Properties

Label 925.2.e.b.676.5
Level $925$
Weight $2$
Character 925.676
Analytic conductor $7.386$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(26,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 13 x^{12} - 16 x^{11} + 98 x^{10} - 116 x^{9} + 378 x^{8} - 264 x^{7} + 795 x^{6} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 676.5
Root \(-0.155125 - 0.268684i\) of defining polynomial
Character \(\chi\) \(=\) 925.676
Dual form 925.2.e.b.26.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.155125 - 0.268684i) q^{2} +(1.03095 + 1.78566i) q^{3} +(0.951873 + 1.64869i) q^{4} +0.639704 q^{6} +(-1.06035 - 1.83659i) q^{7} +1.21113 q^{8} +(-0.625722 + 1.08378i) q^{9} +5.48703 q^{11} +(-1.96267 + 3.39944i) q^{12} +(0.826151 + 1.43093i) q^{13} -0.657948 q^{14} +(-1.71587 + 2.97197i) q^{16} +(-1.42247 + 2.46379i) q^{17} +(0.194130 + 0.336243i) q^{18} +(1.19568 + 2.07098i) q^{19} +(2.18635 - 3.78686i) q^{21} +(0.851174 - 1.47428i) q^{22} -1.29182 q^{23} +(1.24862 + 2.16267i) q^{24} +0.512625 q^{26} +3.60535 q^{27} +(2.01864 - 3.49639i) q^{28} -0.459480 q^{29} -7.00913 q^{31} +(1.74348 + 3.01980i) q^{32} +(5.65686 + 9.79798i) q^{33} +(0.441320 + 0.764389i) q^{34} -2.38243 q^{36} +(2.41356 - 5.58343i) q^{37} +0.741917 q^{38} +(-1.70344 + 2.95045i) q^{39} +(-3.63843 - 6.30194i) q^{41} +(-0.678313 - 1.17487i) q^{42} +4.39190 q^{43} +(5.22296 + 9.04642i) q^{44} +(-0.200394 + 0.347092i) q^{46} +0.310249 q^{47} -7.07591 q^{48} +(1.25130 - 2.16731i) q^{49} -5.86599 q^{51} +(-1.57278 + 2.72414i) q^{52} +(-6.00746 + 10.4052i) q^{53} +(0.559279 - 0.968700i) q^{54} +(-1.28423 - 2.22435i) q^{56} +(-2.46537 + 4.27015i) q^{57} +(-0.0712767 + 0.123455i) q^{58} +(-4.14947 + 7.18709i) q^{59} +(-5.10365 - 8.83978i) q^{61} +(-1.08729 + 1.88324i) q^{62} +2.65395 q^{63} -5.78165 q^{64} +3.51008 q^{66} +(0.664518 + 1.15098i) q^{67} -5.41604 q^{68} +(-1.33181 - 2.30676i) q^{69} +(-0.293650 - 0.508617i) q^{71} +(-0.757834 + 1.31261i) q^{72} -10.8030 q^{73} +(-1.12578 - 1.51461i) q^{74} +(-2.27627 + 3.94261i) q^{76} +(-5.81820 - 10.0774i) q^{77} +(0.528492 + 0.915375i) q^{78} +(1.41967 + 2.45893i) q^{79} +(5.59411 + 9.68928i) q^{81} -2.25764 q^{82} +(5.91099 - 10.2381i) q^{83} +8.32450 q^{84} +(0.681292 - 1.18003i) q^{86} +(-0.473702 - 0.820476i) q^{87} +6.64553 q^{88} +(8.40980 - 14.5662i) q^{89} +(1.75202 - 3.03459i) q^{91} +(-1.22965 - 2.12982i) q^{92} +(-7.22607 - 12.5159i) q^{93} +(0.0481273 - 0.0833590i) q^{94} +(-3.59489 + 6.22653i) q^{96} +18.5979 q^{97} +(-0.388215 - 0.672407i) q^{98} +(-3.43336 + 5.94675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} + 2 q^{3} - 8 q^{4} + 4 q^{6} - 2 q^{7} + 6 q^{8} - 5 q^{9} - 10 q^{11} + 8 q^{12} - 6 q^{13} - 36 q^{14} - 14 q^{16} + q^{17} + 4 q^{18} + 6 q^{19} + 13 q^{21} + q^{22} - 12 q^{23} - 21 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.155125 0.268684i 0.109690 0.189988i −0.805955 0.591977i \(-0.798348\pi\)
0.915645 + 0.401989i \(0.131681\pi\)
\(3\) 1.03095 + 1.78566i 0.595220 + 1.03095i 0.993516 + 0.113694i \(0.0362685\pi\)
−0.398296 + 0.917257i \(0.630398\pi\)
\(4\) 0.951873 + 1.64869i 0.475936 + 0.824346i
\(5\) 0 0
\(6\) 0.639704 0.261158
\(7\) −1.06035 1.83659i −0.400776 0.694165i 0.593044 0.805170i \(-0.297926\pi\)
−0.993820 + 0.111006i \(0.964593\pi\)
\(8\) 1.21113 0.428201
\(9\) −0.625722 + 1.08378i −0.208574 + 0.361261i
\(10\) 0 0
\(11\) 5.48703 1.65440 0.827201 0.561906i \(-0.189932\pi\)
0.827201 + 0.561906i \(0.189932\pi\)
\(12\) −1.96267 + 3.39944i −0.566574 + 0.981335i
\(13\) 0.826151 + 1.43093i 0.229133 + 0.396870i 0.957551 0.288263i \(-0.0930776\pi\)
−0.728418 + 0.685133i \(0.759744\pi\)
\(14\) −0.657948 −0.175844
\(15\) 0 0
\(16\) −1.71587 + 2.97197i −0.428967 + 0.742993i
\(17\) −1.42247 + 2.46379i −0.345000 + 0.597557i −0.985354 0.170523i \(-0.945454\pi\)
0.640354 + 0.768080i \(0.278788\pi\)
\(18\) 0.194130 + 0.336243i 0.0457568 + 0.0792532i
\(19\) 1.19568 + 2.07098i 0.274308 + 0.475115i 0.969960 0.243264i \(-0.0782180\pi\)
−0.695653 + 0.718378i \(0.744885\pi\)
\(20\) 0 0
\(21\) 2.18635 3.78686i 0.477100 0.826362i
\(22\) 0.851174 1.47428i 0.181471 0.314317i
\(23\) −1.29182 −0.269364 −0.134682 0.990889i \(-0.543001\pi\)
−0.134682 + 0.990889i \(0.543001\pi\)
\(24\) 1.24862 + 2.16267i 0.254874 + 0.441454i
\(25\) 0 0
\(26\) 0.512625 0.100534
\(27\) 3.60535 0.693850
\(28\) 2.01864 3.49639i 0.381488 0.660756i
\(29\) −0.459480 −0.0853234 −0.0426617 0.999090i \(-0.513584\pi\)
−0.0426617 + 0.999090i \(0.513584\pi\)
\(30\) 0 0
\(31\) −7.00913 −1.25888 −0.629438 0.777051i \(-0.716715\pi\)
−0.629438 + 0.777051i \(0.716715\pi\)
\(32\) 1.74348 + 3.01980i 0.308207 + 0.533830i
\(33\) 5.65686 + 9.79798i 0.984734 + 1.70561i
\(34\) 0.441320 + 0.764389i 0.0756858 + 0.131092i
\(35\) 0 0
\(36\) −2.38243 −0.397072
\(37\) 2.41356 5.58343i 0.396786 0.917911i
\(38\) 0.741917 0.120355
\(39\) −1.70344 + 2.95045i −0.272769 + 0.472450i
\(40\) 0 0
\(41\) −3.63843 6.30194i −0.568227 0.984198i −0.996741 0.0806634i \(-0.974296\pi\)
0.428514 0.903535i \(-0.359037\pi\)
\(42\) −0.678313 1.17487i −0.104666 0.181287i
\(43\) 4.39190 0.669758 0.334879 0.942261i \(-0.391304\pi\)
0.334879 + 0.942261i \(0.391304\pi\)
\(44\) 5.22296 + 9.04642i 0.787390 + 1.36380i
\(45\) 0 0
\(46\) −0.200394 + 0.347092i −0.0295464 + 0.0511759i
\(47\) 0.310249 0.0452545 0.0226273 0.999744i \(-0.492797\pi\)
0.0226273 + 0.999744i \(0.492797\pi\)
\(48\) −7.07591 −1.02132
\(49\) 1.25130 2.16731i 0.178757 0.309616i
\(50\) 0 0
\(51\) −5.86599 −0.821403
\(52\) −1.57278 + 2.72414i −0.218105 + 0.377770i
\(53\) −6.00746 + 10.4052i −0.825188 + 1.42927i 0.0765878 + 0.997063i \(0.475597\pi\)
−0.901776 + 0.432204i \(0.857736\pi\)
\(54\) 0.559279 0.968700i 0.0761082 0.131823i
\(55\) 0 0
\(56\) −1.28423 2.22435i −0.171613 0.297242i
\(57\) −2.46537 + 4.27015i −0.326547 + 0.565596i
\(58\) −0.0712767 + 0.123455i −0.00935910 + 0.0162104i
\(59\) −4.14947 + 7.18709i −0.540215 + 0.935680i 0.458676 + 0.888603i \(0.348324\pi\)
−0.998891 + 0.0470765i \(0.985010\pi\)
\(60\) 0 0
\(61\) −5.10365 8.83978i −0.653456 1.13182i −0.982279 0.187427i \(-0.939985\pi\)
0.328823 0.944392i \(-0.393348\pi\)
\(62\) −1.08729 + 1.88324i −0.138086 + 0.239172i
\(63\) 2.65395 0.334366
\(64\) −5.78165 −0.722706
\(65\) 0 0
\(66\) 3.51008 0.432061
\(67\) 0.664518 + 1.15098i 0.0811838 + 0.140614i 0.903759 0.428042i \(-0.140797\pi\)
−0.822575 + 0.568657i \(0.807463\pi\)
