 0.909107 0.524873i
\(893\) 0.642519 0.370959i 0.0215011 0.0124137i
\(894\) 3.12038 0.104361
\(895\) 0 0
\(896\) 18.5937 0.621171
\(897\) 3.81146 + 2.20055i 0.127261 + 0.0734741i
\(898\) 2.37755i 0.0793398i
\(899\) −3.22056 −0.107412
\(900\) 0 0
\(901\) −17.0909 29.6022i −0.569379 0.986194i
\(902\) 12.3877i 0.412467i
\(903\) −16.6315 9.60222i −0.553463 0.319542i
\(904\) 9.54663 16.5352i 0.317516 0.549954i
\(905\) 0 0
\(906\) 7.57952 + 13.1281i 0.251813 + 0.436152i
\(907\) −40.2719 + 23.2510i −1.33721 + 0.772036i −0.986392 0.164410i \(-0.947428\pi\)
−0.350813 + 0.936446i \(0.614095\pi\)
\(908\) −22.3932 12.9287i −0.743145 0.429055i
\(909\) −5.50230 + 9.53026i −0.182500 + 0.316099i
\(910\) 0 0
\(911\) 14.3173 0.474353 0.237177 0.971467i \(-0.423778\pi\)
0.237177 + 0.971467i \(0.423778\pi\)
\(912\) 14.6540 8.46052i 0.485244 0.280156i
\(913\) −56.1769 32.4338i −1.85919 1.07340i
\(914\) −10.5208 −0.347997
\(915\) 0 0
\(916\) −20.7525 + 35.9444i −0.685682 + 1.18764i
\(917\) 43.2962i 1.42977i
\(918\) 2.75589 1.59112i 0.0909580 0.0525146i
\(919\) 43.3839 1.43110 0.715552 0.698559i \(-0.246175\pi\)
0.715552 + 0.698559i \(0.246175\pi\)
\(920\) 0 0
\(921\) 14.0001 + 24.2489i 0.461319 + 0.799028i
\(922\) −3.91747 + 2.26175i −0.129015 + 0.0744869i
\(923\) −0.840388 0.485198i −0.0276617 0.0159705i
\(924\) −45.6768 −1.50266
\(925\) 0 0
\(926\) 1.23742 0.0406643
\(927\) 5.81484 + 3.35720i 0.190984 + 0.110265i
\(928\) −1.38754 + 0.801096i −0.0455482 + 0.0262973i
\(929\) −14.8015 25.6370i −0.485623 0.841124i 0.514240 0.857646i \(-0.328074\pi\)
−0.999863 + 0.0165222i \(0.994741\pi\)
\(930\) 0 0
\(931\) 5.98461 0.196138
\(932\) 21.8018 12.5873i 0.714141 0.412310i
\(933\) 5.46818i 0.179020i
\(934\) 2.29063 3.96749i 0.0749517 0.129820i
\(935\) 0 0
\(936\) −2.50434 −0.0818569
\(937\) 9.86973 + 5.69829i 0.322430 + 0.186155i 0.652475 0.757810i \(-0.273731\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(938\) −0.757284 + 0.437218i −0.0247262 + 0.0142757i
\(939\) 1.22438 0.0399562
\(940\) 0 0
\(941\) 12.7126 22.0189i 0.414419 0.717795i −0.580948 0.813940i \(-0.697318\pi\)
0.995367 + 0.0961458i \(0.0306515\pi\)
\(942\) 11.6767 + 6.74154i 0.380447 + 0.219651i
\(943\) 8.14100 4.70021i 0.265107 0.153060i
\(944\) 14.2399 + 24.6642i 0.463469 + 0.802752i
\(945\) 0 0
\(946\) 3.73827 6.47487i 0.121542 0.210516i
\(947\) −14.0192 8.09396i −0.455561 0.263018i 0.254615 0.967043i \(-0.418051\pi\)
−0.710176 + 0.704024i \(0.751385\pi\)
\(948\) 11.1453i 0.361984i
\(949\) 8.92489 + 15.4584i 0.289714 + 0.501800i
\(950\) 0 0
\(951\) −13.9716 −0.453060
\(952\) 7.30712i 0.236825i
\(953\) 16.8415 + 9.72346i 0.545550 + 0.314974i 0.747325 0.664458i \(-0.231338\pi\)
−0.201775 + 0.979432i \(0.564671\pi\)
\(954\) 4.66491 0.151032
\(955\) 0 0
