Properties

Label 925.2.d.f.924.6
Level $925$
Weight $2$
Character 925.924
Analytic conductor $7.386$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(924,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.924"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,18,0,0,0,6,-22,0,2,0,20,0,0,30,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 21x^{10} + 162x^{8} + 574x^{6} + 985x^{4} + 765x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 924.6
Root \(-0.694469i\) of defining polynomial
Character \(\chi\) \(=\) 925.924
Dual form 925.2.d.f.924.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.694469 q^{2} +2.37730i q^{3} -1.51771 q^{4} -1.65096i q^{6} +2.16868i q^{7} +2.44294 q^{8} -2.65157 q^{9} +4.35199 q^{11} -3.60806i q^{12} +5.72273 q^{13} -1.50608i q^{14} +1.33888 q^{16} +6.00355 q^{17} +1.84143 q^{18} -4.14041i q^{19} -5.15560 q^{21} -3.02232 q^{22} -0.165727 q^{23} +5.80761i q^{24} -3.97426 q^{26} +0.828325i q^{27} -3.29143i q^{28} +8.05774i q^{29} -0.0682170i q^{31} -5.81569 q^{32} +10.3460i q^{33} -4.16928 q^{34} +4.02432 q^{36} +(4.69802 - 3.86375i) q^{37} +2.87539i q^{38} +13.6047i q^{39} -8.59751 q^{41} +3.58040 q^{42} -0.445335 q^{43} -6.60506 q^{44} +0.115093 q^{46} -6.94655i q^{47} +3.18292i q^{48} +2.29684 q^{49} +14.2723i q^{51} -8.68547 q^{52} -4.63281i q^{53} -0.575246i q^{54} +5.29795i q^{56} +9.84301 q^{57} -5.59585i q^{58} -9.44099i q^{59} -2.38799i q^{61} +0.0473746i q^{62} -5.75039i q^{63} +1.36106 q^{64} -7.18497i q^{66} +11.4214i q^{67} -9.11167 q^{68} -0.393984i q^{69} -2.32872 q^{71} -6.47763 q^{72} +10.6095i q^{73} +(-3.26263 + 2.68326i) q^{74} +6.28395i q^{76} +9.43805i q^{77} -9.44802i q^{78} -8.06222i q^{79} -9.92389 q^{81} +5.97071 q^{82} +6.59438i q^{83} +7.82472 q^{84} +0.309271 q^{86} -19.1557 q^{87} +10.6316 q^{88} +2.34335i q^{89} +12.4108i q^{91} +0.251527 q^{92} +0.162173 q^{93} +4.82416i q^{94} -13.8257i q^{96} +8.58288 q^{97} -1.59509 q^{98} -11.5396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 18 q^{4} + 6 q^{8} - 22 q^{9} + 2 q^{11} + 20 q^{13} + 30 q^{16} + 12 q^{17} - 26 q^{18} - 6 q^{21} - 28 q^{22} - 16 q^{23} - 12 q^{26} + 14 q^{32} - 4 q^{34} - 22 q^{36} - 14 q^{37} - 10 q^{41}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.694469 −0.491064 −0.245532 0.969389i \(-0.578963\pi\)
−0.245532 + 0.969389i \(0.578963\pi\)
\(3\) 2.37730i 1.37254i 0.727349 + 0.686268i \(0.240752\pi\)