\(68\) −5.41604 −0.656792
\(69\) −1.33181 2.30676i −0.160331 0.277701i
\(70\) 0 0
\(71\) −0.293650 0.508617i −0.0348498 0.0603617i 0.848074 0.529877i \(-0.177762\pi\)
−0.882924 + 0.469515i \(0.844429\pi\)
\(72\) −0.757834 + 1.31261i −0.0893115 + 0.154692i
\(73\) −10.8030 −1.26439 −0.632197 0.774808i \(-0.717847\pi\)
−0.632197 + 0.774808i \(0.717847\pi\)
\(74\) −1.12578 1.51461i −0.130869 0.176070i
\(75\) 0 0
\(76\) −2.27627 + 3.94261i −0.261106 + 0.452249i
\(77\) −5.81820 10.0774i −0.663045 1.14843i
\(78\) 0.528492 + 0.915375i 0.0598399 + 0.103646i
\(79\) 1.41967 + 2.45893i 0.159725 + 0.276652i 0.934769 0.355255i \(-0.115606\pi\)
−0.775045 + 0.631907i \(0.782273\pi\)
\(80\) 0 0
\(81\) 5.59411 + 9.68928i 0.621568 + 1.07659i
\(82\) −2.25764 −0.249315
\(83\) 5.91099 10.2381i 0.648815 1.12378i −0.334591 0.942363i \(-0.608598\pi\)
0.983406 0.181417i \(-0.0580684\pi\)
\(84\) 8.32450 0.908277
\(85\) 0 0
\(86\) 0.681292 1.18003i 0.0734656 0.127246i
\(87\) −0.473702 0.820476i −0.0507862 0.0879643i
\(88\) 6.64553 0.708416
\(89\) 8.40980 14.5662i 0.891437 1.54401i 0.0532843 0.998579i \(-0.483031\pi\)
0.838153 0.545435i \(-0.183636\pi\)
\(90\) 0 0
\(91\) 1.75202 3.03459i 0.183662 0.318112i
\(92\) −1.22965 2.12982i −0.128200 0.222049i
\(93\) −7.22607 12.5159i −0.749308 1.29784i
\(94\) 0.0481273 0.0833590i 0.00496395 0.00859782i
\(95\) 0 0
\(96\) −3.59489 + 6.22653i −0.366902 + 0.635493i
\(97\) 18.5979 1.88833 0.944165 0.329472i \(-0.106871\pi\)
0.944165 + 0.329472i \(0.106871\pi\)
\(98\) −0.388215 0.672407i −0.0392156 0.0679234i
\(99\) −3.43336 + 5.94675i −0.345065 + 0.597671i
\(100\) 0 0
\(101\) −8.79352 −0.874988 −0.437494 0.899221i \(-0.644134\pi\)
−0.437494 + 0.899221i \(0.644134\pi\)
\(102\) −0.909960 + 1.57610i −0.0900994 + 0.156057i
\(103\) −5.36532 −0.528660 −0.264330 0.964432i \(-0.585151\pi\)
−0.264330 + 0.964432i \(0.585151\pi\)
\(104\) 1.00058 + 1.73305i 0.0981149 + 0.169940i
\(105\) 0 0
\(106\) 1.86381 + 3.22821i 0.181029 + 0.313552i
\(107\) −1.42697 2.47158i −0.137950 0.238937i 0.788770 0.614688i \(-0.210718\pi\)
−0.926721 + 0.375751i \(0.877385\pi\)
\(108\) 3.43184 + 5.94412i 0.330229 + 0.571973i
\(109\) −4.37956 + 7.58562i −0.419486 + 0.726571i −0.995888 0.0905956i \(-0.971123\pi\)
0.576402 + 0.817166i \(0.304456\pi\)
\(110\) 0 0
\(111\) 12.4584 1.44646i 1.18250 0.137292i
\(112\) 7.27771 0.687679
\(113\) −7.88239 + 13.6527i −0.741513 + 1.28434i 0.210294 + 0.977638i \(0.432558\pi\)
−0.951806 + 0.306699i \(0.900775\pi\)
\(114\) 0.764881 + 1.32481i 0.0716376 + 0.124080i
\(115\) 0 0
\(116\) −0.437367 0.757542i −0.0406085 0.0703360i
\(117\) −2.06776 −0.191165
\(118\) 1.28737 + 2.22979i 0.118512 + 0.205269i
\(119\) 6.03329 0.553071
\(120\) 0 0
\(121\) 19.1075 1.73705
\(122\) −3.16681 −0.286709
\(123\) 7.50209 12.9940i 0.676441 1.17163i
\(124\) −6.67180 11.5559i −0.599145 1.03775i
\(125\) 0 0
\(126\) 0.411693 0.713073i 0.0366765 0.0635256i
\(127\) 2.00325 3.46973i 0.177760 0.307889i −0.763353 0.645981i \(-0.776448\pi\)
0.941113 + 0.338093i \(0.109782\pi\)
\(128\) −4.38384 + 7.59303i −0.387480 + 0.671135i
\(129\) 4.52784 + 7.84244i 0.398654 + 0.690489i
\(130\) 0 0
\(131\) 10.2080 17.6807i 0.891873 1.54477i 0.0542464 0.998528i \(-0.482724\pi\)
0.837627 0.546243i \(-0.183942\pi\)
\(132\) −10.7692 + 18.6529i −0.937341 + 1.62352i
\(133\) 2.53569 4.39194i 0.219872 0.380829i
\(134\) 0.412332 0.0356201
\(135\) 0 0
\(136\) −1.72280 + 2.98398i −0.147729 + 0.255874i
\(137\) 5.52931 0.472401 0.236200 0.971704i \(-0.424098\pi\)
0.236200 + 0.971704i \(0.424098\pi\)
\(138\) −0.826385 −0.0703465
\(139\) 10.4632 18.1228i 0.887477 1.53716i 0.0446295 0.999004i \(-0.485789\pi\)
0.842848 0.538152i \(-0.180877\pi\)
\(140\) 0 0
\(141\) 0.319852 + 0.554000i 0.0269364 + 0.0466552i
\(142\) −0.182209 −0.0152907
\(143\) 4.53311 + 7.85158i 0.379078 + 0.656582i
\(144\) −2.14731 3.71926i −0.178943 0.309938i
\(145\) 0 0
\(146\) −1.67581 + 2.90259i −0.138691 + 0.240220i
\(147\) 5.16011 0.425599
\(148\) 11.5028 1.33551i 0.945521 0.109778i
\(149\) −4.87785 −0.399609 −0.199804 0.979836i \(-0.564031\pi\)
−0.199804 + 0.979836i \(0.564031\pi\)
\(150\) 0 0
\(151\) 11.8485 + 20.5222i 0.964216 + 1.67007i 0.711708 + 0.702475i \(0.247922\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(152\) 1.44813 + 2.50823i 0.117459 + 0.203444i
\(153\) −1.78014 3.08330i −0.143916 0.249270i
\(154\) −3.61018 −0.290917
\(155\) 0 0
\(156\) −6.48584 −0.519283
\(157\) 10.5385 18.2533i 0.841067 1.45677i −0.0479266 0.998851i \(-0.515261\pi\)
0.888994 0.457920i \(-0.151405\pi\)
\(158\) 0.880901 0.0700807
\(159\) −24.7736 −1.96467
\(160\) 0 0
\(161\) 1.36979 + 2.37255i 0.107955 + 0.186983i
\(162\) 3.47114 0.272718
\(163\) 2.60566 4.51313i 0.204091 0.353496i −0.745752 0.666224i \(-0.767910\pi\)
0.949843 + 0.312728i \(0.101243\pi\)
\(164\) 6.92664 11.9973i 0.540880 0.936832i
\(165\) 0 0
\(166\) −1.83388 3.17637i −0.142337 0.246534i
\(167\) −5.28579 9.15526i −0.409027 0.708455i 0.585754 0.810489i \(-0.300798\pi\)
−0.994781 + 0.102034i \(0.967465\pi\)
\(168\) 2.64796 4.58640i 0.204295 0.353849i
\(169\) 5.13495 8.89400i 0.394996 0.684153i
\(170\) 0 0
\(171\) −2.99265 −0.228854
\(172\) 4.18053 + 7.24089i 0.318762 + 0.552113i
\(173\) 6.76942 11.7250i 0.514670 0.891434i −0.485185 0.874411i \(-0.661248\pi\)
0.999855 0.0170229i \(-0.00541882\pi\)
\(174\) −0.293931 −0.0222829
\(175\) 0 0
\(176\) −9.41503 + 16.3073i −0.709684 + 1.22921i
\(177\) −17.1116 −1.28619
\(178\) −2.60914 4.51915i −0.195563 0.338725i
\(179\) −14.8133 −1.10720 −0.553599 0.832783i \(-0.686746\pi\)
−0.553599 + 0.832783i \(0.686746\pi\)
\(180\) 0 0
\(181\) −2.30881 3.99897i −0.171612 0.297241i 0.767371 0.641203i \(-0.221564\pi\)
−0.938984 + 0.343962i \(0.888231\pi\)
\(182\) −0.543564 0.941481i −0.0402917 0.0697872i
\(183\) 10.5232 18.2268i 0.777900 1.34736i
\(184\) −1.56457 −0.115342
\(185\) 0 0
\(186\) −4.48377 −0.328766
\(187\) −7.80514 + 13.5189i −0.570768 + 0.988600i
\(188\) 0.295318 + 0.511505i 0.0215383 + 0.0373054i
\(189\) −3.82295 6.62154i −0.278079 0.481646i
\(190\) 0 0
\(191\) −11.6768 −0.844902 −0.422451 0.906386i \(-0.638830\pi\)
−0.422451 + 0.906386i \(0.638830\pi\)
\(192\) −5.96060 10.3241i −0.430169 0.745075i
\(193\) 15.2222 1.09572 0.547859 0.836570i \(-0.315443\pi\)
0.547859 + 0.836570i \(0.315443\pi\)
\(194\) 2.88499 4.99695i 0.207130 0.358760i
\(195\) 0 0
\(196\) 4.76431 0.340308