\(956\) −23.0281 −0.744783
\(957\) 4.50198 2.59922i 0.145528 0.0840208i
\(958\) 4.19502 2.42200i 0.135535 0.0782512i
\(959\) 5.86303 + 10.1551i 0.189327 + 0.327924i
\(960\) 0 0
\(961\) 18.1278 0.584769
\(962\) 2.86221 + 1.23725i 0.0922813 + 0.0398906i
\(963\) 3.57154i 0.115091i
\(964\) 13.9920 24.2348i 0.450651 0.780551i
\(965\) 0 0
\(966\) 0.876260 + 1.51773i 0.0281932 + 0.0488321i
\(967\) −0.610774 + 0.352631i −0.0196412 + 0.0113398i −0.509788 0.860300i \(-0.670276\pi\)
0.490147 + 0.871640i \(0.336943\pi\)
\(968\) 23.1418i 0.743805i
\(969\) 7.01384 + 12.1483i 0.225317 + 0.390261i
\(970\) 0 0
\(971\) −5.02834 + 8.70933i −0.161367 + 0.279496i −0.935359 0.353699i \(-0.884924\pi\)
0.773992 + 0.633195i \(0.218257\pi\)
\(972\) 23.3265i 0.748199i
\(973\) 44.3788i 1.42272i
\(974\) 5.53767 9.59153i 0.177438 0.307332i
\(975\) 0 0
\(976\) 35.0288 1.12124
\(977\) −37.8923 21.8771i −1.21228 0.699911i −0.249025 0.968497i \(-0.580110\pi\)
−0.963256 + 0.268586i \(0.913444\pi\)
\(978\) −2.88707 1.66685i −0.0923183 0.0533000i
\(979\) −46.1449 + 79.9252i −1.47480 + 2.55442i
\(980\) 0 0
\(981\) −5.48078 9.49298i −0.174988 0.303088i
\(982\) −0.110597 0.0638534i −0.00352931 0.00203765i
\(983\) −10.4756 6.04809i −0.334119 0.192904i 0.323549 0.946211i \(-0.395124\pi\)
−0.657669 + 0.753307i \(0.728457\pi\)
\(984\) −9.08604 + 15.7375i −0.289652 + 0.501692i
\(985\) 0 0
\(986\) −0.202778 0.351222i −0.00645777 0.0111852i
\(987\) 1.17487 + 0.678313i 0.0373966 + 0.0215909i
\(988\) 7.52216i 0.239312i
\(989\) 5.67356 0.180409
\(990\) 0 0
\(991\) −37.4383 −1.18927 −0.594633 0.803997i \(-0.702703\pi\)
−0.594633 + 0.803997i \(0.702703\pi\)
\(992\) 21.1661 12.2203i 0.672026 0.387994i
\(993\) 5.80589i 0.184244i
\(994\) −0.193206 0.334643i −0.00612814 0.0106142i
\(995\) 0 0
\(996\) 23.2026 + 40.1881i 0.735203 + 1.27341i
\(997\) −26.8024 15.4743i −0.848839 0.490078i 0.0114198 0.999935i \(-0.496365\pi\)
−0.860259 + 0.509857i \(0.829698\pi\)
\(998\) 11.8127i 0.373924i
\(999\) −8.70173 + 20.1302i −0.275310 + 0.636893i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.o.c.824.8 28
5.2 odd 4 185.2.e.b.121.3 yes 14
5.3 odd 4 925.2.e.b.676.5 14
5.4 even 2 inner 925.2.o.c.824.7 28
37.26 even 3 inner 925.2.o.c.174.7 28
185.27 odd 12 6845.2.a.m.1.3 7
185.47 odd 12 6845.2.a.j.1.5 7
185.63 odd 12 925.2.e.b.26.5 14
185.137 odd 12 185.2.e.b.26.3 14
185.174 even 6 inner 925.2.o.c.174.8 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.b.26.3 14 185.137 odd 12
185.2.e.b.121.3 yes 14 5.2 odd 4
925.2.e.b.26.5 14 185.63 odd 12
925.2.e.b.676.5 14 5.3 odd 4
925.2.o.c.174.7 28 37.26 even 3 inner
925.2.o.c.174.8 28 185.174 even 6 inner
925.2.o.c.824.7 28 5.4 even 2 inner
925.2.o.c.824.8 28 1.1 even 1 trivial
6845.2.a.j.1.5 7 185.47 odd 12
6845.2.a.m.1.3 7 185.27 odd 12