−0.727349 + 0.686268i \(0.759248\pi\)
\(4\) −1.51771 −0.758856
\(5\) 0 0
\(6\) 1.65096i 0.674003i
\(7\) 2.16868i 0.819682i 0.912157 + 0.409841i \(0.134416\pi\)
−0.912157 + 0.409841i \(0.865584\pi\)
\(8\) 2.44294 0.863711
\(9\) −2.65157 −0.883856
\(10\) 0 0
\(11\) 4.35199 1.31217 0.656087 0.754686i \(-0.272211\pi\)
0.656087 + 0.754686i \(0.272211\pi\)
\(12\) 3.60806i 1.04156i
\(13\) 5.72273 1.58720 0.793601 0.608439i \(-0.208204\pi\)
0.793601 + 0.608439i \(0.208204\pi\)
\(14\) 1.50608i 0.402516i
\(15\) 0 0
\(16\) 1.33888 0.334720
\(17\) 6.00355 1.45608 0.728038 0.685537i \(-0.240432\pi\)
0.728038 + 0.685537i \(0.240432\pi\)
\(18\) 1.84143 0.434030
\(19\) 4.14041i 0.949875i −0.880019 0.474938i \(-0.842471\pi\)
0.880019 0.474938i \(-0.157529\pi\)
\(20\) 0 0
\(21\) −5.15560 −1.12504
\(22\) −3.02232 −0.644361
\(23\) −0.165727 −0.0345566 −0.0172783 0.999851i \(-0.505500\pi\)
−0.0172783 + 0.999851i \(0.505500\pi\)
\(24\) 5.80761i 1.18547i
\(25\) 0 0
\(26\) −3.97426 −0.779417
\(27\) 0.828325i 0.159411i
\(28\) 3.29143i 0.622021i
\(29\) 8.05774i 1.49629i 0.663538 + 0.748143i \(0.269054\pi\)
−0.663538 + 0.748143i \(0.730946\pi\)
\(30\) 0 0
\(31\) 0.0682170i 0.0122521i −0.999981 0.00612607i \(-0.998050\pi\)
0.999981 0.00612607i \(-0.00195000\pi\)
\(32\) −5.81569 −1.02808
\(33\) 10.3460i 1.80101i
\(34\) −4.16928 −0.715026
\(35\) 0 0
\(36\) 4.02432 0.670720
\(37\) 4.69802 3.86375i 0.772350 0.635197i
\(38\) 2.87539i 0.466449i
\(39\) 13.6047i 2.17849i
\(40\) 0 0
\(41\) −8.59751 −1.34271 −0.671353 0.741138i \(-0.734287\pi\)
−0.671353 + 0.741138i \(0.734287\pi\)
\(42\) 3.58040 0.552468
\(43\) −0.445335 −0.0679129 −0.0339565 0.999423i \(-0.510811\pi\)
−0.0339565 + 0.999423i \(0.510811\pi\)
\(44\) −6.60506 −0.995751
\(45\) 0 0
\(46\) 0.115093 0.0169695
\(47\) 6.94655i 1.01326i −0.862164 0.506629i \(-0.830891\pi\)
0.862164 0.506629i \(-0.169109\pi\)
\(48\) 3.18292i 0.459415i
\(49\) 2.29684 0.328121
\(50\) 0 0
\(51\) 14.2723i 1.99852i
\(52\) −8.68547 −1.20446
\(53\) 4.63281i 0.636365i −0.948030 0.318182i \(-0.896928\pi\)
0.948030 0.318182i \(-0.103072\pi\)
\(54\) 0.575246i 0.0782811i
\(55\) 0 0
\(56\) 5.29795i 0.707968i
\(57\) 9.84301 1.30374
\(58\) 5.59585i 0.734772i
\(59\) 9.44099i 1.22911i −0.788873 0.614556i \(-0.789335\pi\)
0.788873 0.614556i \(-0.210665\pi\)
\(60\) 0 0
\(61\) 2.38799i 0.305750i −0.988246 0.152875i \(-0.951147\pi\)
0.988246 0.152875i \(-0.0488532\pi\)