\(197\) 5.34376 9.25567i 0.380727 0.659439i −0.610439 0.792063i \(-0.709007\pi\)
0.991166 + 0.132624i \(0.0423403\pi\)
\(198\) 1.06520 + 1.84497i 0.0757002 + 0.131117i
\(199\) −3.95137 −0.280105 −0.140052 0.990144i \(-0.544727\pi\)
−0.140052 + 0.990144i \(0.544727\pi\)
\(200\) 0 0
\(201\) −1.37017 + 2.37321i −0.0966444 + 0.167393i
\(202\) −1.36409 + 2.36268i −0.0959771 + 0.166237i
\(203\) 0.487212 + 0.843876i 0.0341956 + 0.0592285i
\(204\) −5.58368 9.67121i −0.390936 0.677120i
\(205\) 0 0
\(206\) −0.832293 + 1.44157i −0.0579886 + 0.100439i
\(207\) 0.808323 1.40006i 0.0561823 0.0973106i
\(208\) −5.67026 −0.393162
\(209\) 6.56073 + 11.3635i 0.453815 + 0.786031i
\(210\) 0 0
\(211\) 8.40966 0.578945 0.289472 0.957186i \(-0.406520\pi\)
0.289472 + 0.957186i \(0.406520\pi\)
\(212\) −22.8733 −1.57095
\(213\) 0.605478 1.04872i 0.0414867 0.0718570i
\(214\) −0.885432 −0.0605269
\(215\) 0 0
\(216\) 4.36657 0.297107
\(217\) 7.43216 + 12.8729i 0.504528 + 0.873867i
\(218\) 1.35876 + 2.35343i 0.0920265 + 0.159395i
\(219\) −11.1374 19.2905i −0.752593 1.30353i
\(220\) 0 0
\(221\) −4.70070 −0.316203
\(222\) 1.54396 3.57175i 0.103624 0.239720i
\(223\) −16.4686 −1.10282 −0.551411 0.834234i \(-0.685910\pi\)
−0.551411 + 0.834234i \(0.685910\pi\)
\(224\) 3.69741 6.40411i 0.247044 0.427893i
\(225\) 0 0
\(226\) 2.44551 + 4.23574i 0.162673 + 0.281757i
\(227\) −6.79120 11.7627i −0.450748 0.780719i 0.547685 0.836685i \(-0.315509\pi\)
−0.998433 + 0.0559663i \(0.982176\pi\)
\(228\) −9.38689 −0.621662
\(229\) 10.9009 + 18.8809i 0.720351 + 1.24768i 0.960859 + 0.277037i \(0.0893524\pi\)
−0.240509 + 0.970647i \(0.577314\pi\)
\(230\) 0 0
\(231\) 11.9966 20.7786i 0.789316 1.36713i
\(232\) −0.556493 −0.0365355
\(233\) −13.2237 −0.866313 −0.433156 0.901319i \(-0.642600\pi\)
−0.433156 + 0.901319i \(0.642600\pi\)
\(234\) −0.320761 + 0.555574i −0.0209688 + 0.0363190i
\(235\) 0 0
\(236\) −15.7991 −1.02843
\(237\) −2.92721 + 5.07008i −0.190143 + 0.329337i
\(238\) 0.935912 1.62105i 0.0606661 0.105077i
\(239\) −6.04811 + 10.4756i −0.391220 + 0.677613i −0.992611 0.121342i \(-0.961280\pi\)
0.601391 + 0.798955i \(0.294613\pi\)
\(240\) 0 0
\(241\) 7.34971 + 12.7301i 0.473436 + 0.820016i 0.999538 0.0304061i \(-0.00968004\pi\)
−0.526101 + 0.850422i \(0.676347\pi\)
\(242\) 2.96405 5.13388i 0.190536 0.330018i
\(243\) −6.12648 + 10.6114i −0.393014 + 0.680720i
\(244\) 9.71605 16.8287i 0.622007 1.07735i
\(245\) 0 0
\(246\) −2.32752 4.03138i −0.148397 0.257031i
\(247\) −1.97562 + 3.42188i −0.125706 + 0.217729i
\(248\) −8.48899 −0.539052
\(249\) 24.3758 1.54475
\(250\) 0 0
\(251\) −27.4854 −1.73486 −0.867430 0.497559i \(-0.834230\pi\)
−0.867430 + 0.497559i \(0.834230\pi\)
\(252\) 2.52622 + 4.37554i 0.159137 + 0.275633i
\(253\) −7.08828 −0.445636
\(254\) −0.621507 1.07648i −0.0389968 0.0675445i
\(255\) 0 0
\(256\) −4.42156 7.65837i −0.276348 0.478648i
\(257\) −11.8389 + 20.5056i −0.738491 + 1.27910i 0.214683 + 0.976684i \(0.431128\pi\)
−0.953174 + 0.302421i \(0.902205\pi\)
\(258\) 2.80952 0.174913
\(259\) −12.8137 + 1.48771i −0.796204 + 0.0924417i
\(260\) 0 0
\(261\) 0.287507 0.497977i 0.0177962 0.0308240i
\(262\) −3.16701 5.48543i −0.195659 0.338891i
\(263\) −9.38548 16.2561i −0.578733 1.00240i −0.995625 0.0934393i \(-0.970214\pi\)
0.416892 0.908956i \(-0.363119\pi\)
\(264\) 6.85122 + 11.8667i 0.421664 + 0.730343i
\(265\) 0 0
\(266\) −0.786695 1.36260i −0.0482354 0.0835461i
\(267\) 34.6804 2.12241
\(268\) −1.26507 + 2.19117i −0.0772766 + 0.133847i
\(269\) 2.86020 0.174389 0.0871947 0.996191i \(-0.472210\pi\)
0.0871947 + 0.996191i \(0.472210\pi\)
\(270\) 0 0
\(271\) 11.3218 19.6099i 0.687750 1.19122i −0.284814 0.958583i \(-0.591932\pi\)
0.972564 0.232635i \(-0.0747349\pi\)
\(272\) −4.88154 8.45508i −0.295987 0.512665i
\(273\) 7.22501 0.437277
\(274\) 0.857732 1.48564i 0.0518175 0.0897506i
\(275\) 0 0
\(276\) 2.53542 4.39148i 0.152615 0.264336i
\(277\) 0.0821921 + 0.142361i 0.00493844 + 0.00855364i 0.868484 0.495717i \(-0.165095\pi\)
−0.863546 + 0.504271i \(0.831761\pi\)
\(278\) −3.24620 5.62259i −0.194694 0.337220i
\(279\) 4.38577 7.59637i 0.262569 0.454783i
\(280\) 0 0
\(281\) −12.2966 + 21.2983i −0.733554 + 1.27055i 0.221801 + 0.975092i \(0.428807\pi\)
−0.955355 + 0.295461i \(0.904527\pi\)
\(282\) 0.198468 0.0118186
\(283\) −10.4090 18.0290i −0.618752 1.07171i −0.989714 0.143062i \(-0.954305\pi\)
0.370962 0.928648i \(-0.379028\pi\)
\(284\) 0.559035 0.968277i 0.0331726 0.0574567i
\(285\) 0 0
\(286\) 2.81279 0.166324
\(287\) −7.71605 + 13.3646i −0.455464 + 0.788887i
\(288\) −4.36374 −0.257136
\(289\) 4.45316 + 7.71309i 0.261950 + 0.453711i
\(290\) 0 0
\(291\) 19.1735 + 33.2095i 1.12397 + 1.94678i
\(292\) −10.2831 17.8108i −0.601771 1.04230i
\(293\) 5.83149 + 10.1004i 0.340679 + 0.590074i 0.984559 0.175053i \(-0.0560096\pi\)
−0.643880 + 0.765127i \(0.722676\pi\)
\(294\) 0.800461 1.38644i 0.0466838 0.0808587i
\(295\) 0 0
\(296\) 2.92314 6.76229i 0.169904 0.393050i
\(297\) 19.7827 1.14791
\(298\) −0.756674 + 1.31060i −0.0438330 + 0.0759209i
\(299\) −1.06724 1.84852i −0.0617201 0.106902i
\(300\) 0 0
\(301\) −4.65697 8.06611i −0.268423 0.464923i
\(302\) 7.35196 0.423058
\(303\) −9.06569 15.7022i −0.520810 0.902070i
\(304\) −8.20651 −0.470676
\(305\) 0 0
\(306\) −1.10458 −0.0631444
\(307\) 13.5798 0.775039 0.387520 0.921861i \(-0.373332\pi\)
0.387520 + 0.921861i \(0.373332\pi\)
\(308\) 11.0764 19.1848i 0.631134 1.09316i
\(309\) −5.53138 9.58063i −0.314669 0.545023i
\(310\) 0 0
\(311\) 1.32600 2.29670i 0.0751907 0.130234i −0.825978 0.563702i \(-0.809377\pi\)
0.901169 + 0.433468i \(0.142710\pi\)
\(312\) −2.06310 + 3.57339i −0.116800 + 0.202303i
\(313\) −0.296906 + 0.514255i −0.0167821 + 0.0290674i −0.874294 0.485396i \(-0.838675\pi\)
0.857512 + 0.514463i \(0.172009\pi\)
\(314\) −3.26957 5.66307i −0.184513 0.319585i
\(315\) 0 0
\(316\) −2.70268 + 4.68118i −0.152038 + 0.263337i
\(317\) −3.38803 + 5.86825i −0.190291 + 0.329594i −0.945347 0.326067i \(-0.894276\pi\)
0.755056 + 0.655661i \(0.227610\pi\)
\(318\) −3.84299 + 6.65626i −0.215504 + 0.373265i
\(319\) −2.52118 −0.141159
\(320\) 0 0
\(321\) 2.94227 5.09616i 0.164221 0.284440i
\(322\) 0.849953 0.0473660
\(323\) −6.80327 −0.378544
\(324\) −10.6498 + 18.4459i −0.591653 + 1.02477i
\(325\) 0 0
\(326\) −0.808404 1.40020i −0.0447733 0.0775497i
\(327\) −18.0605 −0.998746
\(328\) −4.40663 7.63250i −0.243315 0.421434i
\(329\) −0.328974 0.569800i −0.0181369 0.0314141i