\(62\) 0.0473746i 0.00601658i
\(63\) 5.75039i 0.724482i
\(64\) 1.36106 0.170133
\(65\) 0 0
\(66\) 7.18497i 0.884408i
\(67\) 11.4214i 1.39534i 0.716418 + 0.697671i \(0.245780\pi\)
−0.716418 + 0.697671i \(0.754220\pi\)
\(68\) −9.11167 −1.10495
\(69\) 0.393984i 0.0474301i
\(70\) 0 0
\(71\) −2.32872 −0.276368 −0.138184 0.990407i \(-0.544126\pi\)
−0.138184 + 0.990407i \(0.544126\pi\)
\(72\) −6.47763 −0.763396
\(73\) 10.6095i 1.24175i 0.783909 + 0.620876i \(0.213223\pi\)
−0.783909 + 0.620876i \(0.786777\pi\)
\(74\) −3.26263 + 2.68326i −0.379273 + 0.311922i
\(75\) 0 0
\(76\) 6.28395i 0.720819i
\(77\) 9.43805i 1.07557i
\(78\) 9.44802i 1.06978i
\(79\) 8.06222i 0.907071i −0.891238 0.453535i \(-0.850163\pi\)
0.891238 0.453535i \(-0.149837\pi\)
\(80\) 0 0
\(81\) −9.92389 −1.10265
\(82\) 5.97071 0.659354
\(83\) 6.59438i 0.723827i 0.932212 + 0.361914i \(0.117876\pi\)
−0.932212 + 0.361914i \(0.882124\pi\)
\(84\) 7.82472 0.853747
\(85\) 0 0
\(86\) 0.309271 0.0333496
\(87\) −19.1557 −2.05371
\(88\) 10.6316 1.13334
\(89\) 2.34335i 0.248395i 0.992258 + 0.124197i \(0.0396356\pi\)
−0.992258 + 0.124197i \(0.960364\pi\)
\(90\) 0 0
\(91\) 12.4108i 1.30100i
\(92\) 0.251527 0.0262235
\(93\) 0.162173 0.0168165
\(94\) 4.82416i 0.497575i
\(95\) 0 0
\(96\) 13.8257i 1.41108i
\(97\) 8.58288 0.871460 0.435730 0.900078i \(-0.356490\pi\)
0.435730 + 0.900078i \(0.356490\pi\)
\(98\) −1.59509 −0.161128
\(99\) −11.5396 −1.15977
\(100\) 0 0
\(101\) 0.976765 0.0971918 0.0485959 0.998819i \(-0.484525\pi\)
0.0485959 + 0.998819i \(0.484525\pi\)
\(102\) 9.91165i 0.981399i
\(103\) −19.1838 −1.89023 −0.945117 0.326732i \(-0.894053\pi\)
−0.945117 + 0.326732i \(0.894053\pi\)
\(104\) 13.9803 1.37088
\(105\) 0 0
\(106\) 3.21734i 0.312496i
\(107\) 4.92481i 0.476099i −0.971253 0.238050i \(-0.923492\pi\)
0.971253 0.238050i \(-0.0765081\pi\)
\(108\) 1.25716i 0.120970i
\(109\) 6.66759i 0.638640i −0.947647 0.319320i \(-0.896546\pi\)
0.947647 0.319320i \(-0.103454\pi\)
\(110\) 0 0
\(111\) 9.18531 + 11.1686i 0.871831 + 1.06008i
\(112\) 2.90359i 0.274364i
\(113\) 4.69442 0.441614 0.220807 0.975318i \(-0.429131\pi\)
0.220807 + 0.975318i \(0.429131\pi\)
\(114\) −6.83566 −0.640219
\(115\) 0 0
\(116\) 12.2293i 1.13547i
\(117\) −15.1742 −1.40286
\(118\) 6.55648i 0.603573i
\(119\) 13.0198i 1.19352i
\(120\) 0 0
\(121\) 7.93978 0.721798
\(122\) 1.65838i 0.150143i
\(123\) 20.4389i 1.84291i