\(330\) 0 0
\(331\) 1.40790 2.43855i 0.0773850 0.134035i −0.824736 0.565518i \(-0.808676\pi\)
0.902121 + 0.431483i \(0.142010\pi\)
\(332\) 22.5060 1.23518
\(333\) 4.54101 + 6.10945i 0.248846 + 0.334796i
\(334\) −3.27983 −0.179464
\(335\) 0 0
\(336\) 7.50297 + 12.9955i 0.409321 + 0.708964i
\(337\) −12.3263 21.3498i −0.671457 1.16300i −0.977491 0.210976i \(-0.932336\pi\)
0.306035 0.952020i \(-0.400998\pi\)
\(338\) −1.59311 2.75936i −0.0866540 0.150089i
\(339\) −32.5054 −1.76545
\(340\) 0 0
\(341\) −38.4593 −2.08269
\(342\) −0.464234 + 0.804077i −0.0251029 + 0.0434795i
\(343\) −20.1522 −1.08812
\(344\) 5.31918 0.286791
\(345\) 0 0
\(346\) −2.10021 3.63767i −0.112908 0.195562i
\(347\) −8.80294 −0.472566 −0.236283 0.971684i \(-0.575929\pi\)
−0.236283 + 0.971684i \(0.575929\pi\)
\(348\) 0.901808 1.56198i 0.0483420 0.0837308i
\(349\) 1.42867 2.47454i 0.0764752 0.132459i −0.825252 0.564765i \(-0.808967\pi\)
0.901727 + 0.432306i \(0.142300\pi\)
\(350\) 0 0
\(351\) 2.97856 + 5.15902i 0.158984 + 0.275368i
\(352\) 9.56654 + 16.5697i 0.509898 + 0.883170i
\(353\) −6.20795 + 10.7525i −0.330416 + 0.572297i −0.982593 0.185769i \(-0.940522\pi\)
0.652177 + 0.758066i \(0.273856\pi\)
\(354\) −2.65443 + 4.59761i −0.141082 + 0.244360i
\(355\) 0 0
\(356\) 32.0202 1.69707
\(357\) 6.22003 + 10.7734i 0.329199 + 0.570189i
\(358\) −2.29791 + 3.98010i −0.121448 + 0.210355i
\(359\) 21.7819 1.14961 0.574803 0.818292i \(-0.305079\pi\)
0.574803 + 0.818292i \(0.305079\pi\)
\(360\) 0 0
\(361\) 6.64070 11.5020i 0.349511 0.605370i
\(362\) −1.43261 −0.0752964
\(363\) 19.6989 + 34.1195i 1.03393 + 1.79081i
\(364\) 6.67082 0.349646
\(365\) 0 0
\(366\) −3.26483 5.65484i −0.170655 0.295583i
\(367\) 11.6653 + 20.2050i 0.608926 + 1.05469i 0.991418 + 0.130732i \(0.0417327\pi\)
−0.382492 + 0.923959i \(0.624934\pi\)
\(368\) 2.21660 3.83926i 0.115548 0.200135i
\(369\) 9.10658 0.474070
\(370\) 0 0
\(371\) 25.4801 1.32286
\(372\) 13.7566 23.8271i 0.713246 1.23538i
\(373\) 14.4904 + 25.0981i 0.750283 + 1.29953i 0.947685 + 0.319206i \(0.103416\pi\)
−0.197402 + 0.980323i \(0.563251\pi\)
\(374\) 2.42154 + 4.19423i 0.125215 + 0.216878i
\(375\) 0 0
\(376\) 0.375754 0.0193780
\(377\) −0.379600 0.657487i −0.0195504 0.0338623i
\(378\) −2.37214 −0.122009
\(379\) 8.18583 14.1783i 0.420478 0.728289i −0.575509 0.817796i \(-0.695196\pi\)
0.995986 + 0.0895072i \(0.0285292\pi\)
\(380\) 0 0
\(381\) 8.26102 0.423225
\(382\) −1.81136 + 3.13736i −0.0926770 + 0.160521i
\(383\) −2.00449 3.47188i −0.102425 0.177405i 0.810258 0.586073i \(-0.199327\pi\)
−0.912683 + 0.408668i \(0.865993\pi\)
\(384\) −18.0781 −0.922544
\(385\) 0 0
\(386\) 2.36134 4.08996i 0.120189 0.208174i
\(387\) −2.74811 + 4.75986i −0.139694 + 0.241958i
\(388\) 17.7028 + 30.6622i 0.898725 + 1.55664i
\(389\) 9.11602 + 15.7894i 0.462200 + 0.800555i 0.999070 0.0431105i \(-0.0137267\pi\)
−0.536870 + 0.843665i \(0.680393\pi\)
\(390\) 0 0
\(391\) 1.83758 3.18278i 0.0929305 0.160960i
\(392\) 1.51549 2.62491i 0.0765438 0.132578i
\(393\) 42.0956 2.12344
\(394\) −1.65790 2.87156i −0.0835237 0.144667i
\(395\) 0 0
\(396\) −13.0725 −0.656917
\(397\) −25.9749 −1.30364 −0.651822 0.758372i \(-0.725995\pi\)
−0.651822 + 0.758372i \(0.725995\pi\)
\(398\) −0.612954 + 1.06167i −0.0307246 + 0.0532166i
\(399\) 10.4567 0.523489
\(400\) 0 0
\(401\) −16.7311 −0.835510 −0.417755 0.908560i \(-0.637183\pi\)
−0.417755 + 0.908560i \(0.637183\pi\)
\(402\) 0.425095 + 0.736286i 0.0212018 + 0.0367226i
\(403\) −5.79059 10.0296i −0.288450 0.499610i
\(404\) −8.37031 14.4978i −0.416439 0.721293i
\(405\) 0 0
\(406\) 0.302314 0.0150036
\(407\) 13.2433 30.6365i 0.656444 1.51859i
\(408\) −7.10450 −0.351725
\(409\) −0.181239 + 0.313915i −0.00896170 + 0.0155221i −0.870471 0.492219i \(-0.836186\pi\)
0.861510 + 0.507741i \(0.169519\pi\)
\(410\) 0 0
\(411\) 5.70045 + 9.87347i 0.281183 + 0.487022i
\(412\) −5.10710 8.84575i −0.251609 0.435799i
\(413\) 17.5996 0.866021
\(414\) −0.250782 0.434366i −0.0123252 0.0213479i
\(415\) 0 0
\(416\) −2.88076 + 4.98962i −0.141241 + 0.244636i
\(417\) 43.1482 2.11298
\(418\) 4.07092 0.199115
\(419\) −8.20109 + 14.2047i −0.400649 + 0.693945i −0.993804 0.111143i \(-0.964549\pi\)
0.593155 + 0.805088i \(0.297882\pi\)
\(420\) 0 0
\(421\) −5.36363 −0.261407 −0.130704 0.991421i \(-0.541724\pi\)
−0.130704 + 0.991421i \(0.541724\pi\)
\(422\) 1.30455 2.25954i 0.0635043 0.109993i
\(423\) −0.194130 + 0.336243i −0.00943892 + 0.0163487i
\(424\) −7.27584 + 12.6021i −0.353346 + 0.612013i
\(425\) 0 0
\(426\) −0.187849 0.325364i −0.00910132 0.0157639i
\(427\) −10.8234 + 18.7466i −0.523779 + 0.907212i
\(428\) 2.71658 4.70526i 0.131311 0.227437i
\(429\) −9.34684 + 16.1892i −0.451270 + 0.781622i
\(430\) 0 0
\(431\) −20.0498 34.7272i −0.965763 1.67275i −0.707551 0.706662i \(-0.750200\pi\)
−0.258212 0.966088i \(-0.583133\pi\)
\(432\) −6.18631 + 10.7150i −0.297639 + 0.515526i
\(433\) −8.94867 −0.430046 −0.215023 0.976609i \(-0.568983\pi\)
−0.215023 + 0.976609i \(0.568983\pi\)
\(434\) 4.61164 0.221366
\(435\) 0 0
\(436\) −16.6751 −0.798594
\(437\) −1.54461 2.67534i −0.0738885 0.127979i
\(438\) −6.91071 −0.330207
\(439\) 11.9458 + 20.6906i 0.570140 + 0.987511i 0.996551 + 0.0829815i \(0.0264442\pi\)
−0.426411 + 0.904529i \(0.640222\pi\)
\(440\) 0 0
\(441\) 1.56593 + 2.71227i 0.0745681 + 0.129156i
\(442\) −0.729194 + 1.26300i −0.0346842 + 0.0600748i
\(443\) 40.0576 1.90320 0.951598 0.307346i \(-0.0994408\pi\)
0.951598 + 0.307346i \(0.0994408\pi\)
\(444\) 14.2436 + 19.1632i 0.675969 + 0.909445i
\(445\) 0 0
\(446\) −2.55469 + 4.42486i −0.120968 + 0.209523i
\(447\) −5.02882 8.71018i −0.237855 0.411977i
\(448\) 6.13059 + 10.6185i 0.289643 + 0.501677i
\(449\) 3.83167 + 6.63665i 0.180828 + 0.313203i 0.942163 0.335156i \(-0.108789\pi\)
−0.761335 + 0.648359i \(0.775456\pi\)
\(450\) 0 0
\(451\) −19.9642 34.5790i −0.940076 1.62826i
\(452\) −30.0121 −1.41165
\(453\) −24.4304 + 42.3147i −1.14784 + 1.98812i
\(454\) −4.21393 −0.197770
\(455\) 0 0
\(456\) −2.98590 + 5.17173i −0.139828 + 0.242188i
\(457\) 16.9554 + 29.3676i 0.793141 + 1.37376i 0.924013 + 0.382361i \(0.124889\pi\)
−0.130872 + 0.991399i \(0.541778\pi\)
\(458\) 6.76398 0.316060
\(459\) −5.12851 + 8.88283i −0.239378 + 0.414615i
\(460\) 0 0
\(461\) −7.29012 + 12.6269i −0.339535 + 0.588091i −0.984345 0.176251i \(-0.943603\pi\)
0.644811 + 0.764342i \(0.276936\pi\)
\(462\) −3.72192 6.44656i −0.173160 0.299921i
\(463\) 1.99424 + 3.45413i 0.0926802 + 0.160527i 0.908638 0.417585i \(-0.137123\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(464\) 0.788408 1.36556i 0.0366009 0.0633947i
\(465\) 0 0
\(466\) −2.05132 + 3.55299i −0.0950256 + 0.164589i
\(467\) −14.7664 −0.683307 −0.341653 0.939826i \(-0.610987\pi\)
−0.341653 + 0.939826i \(0.610987\pi\)
\(468\) −1.96825 3.40910i −0.0909822 0.157586i
\(469\) 1.40925 2.44089i 0.0650730 0.112710i
\(470\) 0 0
\(471\) 43.4589 2.00248
\(472\) −5.02557 + 8.70454i −0.231320 + 0.400659i
\(473\) 24.0985 1.10805
\(474\) 0.908166 + 1.57299i 0.0417134 + 0.0722498i
\(475\) 0 0
\(476\) 5.74292 + 9.94703i 0.263226 + 0.455922i
\(477\) −7.51800 13.0216i −0.344226 0.596216i
\(478\) 1.87642 + 3.25006i 0.0858256 + 0.148654i
\(479\) −7.80662 + 13.5215i −0.356693 + 0.617811i −0.987406 0.158205i \(-0.949429\pi\)
0.630713 + 0.776016i \(0.282763\pi\)
\(480\) 0 0
\(481\) 9.98349 1.15911i 0.455208 0.0528511i
\(482\) 4.56048 0.207724
\(483\) −2.82438 + 4.89196i −0.128514 + 0.222592i
\(484\) 18.1879 + 31.5024i 0.826724 + 1.43193i
\(485\) 0 0
\(486\) 1.90074 + 3.29217i 0.0862192 + 0.149336i
\(487\) −35.6982 −1.61764 −0.808820 0.588056i \(-0.799893\pi\)
−0.808820 + 0.588056i \(0.799893\pi\)
\(488\) −6.18121 10.7062i −0.279810 0.484645i
\(489\) 10.7452 0.485916
\(490\) 0 0
\(491\) −0.411627 −0.0185765 −0.00928823 0.999957i \(-0.502957\pi\)
−0.00928823 + 0.999957i \(0.502957\pi\)
\(492\) 28.5641 1.28777
\(493\) 0.653597 1.13206i 0.0294365 0.0509856i
\(494\) 0.612935 + 1.06163i 0.0275773 + 0.0477652i
\(495\) 0 0
\(496\) 12.0267 20.8309i 0.540017 0.935336i
\(497\) −0.622746 + 1.07863i −0.0279340 + 0.0483831i
\(498\) 3.78128 6.54937i 0.169443 0.293484i
\(499\) −19.0374 32.9738i −0.852232 1.47611i −0.879190 0.476472i \(-0.841915\pi\)
0.0269579 0.999637i \(-0.491418\pi\)
\(500\) 0 0
\(501\) 10.8988 18.8773i 0.486922 0.843374i
\(502\) −4.26366 + 7.38487i −0.190296 + 0.329603i
\(503\) −7.75338 + 13.4292i −0.345706 + 0.598780i −0.985482 0.169781i \(-0.945694\pi\)
0.639776 + 0.768562i \(0.279027\pi\)
\(504\) 3.21429 0.143176
\(505\) 0 0
\(506\) −1.09957 + 1.90451i −0.0488817 + 0.0846656i
\(507\) 21.1755 0.940439
\(508\) 7.62736 0.338409
\(509\) −2.99718 + 5.19127i −0.132848 + 0.230099i −0.924773 0.380519i \(-0.875745\pi\)
0.791926 + 0.610618i \(0.209079\pi\)
\(510\) 0 0
\(511\) 11.4550 + 19.8406i 0.506739 + 0.877698i
\(512\) −20.2789 −0.896210
\(513\) 4.31084 + 7.46660i 0.190328 + 0.329658i
\(514\) 3.67302 + 6.36185i 0.162010 + 0.280609i
\(515\) 0 0
\(516\) −8.61985 + 14.9300i −0.379468 + 0.657257i
\(517\) 1.70235 0.0748692
\(518\) −1.58800 + 3.67361i −0.0697725 + 0.161409i
\(519\) 27.9158 1.22537
\(520\) 0 0
\(521\) −8.46908 14.6689i −0.371037 0.642655i 0.618688 0.785637i \(-0.287664\pi\)
−0.989725 + 0.142982i \(0.954331\pi\)
\(522\) −0.0891989 0.154497i −0.00390413 0.00676215i
\(523\) −1.72028 2.97961i −0.0752226 0.130289i 0.825960 0.563728i \(-0.190633\pi\)
−0.901183 + 0.433439i \(0.857300\pi\)
\(524\) 38.8667 1.69790
\(525\) 0 0
\(526\) −5.82368 −0.253924
\(527\) 9.97027 17.2690i 0.434312 0.752250i
\(528\) −38.8257 −1.68967
\(529\) −21.3312 −0.927443
\(530\) 0 0
\(531\) −5.19283 8.99425i −0.225350 0.390317i
\(532\) 9.65460 0.418580
\(533\) 6.01178 10.4127i 0.260399 0.451025i
\(534\) 5.37978 9.31806i 0.232806 0.403232i
\(535\) 0 0
\(536\) 0.804820 + 1.39399i 0.0347629 + 0.0602112i
\(537\) −15.2718 26.4515i −0.659027 1.14147i
\(538\) 0.443687 0.768489i 0.0191287 0.0331319i
\(539\) 6.86592 11.8921i 0.295736 0.512230i
\(540\) 0 0
\(541\) 26.7548 1.15028 0.575140 0.818055i \(-0.304948\pi\)
0.575140 + 0.818055i \(0.304948\pi\)
\(542\) −3.51258 6.08397i −0.150878 0.261329i
\(543\) 4.76054 8.24549i 0.204294 0.353848i
\(544\) −9.92020 −0.425325
\(545\) 0 0
\(546\) 1.12078 1.94124i 0.0479648 0.0830775i
\(547\) −10.5797 −0.452357 −0.226178 0.974086i \(-0.572623\pi\)
−0.226178 + 0.974086i \(0.572623\pi\)
\(548\) 5.26320 + 9.11613i 0.224833 + 0.389422i
\(549\) 12.7739 0.545175
\(550\) 0 0
\(551\) −0.549391 0.951573i −0.0234048 0.0405384i
\(552\) −1.61300 2.79379i −0.0686537 0.118912i
\(553\) 3.01070 5.21468i 0.128028 0.221751i
\(554\) 0.0510001 0.00216679
\(555\) 0 0
\(556\) 39.8385 1.68953
\(557\) −21.0151 + 36.3993i −0.890440 + 1.54229i −0.0510917 + 0.998694i \(0.516270\pi\)
−0.839349 + 0.543594i \(0.817063\pi\)
\(558\) −1.36068 2.35677i −0.0576022 0.0997699i
\(559\) 3.62837 + 6.28452i 0.153464 + 0.265807i
\(560\) 0 0
\(561\) −32.1869 −1.35893
\(562\) 3.81501 + 6.60780i 0.160927 + 0.278733i
\(563\) −15.1171 −0.637108 −0.318554 0.947905i \(-0.603197\pi\)
−0.318554 + 0.947905i \(0.603197\pi\)
\(564\) −0.608917 + 1.05467i −0.0256400 + 0.0444098i
\(565\) 0 0
\(566\) −6.45878 −0.271483
\(567\) 11.8635 20.5481i 0.498219 0.862941i
\(568\) −0.355650 0.616003i −0.0149227 0.0258469i
\(569\) 29.9574 1.25588 0.627940 0.778262i \(-0.283898\pi\)
0.627940 + 0.778262i \(0.283898\pi\)
\(570\) 0 0
\(571\) −15.6228 + 27.0594i −0.653792 + 1.13240i 0.328403 + 0.944538i \(0.393490\pi\)
−0.982195 + 0.187863i \(0.939844\pi\)
\(572\) −8.62990 + 14.9474i −0.360834 + 0.624983i
\(573\) −12.0382 20.8507i −0.502902 0.871053i
\(574\) 2.39390 + 4.14635i 0.0999194 + 0.173065i
\(575\) 0 0
\(576\) 3.61770 6.26605i 0.150738 0.261085i
\(577\) 14.3757 24.8994i 0.598467 1.03658i −0.394581 0.918861i \(-0.629110\pi\)
0.993048 0.117714i \(-0.0375566\pi\)
\(578\) 2.76318 0.114933
\(579\) 15.6934 + 27.1817i 0.652194 + 1.12963i
\(580\) 0 0
\(581\) −25.0710 −1.04012
\(582\) 11.8971 0.493153
\(583\) −32.9631 + 57.0938i −1.36519 + 2.36458i
\(584\) −13.0839 −0.541414
\(585\) 0 0
\(586\) 3.61843 0.149476
\(587\) −7.05861 12.2259i −0.291340 0.504616i 0.682787 0.730618i \(-0.260768\pi\)
−0.974127 + 0.226002i \(0.927434\pi\)
\(588\) 4.91177 + 8.50744i 0.202558 + 0.350841i
\(589\) −8.38066 14.5157i −0.345319 0.598110i
\(590\) 0 0
\(591\) 22.0366 0.906466
\(592\) 12.4525 + 16.7535i 0.511793 + 0.688563i
\(593\) 5.88296 0.241584 0.120792 0.992678i \(-0.461457\pi\)
0.120792 + 0.992678i \(0.461457\pi\)
\(594\) 3.06878 5.31529i 0.125914 0.218089i
\(595\) 0 0
\(596\) −4.64309 8.04207i −0.190188 0.329416i
\(597\) −4.07367 7.05580i −0.166724 0.288775i
\(598\) −0.662221 −0.0270802
\(599\) −7.85750 13.6096i −0.321049 0.556073i 0.659656 0.751568i \(-0.270702\pi\)
−0.980705 + 0.195495i \(0.937369\pi\)
\(600\) 0 0
\(601\) −7.77357 + 13.4642i −0.317090 + 0.549217i −0.979880 0.199589i \(-0.936039\pi\)