\(124\) 0.103534i 0.00929762i
\(125\) 0 0
\(126\) 3.99347i 0.355767i
\(127\) 9.18965i 0.815450i 0.913105 + 0.407725i \(0.133678\pi\)
−0.913105 + 0.407725i \(0.866322\pi\)
\(128\) 10.6862 0.944533
\(129\) 1.05870i 0.0932130i
\(130\) 0 0
\(131\) 22.4849i 1.96451i −0.187544 0.982256i \(-0.560053\pi\)
0.187544 0.982256i \(-0.439947\pi\)
\(132\) 15.7022i 1.36670i
\(133\) 8.97921 0.778596
\(134\) 7.93178i 0.685202i
\(135\) 0 0
\(136\) 14.6663 1.25763
\(137\) 8.66881i 0.740626i 0.928907 + 0.370313i \(0.120750\pi\)
−0.928907 + 0.370313i \(0.879250\pi\)
\(138\) 0.273610i 0.0232912i
\(139\) −14.0011 −1.18756 −0.593779 0.804628i \(-0.702365\pi\)
−0.593779 + 0.804628i \(0.702365\pi\)
\(140\) 0 0
\(141\) 16.5141 1.39073
\(142\) 1.61722 0.135714
\(143\) 24.9053 2.08268
\(144\) −3.55013 −0.295844
\(145\) 0 0
\(146\) 7.36799i 0.609779i
\(147\) 5.46030i 0.450358i
\(148\) −7.13025 + 5.86407i −0.586103 + 0.482023i
\(149\) 19.5226 1.59935 0.799677 0.600430i \(-0.205004\pi\)
0.799677 + 0.600430i \(0.205004\pi\)
\(150\) 0 0
\(151\) −23.2295 −1.89039 −0.945195 0.326506i \(-0.894129\pi\)
−0.945195 + 0.326506i \(0.894129\pi\)
\(152\) 10.1148i 0.820417i
\(153\) −15.9188 −1.28696
\(154\) 6.55443i 0.528171i
\(155\) 0 0
\(156\) 20.6480i 1.65316i
\(157\) 14.2147i 1.13446i 0.823560 + 0.567229i \(0.191984\pi\)
−0.823560 + 0.567229i \(0.808016\pi\)
\(158\) 5.59896i 0.445429i
\(159\) 11.0136 0.873434
\(160\) 0 0
\(161\) 0.359409i 0.0283254i
\(162\) 6.89183 0.541473
\(163\) −10.8566 −0.850354 −0.425177 0.905110i \(-0.639788\pi\)
−0.425177 + 0.905110i \(0.639788\pi\)
\(164\) 13.0486 1.01892
\(165\) 0 0
\(166\) 4.57959i 0.355445i
\(167\) −7.41823 −0.574040 −0.287020 0.957925i \(-0.592665\pi\)
−0.287020 + 0.957925i \(0.592665\pi\)
\(168\) −12.5948 −0.971712
\(169\) 19.7497 1.51921
\(170\) 0 0
\(171\) 10.9786i 0.839553i
\(172\) 0.675890 0.0515362
\(173\) 7.71644i 0.586670i 0.956010 + 0.293335i \(0.0947652\pi\)
−0.956010 + 0.293335i \(0.905235\pi\)
\(174\) 13.3030 1.00850
\(175\) 0 0
\(176\) 5.82678 0.439210
\(177\) 22.4441 1.68700
\(178\) 1.62738i 0.121978i
\(179\) 3.95371i 0.295514i −0.989024 0.147757i \(-0.952795\pi\)
0.989024 0.147757i \(-0.0472054\pi\)
\(180\) 0 0
\(181\) 13.4910 1.00278 0.501390 0.865221i \(-0.332822\pi\)
0.501390 + 0.865221i \(0.332822\pi\)
\(182\) 8.61889i 0.638874i
\(183\) 5.67697 0.419654
\(184\) −0.404862 −0.0298469
\(185\) 0 0
\(186\) −0.112624 −0.00825798
\(187\) 26.1274 1.91062