0.662789 + 0.748806i \(0.269373\pi\)
\(602\) −2.88964 −0.117773
\(603\) −1.66321 −0.0677313
\(604\) −22.5565 + 39.0690i −0.917810 + 1.58969i
\(605\) 0 0
\(606\) −5.62525 −0.228510
\(607\) 10.9690 18.9989i 0.445219 0.771141i −0.552849 0.833282i \(-0.686459\pi\)
0.998067 + 0.0621402i \(0.0197926\pi\)
\(608\) −4.16929 + 7.22142i −0.169087 + 0.292867i
\(609\) −1.00458 + 1.73999i −0.0407078 + 0.0705080i
\(610\) 0 0
\(611\) 0.256313 + 0.443946i 0.0103693 + 0.0179602i
\(612\) 3.38894 5.86981i 0.136990 0.237273i
\(613\) 14.2377 24.6605i 0.575057 0.996027i −0.420979 0.907070i \(-0.638313\pi\)
0.996035 0.0889567i \(-0.0283533\pi\)
\(614\) 2.10656 3.64867i 0.0850138 0.147248i
\(615\) 0 0
\(616\) −7.04662 12.2051i −0.283916 0.491757i
\(617\) −17.7869 + 30.8078i −0.716072 + 1.24027i 0.246472 + 0.969150i \(0.420729\pi\)
−0.962545 + 0.271124i \(0.912605\pi\)
\(618\) −3.43221 −0.138064
\(619\) −9.30332 −0.373932 −0.186966 0.982366i \(-0.559865\pi\)
−0.186966 + 0.982366i \(0.559865\pi\)
\(620\) 0 0
\(621\) −4.65748 −0.186898
\(622\) −0.411391 0.712551i −0.0164953 0.0285707i
\(623\) −35.6695 −1.42907
\(624\) −5.84577 10.1252i −0.234018 0.405331i
\(625\) 0 0
\(626\) 0.0921147 + 0.159547i 0.00368164 + 0.00637680i
\(627\) −13.5276 + 23.4305i −0.540240 + 0.935723i
\(628\) 40.1254 1.60118
\(629\) 10.3232 + 13.8888i 0.411613 + 0.553782i
\(630\) 0 0
\(631\) −11.6294 + 20.1428i −0.462961 + 0.801872i −0.999107 0.0422534i \(-0.986546\pi\)
0.536146 + 0.844125i \(0.319880\pi\)
\(632\) 1.71941 + 2.97810i 0.0683943 + 0.118462i
\(633\) 8.66995 + 15.0168i 0.344600 + 0.596864i
\(634\) 1.05114 + 1.82062i 0.0417459 + 0.0723060i
\(635\) 0 0
\(636\) −23.5813 40.8440i −0.935060 1.61957i
\(637\) 4.13504 0.163836
\(638\) −0.391098 + 0.677401i −0.0154837 + 0.0268186i
\(639\) 0.734973 0.0290751
\(640\) 0 0
\(641\) 4.09344 7.09004i 0.161681 0.280040i −0.773791 0.633441i \(-0.781642\pi\)
0.935472 + 0.353402i \(0.114975\pi\)
\(642\) −0.912837 1.58108i −0.0360268 0.0624003i
\(643\) −11.4564 −0.451796 −0.225898 0.974151i \(-0.572532\pi\)
−0.225898 + 0.974151i \(0.572532\pi\)
\(644\) −2.60773 + 4.51672i −0.102759 + 0.177984i
\(645\) 0 0
\(646\) −1.05535 + 1.82793i −0.0415224 + 0.0719189i
\(647\) 7.96151 + 13.7897i 0.312999 + 0.542130i 0.979010 0.203812i \(-0.0653330\pi\)
−0.666011 + 0.745942i \(0.732000\pi\)
\(648\) 6.77522 + 11.7350i 0.266156 + 0.460995i
\(649\) −22.7683 + 39.4358i −0.893733 + 1.54799i
\(650\) 0 0
\(651\) −15.3244 + 26.5426i −0.600610 + 1.04029i
\(652\) 9.92102 0.388537
\(653\) −10.4891 18.1677i −0.410471 0.710957i 0.584470 0.811415i \(-0.301302\pi\)
−0.994941 + 0.100458i \(0.967969\pi\)
\(654\) −2.80162 + 4.85255i −0.109552 + 0.189750i
\(655\) 0 0
\(656\) 24.9723 0.975003
\(657\) 6.75967 11.7081i 0.263720 0.456776i
\(658\) −0.204128 −0.00795774
\(659\) 0.598998 + 1.03749i 0.0233336 + 0.0404151i 0.877456 0.479656i \(-0.159239\pi\)
−0.854123 + 0.520071i \(0.825905\pi\)
\(660\) 0 0
\(661\) 16.1732 + 28.0129i 0.629066 + 1.08957i 0.987740 + 0.156111i \(0.0498958\pi\)
−0.358674 + 0.933463i \(0.616771\pi\)
\(662\) −0.436799 0.756558i −0.0169767 0.0294045i
\(663\) −4.84619 8.39385i −0.188210 0.325990i
\(664\) 7.15900 12.3997i 0.277823 0.481204i
\(665\) 0 0
\(666\) 2.34593 0.272370i 0.0909031 0.0105541i
\(667\) 0.593568 0.0229830
\(668\) 10.0628 17.4293i 0.389341 0.674359i
\(669\) −16.9784 29.4074i −0.656422 1.13696i
\(670\) 0 0
\(671\) −28.0039 48.5042i −1.08108 1.87248i
\(672\) 15.2474 0.588182
\(673\) −18.5482 32.1264i −0.714981 1.23838i −0.962967 0.269620i \(-0.913102\pi\)
0.247986 0.968764i \(-0.420231\pi\)
\(674\) −7.64845 −0.294607
\(675\) 0 0
\(676\) 19.5513 0.751972
\(677\) −6.39266 −0.245690 −0.122845 0.992426i \(-0.539202\pi\)
−0.122845 + 0.992426i \(0.539202\pi\)
\(678\) −5.04239 + 8.73368i −0.193652 + 0.335415i
\(679\) −19.7204 34.1567i −0.756798 1.31081i
\(680\) 0 0
\(681\) 14.0028 24.2536i 0.536589 0.929399i
\(682\) −5.96599 + 10.3334i −0.228449 + 0.395686i
\(683\) 7.57751 13.1246i 0.289945 0.502200i −0.683851 0.729622i \(-0.739696\pi\)
0.973796 + 0.227421i \(0.0730295\pi\)
\(684\) −2.84862 4.93396i −0.108920 0.188655i
\(685\) 0 0
\(686\) −3.12611 + 5.41458i −0.119355 + 0.206730i
\(687\) −22.4766 + 38.9306i −0.857534 + 1.48529i
\(688\) −7.53592 + 13.0526i −0.287304 + 0.497626i
\(689\) −19.8523 −0.756311
\(690\) 0 0
\(691\) −19.1544 + 33.1764i −0.728668 + 1.26209i 0.228779 + 0.973478i \(0.426527\pi\)
−0.957447 + 0.288611i \(0.906807\pi\)
\(692\) 25.7745 0.979800
\(693\) 14.5623 0.553176
\(694\) −1.36555 + 2.36521i −0.0518357 + 0.0897820i
\(695\) 0 0
\(696\) −0.573717 0.993707i −0.0217467 0.0376664i
\(697\) 20.7022 0.784153
\(698\) −0.443245 0.767723i −0.0167771 0.0290587i
\(699\) −13.6330 23.6130i −0.515647 0.893126i
\(700\) 0 0
\(701\) −7.37527 + 12.7743i −0.278560 + 0.482480i −0.971027 0.238969i \(-0.923191\pi\)
0.692467 + 0.721450i \(0.256524\pi\)
\(702\) 1.84819 0.0697556
\(703\) 14.4490 1.67757i 0.544954 0.0632709i
\(704\) −31.7241 −1.19565
\(705\) 0 0
\(706\) 1.92601 + 3.33595i 0.0724865 + 0.125550i
\(707\) 9.32424 + 16.1501i 0.350674 + 0.607386i
\(708\) −16.2881 28.2118i −0.612143 1.06026i
\(709\) −15.3282 −0.575664 −0.287832 0.957681i \(-0.592935\pi\)
−0.287832 + 0.957681i \(0.592935\pi\)
\(710\) 0 0
\(711\) −3.55327 −0.133258
\(712\) 10.1854 17.6416i 0.381714 0.661148i
\(713\) 9.05456 0.339096
\(714\) 3.85952 0.144439
\(715\) 0 0
\(716\) −14.1004 24.4226i −0.526956 0.912715i
\(717\) −24.9412 −0.931448
\(718\) 3.37891 5.85245i 0.126100 0.218411i
\(719\) 2.50682 4.34194i 0.0934885 0.161927i −0.815488 0.578774i \(-0.803531\pi\)
0.908977 + 0.416847i \(0.136865\pi\)
\(720\) 0 0
\(721\) 5.68913 + 9.85387i 0.211874 + 0.366977i
\(722\) −2.06027 3.56850i −0.0766755 0.132806i
\(723\) −15.1544 + 26.2482i −0.563598 + 0.976180i
\(724\) 4.39538 7.61302i 0.163353 0.282936i
\(725\) 0 0
\(726\) 12.2232 0.453644
\(727\) −15.2817 26.4687i −0.566767 0.981670i −0.996883 0.0788961i \(-0.974860\pi\)
0.430115 0.902774i \(-0.358473\pi\)
\(728\) 2.12194 3.67530i 0.0786442 0.136216i
\(729\) 8.30023 0.307416
\(730\) 0 0
\(731\) −6.24735 + 10.8207i −0.231066 + 0.400219i
\(732\) 40.0671 1.48092
\(733\) −0.0641308 0.111078i −0.00236872 0.00410275i 0.864839 0.502050i \(-0.167421\pi\)
−0.867207 + 0.497947i \(0.834087\pi\)
\(734\) 7.23833 0.267172
\(735\) 0 0
\(736\) −2.25227 3.90105i −0.0830198 0.143794i
\(737\) 3.64623 + 6.31546i 0.134311 + 0.232633i
\(738\) 1.41266 2.44679i 0.0520006 0.0900676i
\(739\) 3.03253 0.111553 0.0557767 0.998443i \(-0.482237\pi\)
0.0557767 + 0.998443i \(0.482237\pi\)
\(740\) 0 0
\(741\) −8.14708 −0.299290
\(742\) 3.95260 6.84610i 0.145104 0.251328i
\(743\) 0.962952 + 1.66788i 0.0353273 + 0.0611886i 0.883148 0.469094i \(-0.155419\pi\)
−0.847821 + 0.530282i \(0.822086\pi\)
\(744\) −8.75174 15.1585i −0.320854 0.555736i
\(745\) 0 0
\(746\) 8.99126 0.329193
\(747\) 7.39727 + 12.8124i 0.270652 + 0.468783i
\(748\) −29.7180 −1.08660
\(749\) −3.02618 + 5.24150i −0.110574 + 0.191520i
\(750\) 0 0
\(751\) 11.6540 0.425261 0.212630 0.977133i \(-0.431797\pi\)
0.212630 + 0.977133i \(0.431797\pi\)
\(752\) −0.532347 + 0.922052i −0.0194127 + 0.0336238i
\(753\) −28.3361 49.0795i −1.03262 1.78856i
\(754\) −0.235541 −0.00857791
\(755\) 0 0
\(756\) 7.27792 12.6057i 0.264696 0.458466i
\(757\) 2.32020 4.01870i 0.0843290 0.146062i −0.820776 0.571250i \(-0.806459\pi\)
0.905105 + 0.425188i \(0.139792\pi\)
\(758\) −2.53965 4.39880i −0.0922441 0.159771i
\(759\) −7.30767 12.6573i −0.265252 0.459429i
\(760\) 0 0
\(761\) −6.38323 + 11.0561i −0.231392 + 0.400782i −0.958218 0.286039i \(-0.907661\pi\)
0.726826 + 0.686822i \(0.240995\pi\)
\(762\) 1.28149 2.21960i 0.0464234 0.0804077i
\(763\) 18.5755 0.672480
\(764\) −11.1148 19.2514i −0.402119 0.696491i
\(765\) 0 0
\(766\) −1.24379 −0.0449398
\(767\) −13.7124 −0.495124
\(768\) 9.11684 15.7908i 0.328975 0.569802i
\(769\) 37.0113 1.33466 0.667330 0.744762i \(-0.267437\pi\)
0.667330 + 0.744762i \(0.267437\pi\)
\(770\) 0 0
\(771\) −48.8214 −1.75826
\(772\) 14.4896 + 25.0967i 0.521492 + 0.903251i
\(773\) 21.9124 + 37.9535i 0.788136 + 1.36509i 0.927108 + 0.374795i \(0.122287\pi\)
−0.138972 + 0.990296i \(0.544380\pi\)
\(774\) 0.852599 + 1.47674i 0.0306460 + 0.0530805i
\(775\) 0 0
\(776\) 22.5246 0.808584
\(777\) −15.8668 21.3471i −0.569220 0.765824i
\(778\) 5.65648 0.202794
\(779\) 8.70079 15.0702i 0.311738 0.539946i
\(780\) 0 0
\(781\) −1.61127 2.79080i −0.0576557 0.0998625i
\(782\) −0.570108 0.987456i −0.0203870 0.0353114i
\(783\) −1.65659 −0.0592017
\(784\) 4.29413 + 7.43765i 0.153362 + 0.265630i
\(785\) 0 0
\(786\) 6.53007 11.3104i 0.232920 0.403429i
\(787\) 19.9883 0.712506 0.356253 0.934389i \(-0.384054\pi\)
0.356253 + 0.934389i \(0.384054\pi\)
\(788\) 20.3463 0.724808
\(789\) 19.3519 33.5186i 0.688947 1.19329i
\(790\) 0 0
\(791\) 33.4325 1.18872
\(792\) −4.15826 + 7.20231i −0.147757 + 0.255923i
\(793\) 8.43277 14.6060i 0.299456 0.518674i
\(794\) −4.02935 + 6.97904i −0.142996 + 0.247677i
\(795\) 0 0
\(796\) −3.76120 6.51459i −0.133312 0.230903i
\(797\) 20.4059 35.3441i 0.722814 1.25195i −0.237053 0.971497i \(-0.576182\pi\)
0.959867 0.280454i \(-0.0904851\pi\)
\(798\) 1.62209 2.80954i 0.0574213 0.0994566i
\(799\) −0.441320 + 0.764389i −0.0156128 + 0.0270421i
\(800\) 0 0
\(801\) 10.5244 + 18.2288i 0.371861 + 0.644083i
\(802\) −2.59540 + 4.49537i −0.0916468 + 0.158737i
\(803\) −59.2763 −2.09182
\(804\) −5.21691 −0.183986
\(805\) 0 0
\(806\) −3.59305 −0.126560
\(807\) 2.94873 + 5.10734i 0.103800 + 0.179787i
\(808\) −10.6501 −0.374670
\(809\) −1.45711 2.52378i −0.0512292 0.0887315i 0.839274 0.543709i \(-0.182981\pi\)
−0.890503 + 0.454978i \(0.849647\pi\)
\(810\) 0 0
\(811\) 13.8960 + 24.0686i 0.487956 + 0.845164i 0.999904 0.0138524i \(-0.00440949\pi\)
−0.511949 + 0.859016i \(0.671076\pi\)
\(812\) −0.927528 + 1.60652i −0.0325498 + 0.0563780i
\(813\) 46.6889 1.63745
\(814\) −6.17717 8.31072i −0.216510 0.291291i
\(815\) 0 0
\(816\) 10.0653 17.4336i 0.352355 0.610297i
\(817\) 5.25130 + 9.09552i 0.183720 + 0.318212i
\(818\) 0.0562293 + 0.0973920i 0.00196601 + 0.00340523i
\(819\) 2.19256 + 3.79763i 0.0766143 + 0.132700i
\(820\) 0 0
\(821\) 20.8119 + 36.0473i 0.726342 + 1.25806i 0.958419 + 0.285364i \(0.0921144\pi\)
−0.232077 + 0.972697i \(0.574552\pi\)
\(822\) 3.53712 0.123371
\(823\) 11.8160 20.4659i 0.411880 0.713398i −0.583215 0.812318i \(-0.698206\pi\)
0.995095 + 0.0989202i \(0.0315388\pi\)
\(824\) −6.49812 −0.226373
\(825\) 0 0
\(826\) 2.73014 4.72874i 0.0949936 0.164534i
\(827\) −6.09101 10.5499i −0.211805 0.366857i 0.740474 0.672085i \(-0.234601\pi\)
−0.952279 + 0.305227i \(0.901268\pi\)
\(828\) 3.07768 0.106957
\(829\) 3.01060 5.21452i 0.104563 0.181108i −0.808997 0.587813i \(-0.799989\pi\)
0.913559 + 0.406705i \(0.133322\pi\)
\(830\) 0 0
\(831\) −0.169472 + 0.293534i −0.00587892 + 0.0101826i
\(832\) −4.77651 8.27316i −0.165596 0.286820i
\(833\) 3.55987 + 6.16588i 0.123342 + 0.213635i
\(834\) 6.69335 11.5932i 0.231772 0.401441i
\(835\) 0 0
\(836\) −12.4900 + 21.6332i −0.431974 + 0.748201i
\(837\) −25.2704 −0.873472
\(838\) 2.54438 + 4.40700i 0.0878942 + 0.152237i
\(839\) 4.03238 6.98429i 0.139213 0.241124i −0.787986 0.615693i \(-0.788876\pi\)
0.927199 + 0.374569i \(0.122209\pi\)
\(840\) 0 0
\(841\) −28.7889 −0.992720
\(842\) −0.832031 + 1.44112i −0.0286737 + 0.0496643i
\(843\) −50.7088 −1.74650
\(844\) 8.00493 + 13.8649i 0.275541 + 0.477251i
\(845\) 0 0
\(846\) 0.0602287 + 0.104319i 0.00207070 + 0.00358656i
\(847\) −20.2607 35.0926i −0.696167 1.20580i
\(848\) −20.6160 35.7080i −0.707957 1.22622i
\(849\) 21.4624 37.1740i 0.736587 1.27581i
\(850\) 0 0
\(851\) −3.11789 + 7.21281i −0.106880 + 0.247252i
\(852\) 2.30535 0.0789800
\(853\) 21.5722 37.3642i 0.738619 1.27933i −0.214498 0.976724i \(-0.568812\pi\)
0.953117 0.302602i \(-0.0978552\pi\)
\(854\) 3.35794 + 5.81612i 0.114906 + 0.199024i
\(855\) 0 0
\(856\) −1.72825 2.99342i −0.0590704 0.102313i
\(857\) 33.4524 1.14271 0.571356 0.820703i \(-0.306418\pi\)
0.571356 + 0.820703i \(0.306418\pi\)
\(858\) 2.89985 + 5.02269i 0.0989993 + 0.171472i
\(859\) 7.52085 0.256608 0.128304 0.991735i \(-0.459047\pi\)
0.128304 + 0.991735i \(0.459047\pi\)
\(860\) 0 0
\(861\) −31.8195 −1.08441
\(862\) −12.4408 −0.423737
\(863\) −11.5106 + 19.9370i −0.391827 + 0.678664i −0.992691 0.120688i \(-0.961490\pi\)
0.600864 + 0.799351i \(0.294823\pi\)
\(864\) 6.28586 + 10.8874i 0.213849 + 0.370398i
\(865\) 0 0
\(866\) −1.38816 + 2.40436i −0.0471716 + 0.0817036i
\(867\) −9.18198 + 15.9037i −0.311836 + 0.540116i
\(868\) −14.1489 + 24.5067i −0.480246 + 0.831810i
\(869\) 7.78975 + 13.4922i 0.264249 + 0.457693i
\(870\) 0 0
\(871\) −1.09798 + 1.90176i −0.0372038 + 0.0644388i
\(872\) −5.30424 + 9.18721i −0.179624 + 0.311118i
\(873\) −11.6371 + 20.1561i −0.393857 + 0.682180i
\(874\) −0.958426 −0.0324192