\(188\) 10.5429i 0.768918i
\(189\) −1.79637 −0.130667
\(190\) 0 0
\(191\) 3.91989i 0.283633i −0.989893 0.141817i \(-0.954706\pi\)
0.989893 0.141817i \(-0.0452943\pi\)
\(192\) 3.23566i 0.233513i
\(193\) −8.40231 −0.604811 −0.302406 0.953179i \(-0.597790\pi\)
−0.302406 + 0.953179i \(0.597790\pi\)
\(194\) −5.96054 −0.427942
\(195\) 0 0
\(196\) −3.48595 −0.248996
\(197\) 7.79756i 0.555553i −0.960646 0.277776i \(-0.910403\pi\)
0.960646 0.277776i \(-0.0895974\pi\)
\(198\) 8.01389 0.569522
\(199\) 1.51208i 0.107188i −0.998563 0.0535941i \(-0.982932\pi\)
0.998563 0.0535941i \(-0.0170677\pi\)
\(200\) 0 0
\(201\) −27.1520 −1.91516
\(202\) −0.678333 −0.0477273
\(203\) −17.4746 −1.22648
\(204\) 21.6612i 1.51659i
\(205\) 0 0
\(206\) 13.3225 0.928225
\(207\) 0.439438 0.0305430
\(208\) 7.66205 0.531267
\(209\) 18.0190i 1.24640i
\(210\) 0 0
\(211\) −11.6259 −0.800357 −0.400178 0.916437i \(-0.631052\pi\)
−0.400178 + 0.916437i \(0.631052\pi\)
\(212\) 7.03127i 0.482910i
\(213\) 5.53606i 0.379325i
\(214\) 3.42013i 0.233795i
\(215\) 0 0
\(216\) 2.02355i 0.137685i
\(217\) 0.147941 0.0100429
\(218\) 4.63044i 0.313613i
\(219\) −25.2221 −1.70435
\(220\) 0 0
\(221\) 34.3568 2.31109
\(222\) −6.37891 7.75626i −0.428124 0.520566i
\(223\) 2.59438i 0.173733i −0.996220 0.0868663i \(-0.972315\pi\)
0.996220 0.0868663i \(-0.0276853\pi\)
\(224\) 12.6124i 0.842698i
\(225\) 0 0
\(226\) −3.26013 −0.216860
\(227\) −2.99424 −0.198735 −0.0993673 0.995051i \(-0.531682\pi\)
−0.0993673 + 0.995051i \(0.531682\pi\)
\(228\) −14.9389 −0.989350
\(229\) −6.89738 −0.455792 −0.227896 0.973686i \(-0.573185\pi\)
−0.227896 + 0.973686i \(0.573185\pi\)
\(230\) 0 0
\(231\) −22.4371 −1.47625
\(232\) 19.6846i 1.29236i
\(233\) 23.8710i 1.56384i −0.623376 0.781922i \(-0.714239\pi\)
0.623376 0.781922i \(-0.285761\pi\)
\(234\) 10.5380 0.688893
\(235\) 0 0
\(236\) 14.3287i 0.932720i
\(237\) 19.1663 1.24499
\(238\) 9.04182i 0.586094i
\(239\) 5.31643i 0.343892i −0.985106 0.171946i \(-0.944995\pi\)
0.985106 0.171946i \(-0.0550054\pi\)
\(240\) 0 0
\(241\) 13.3776i 0.861725i 0.902418 + 0.430862i \(0.141791\pi\)
−0.902418 + 0.430862i \(0.858209\pi\)
\(242\) −5.51393 −0.354449
\(243\) 21.1071i 1.35402i
\(244\) 3.62428i 0.232021i
\(245\) 0 0
\(246\) 14.1942i 0.904988i
\(247\) 23.6945i 1.50764i
\(248\) 0.166650i 0.0105823i
\(249\) −15.6768 −0.993479
\(250\) 0 0
\(251\) 12.4789i 0.787660i 0.919183 + 0.393830i \(0.128850\pi\)