\(875\) 0 0
\(876\) 21.2027 36.7241i 0.716373 1.24079i
\(877\) −12.6479 −0.427089 −0.213545 0.976933i \(-0.568501\pi\)
−0.213545 + 0.976933i \(0.568501\pi\)
\(878\) 7.41232 0.250154
\(879\) −12.0240 + 20.8261i −0.405558 + 0.702448i
\(880\) 0 0
\(881\) −2.42275 4.19633i −0.0816247 0.141378i 0.822323 0.569021i \(-0.192678\pi\)
−0.903948 + 0.427643i \(0.859344\pi\)
\(882\) 0.971658 0.0327174
\(883\) 22.8338 + 39.5494i 0.768420 + 1.33094i 0.938419 + 0.345498i \(0.112290\pi\)
−0.169999 + 0.985444i \(0.554377\pi\)
\(884\) −4.47447 7.75000i −0.150493 0.260661i
\(885\) 0 0
\(886\) 6.21393 10.7628i 0.208761 0.361585i
\(887\) −48.0641 −1.61383 −0.806917 0.590665i \(-0.798866\pi\)
−0.806917 + 0.590665i \(0.798866\pi\)
\(888\) 15.0888 1.75185i 0.506346 0.0587883i
\(889\) −8.49662 −0.284967
\(890\) 0 0
\(891\) 30.6951 + 53.1654i 1.02832 + 1.78111i
\(892\) −15.6761 27.1517i −0.524873 0.909107i
\(893\) 0.370959 + 0.642519i 0.0124137 + 0.0215011i
\(894\) −3.12038 −0.104361
\(895\) 0 0
\(896\) 18.5937 0.621171
\(897\) 2.20055 3.81146i 0.0734741 0.127261i
\(898\) 2.37755 0.0793398
\(899\) 3.22056 0.107412
\(900\) 0 0
\(901\) −17.0909 29.6022i −0.569379 0.986194i
\(902\) −12.3877 −0.412467
\(903\) 9.60222 16.6315i 0.319542 0.553463i
\(904\) −9.54663 + 16.5352i −0.317516 + 0.549954i
\(905\) 0 0
\(906\) 7.57952 + 13.1281i 0.251813 + 0.436152i
\(907\) 23.2510 + 40.2719i 0.772036 + 1.33721i 0.936446 + 0.350813i \(0.114095\pi\)
−0.164410 + 0.986392i \(0.552572\pi\)
\(908\) 12.9287 22.3932i 0.429055 0.743145i
\(909\) 5.50230 9.53026i 0.182500 0.316099i
\(910\) 0 0
\(911\) 14.3173 0.474353 0.237177 0.971467i \(-0.423778\pi\)
0.237177 + 0.971467i \(0.423778\pi\)
\(912\) −8.46052 14.6540i −0.280156 0.485244i
\(913\) 32.4338 56.1769i 1.07340 1.85919i
\(914\) 10.5208 0.347997
\(915\) 0 0
\(916\) −20.7525 + 35.9444i −0.685682 + 1.18764i
\(917\) −43.2962 −1.42977
\(918\) 1.59112 + 2.75589i 0.0525146 + 0.0909580i
\(919\) −43.3839 −1.43110 −0.715552 0.698559i \(-0.753825\pi\)
−0.715552 + 0.698559i \(0.753825\pi\)
\(920\) 0 0
\(921\) 14.0001 + 24.2489i 0.461319 + 0.799028i
\(922\) 2.26175 + 3.91747i 0.0744869 + 0.129015i
\(923\) 0.485198 0.840388i 0.0159705 0.0276617i
\(924\) 45.6768 1.50266
\(925\) 0 0
\(926\) 1.23742 0.0406643
\(927\) 3.35720 5.81484i 0.110265 0.190984i
\(928\) −0.801096 1.38754i −0.0262973 0.0455482i
\(929\) 14.8015 + 25.6370i 0.485623 + 0.841124i 0.999863 0.0165222i \(-0.00525942\pi\)
−0.514240 + 0.857646i \(0.671926\pi\)
\(930\) 0 0
\(931\) 5.98461 0.196138
\(932\) −12.5873 21.8018i −0.412310 0.714141i
\(933\) 5.46818 0.179020
\(934\) −2.29063 + 3.96749i −0.0749517 + 0.129820i
\(935\) 0 0
\(936\) −2.50434 −0.0818569
\(937\) 5.69829 9.86973i 0.186155 0.322430i −0.757810 0.652475i \(-0.773731\pi\)
0.943965 + 0.330045i \(0.107064\pi\)
\(938\) −0.437218 0.757284i −0.0142757 0.0247262i
\(939\) −1.22438 −0.0399562
\(940\) 0 0
\(941\) 12.7126 22.0189i 0.414419 0.717795i −0.580948 0.813940i \(-0.697318\pi\)
0.995367 + 0.0961458i \(0.0306515\pi\)
\(942\) 6.74154 11.6767i 0.219651 0.380447i
\(943\) 4.70021 + 8.14100i 0.153060 + 0.265107i
\(944\) −14.2399 24.6642i −0.463469 0.802752i
\(945\) 0 0
\(946\) 3.73827 6.47487i 0.121542 0.210516i
\(947\) −8.09396 + 14.0192i −0.263018 + 0.455561i −0.967043 0.254615i \(-0.918051\pi\)
0.704024 + 0.710176i \(0.251385\pi\)
\(948\) −11.1453 −0.361984
\(949\) −8.92489 15.4584i −0.289714 0.501800i
\(950\) 0 0
\(951\) −13.9716 −0.453060
\(952\) 7.30712 0.236825
\(953\) −9.72346 + 16.8415i −0.314974 + 0.545550i −0.979432 0.201775i \(-0.935329\pi\)
0.664458 + 0.747325i \(0.268662\pi\)
\(954\) −4.66491 −0.151032
\(955\) 0 0
\(956\) −23.0281 −0.744783
\(957\) −2.59922 4.50198i −0.0840208 0.145528i
\(958\) 2.42200 + 4.19502i 0.0782512 + 0.135535i
\(959\) −5.86303 10.1551i −0.189327 0.327924i
\(960\) 0 0
\(961\) 18.1278 0.584769
\(962\) 1.23725 2.86221i 0.0398906 0.0922813i
\(963\) 3.57154 0.115091
\(964\) −13.9920 + 24.2348i −0.450651 + 0.780551i
\(965\) 0 0
\(966\) 0.876260 + 1.51773i 0.0281932 + 0.0488321i
\(967\) 0.352631 + 0.610774i 0.0113398 + 0.0196412i 0.871640 0.490147i \(-0.163057\pi\)
−0.860300 + 0.509788i \(0.829724\pi\)
\(968\) 23.1418 0.743805
\(969\) −7.01384 12.1483i −0.225317 0.390261i
\(970\) 0 0
\(971\) −5.02834 + 8.70933i −0.161367 + 0.279496i −0.935359 0.353699i \(-0.884924\pi\)
0.773992 + 0.633195i \(0.218257\pi\)
\(972\) −23.3265 −0.748199
\(973\) −44.3788 −1.42272
\(974\) −5.53767 + 9.59153i −0.177438 + 0.307332i
\(975\) 0 0
\(976\) 35.0288 1.12124
\(977\) −21.8771 + 37.8923i −0.699911 + 1.21228i 0.268586 + 0.963256i \(0.413444\pi\)
−0.968497 + 0.249025i \(0.919890\pi\)
\(978\) 1.66685 2.88707i 0.0533000 0.0923183i
\(979\) 46.1449 79.9252i 1.47480 2.55442i
\(980\) 0 0
\(981\) −5.48078 9.49298i −0.174988 0.303088i
\(982\) −0.0638534 + 0.110597i −0.00203765 + 0.00352931i
\(983\) 6.04809 10.4756i 0.192904 0.334119i −0.753307 0.657669i \(-0.771543\pi\)
0.946211 + 0.323549i \(0.104876\pi\)
\(984\) 9.08604 15.7375i 0.289652 0.501692i
\(985\) 0 0
\(986\) −0.202778 0.351222i −0.00645777 0.0111852i
\(987\) 0.678313 1.17487i 0.0215909 0.0373966i
\(988\) −7.52216 −0.239312
\(989\) −5.67356 −0.180409
\(990\) 0 0
\(991\) −37.4383 −1.18927 −0.594633 0.803997i \(-0.702703\pi\)
−0.594633 + 0.803997i \(0.702703\pi\)
\(992\) −12.2203 21.1661i −0.387994 0.672026i
\(993\) 5.80589 0.184244
\(994\) 0.193206 + 0.334643i 0.00612814 + 0.0106142i
\(995\) 0 0
\(996\) 23.2026 + 40.1881i 0.735203 + 1.27341i
\(997\) −15.4743 + 26.8024i −0.490078 + 0.848839i −0.999935 0.0114198i \(-0.996365\pi\)
0.509857 + 0.860259i \(0.329698\pi\)
\(998\) −11.8127 −0.373924
\(999\) 8.70173 20.1302i 0.275310 0.636893i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.e.b.676.5 14
5.2 odd 4 925.2.o.c.824.8 28
5.3 odd 4 925.2.o.c.824.7 28
5.4 even 2 185.2.e.b.121.3 yes 14
37.26 even 3 inner 925.2.e.b.26.5 14
185.63 odd 12 925.2.o.c.174.8 28
185.64 even 6 6845.2.a.m.1.3 7
185.84 even 6 6845.2.a.j.1.5 7
185.137 odd 12 925.2.o.c.174.7 28
185.174 even 6 185.2.e.b.26.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.b.26.3 14 185.174 even 6
185.2.e.b.121.3 yes 14 5.4 even 2
925.2.e.b.26.5 14 37.26 even 3 inner
925.2.e.b.676.5 14 1.1 even 1 trivial
925.2.o.c.174.7 28 185.137 odd 12
925.2.o.c.174.8 28 185.63 odd 12
925.2.o.c.824.7 28 5.3 odd 4
925.2.o.c.824.8 28 5.2 odd 4
6845.2.a.j.1.5 7 185.84 even 6
6845.2.a.m.1.3 7 185.64 even 6