−0.919183 + 0.393830i \(0.871150\pi\)
\(252\) 8.72745i 0.549778i
\(253\) −0.721243 −0.0453442
\(254\) 6.38193i 0.400438i
\(255\) 0 0
\(256\) −10.1433 −0.633959
\(257\) −20.8290 −1.29928 −0.649639 0.760243i \(-0.725080\pi\)
−0.649639 + 0.760243i \(0.725080\pi\)
\(258\) 0.735231i 0.0457735i
\(259\) 8.37922 + 10.1885i 0.520660 + 0.633082i
\(260\) 0 0
\(261\) 21.3657i 1.32250i
\(262\) 15.6150i 0.964701i
\(263\) 5.45327i 0.336263i 0.985765 + 0.168132i \(0.0537733\pi\)
−0.985765 + 0.168132i \(0.946227\pi\)
\(264\) 25.2747i 1.55555i
\(265\) 0 0
\(266\) −6.23578 −0.382340
\(267\) −5.57085 −0.340931
\(268\) 17.3344i 1.05886i
\(269\) −20.0095 −1.22000 −0.609999 0.792402i \(-0.708830\pi\)
−0.609999 + 0.792402i \(0.708830\pi\)
\(270\) 0 0
\(271\) 10.1158 0.614491 0.307246 0.951630i \(-0.400593\pi\)
0.307246 + 0.951630i \(0.400593\pi\)
\(272\) 8.03803 0.487377
\(273\) −29.5041 −1.78567
\(274\) 6.02022i 0.363695i
\(275\) 0 0
\(276\) 0.597955i 0.0359927i
\(277\) −13.8144 −0.830029 −0.415014 0.909815i \(-0.636223\pi\)
−0.415014 + 0.909815i \(0.636223\pi\)
\(278\) 9.72334 0.583167
\(279\) 0.180882i 0.0108291i
\(280\) 0 0
\(281\) 19.8826i 1.18609i −0.805168 0.593047i \(-0.797925\pi\)
0.805168 0.593047i \(-0.202075\pi\)
\(282\) −11.4685 −0.682939
\(283\) 24.9559 1.48348 0.741738 0.670690i \(-0.234002\pi\)
0.741738 + 0.670690i \(0.234002\pi\)
\(284\) 3.53432 0.209723
\(285\) 0 0
\(286\) −17.2959 −1.02273
\(287\) 18.6452i 1.10059i
\(288\) 15.4207 0.908674
\(289\) 19.0427 1.12016
\(290\) 0 0
\(291\) 20.4041i 1.19611i
\(292\) 16.1022i 0.942312i
\(293\) 5.19503i 0.303497i −0.988419 0.151748i \(-0.951510\pi\)
0.988419 0.151748i \(-0.0484904\pi\)
\(294\) 3.79201i 0.221154i
\(295\) 0 0
\(296\) 11.4770 9.43892i 0.667087 0.548626i
\(297\) 3.60486i 0.209175i
\(298\) −13.5578 −0.785385
\(299\) −0.948414 −0.0548482
\(300\) 0 0
\(301\) 0.965787i 0.0556670i
\(302\) 16.1322 0.928302
\(303\) 2.32207i 0.133399i
\(304\) 5.54351i 0.317942i
\(305\) 0 0
\(306\) 11.0551 0.631980
\(307\) 20.7362i 1.18348i −0.806130 0.591739i \(-0.798442\pi\)
0.806130 0.591739i \(-0.201558\pi\)
\(308\) 14.3242i 0.816200i
\(309\) 45.6057i 2.59442i
\(310\) 0 0
\(311\) 23.7997i 1.34956i −0.738020 0.674779i \(-0.764239\pi\)
0.738020 0.674779i \(-0.235761\pi\)
\(312\) 33.2354i 1.88159i
\(313\) −13.7661 −0.778107 −0.389053 0.921215i \(-0.627198\pi\)
−0.389053 + 0.921215i \(0.627198\pi\)
\(314\) 9.87167i 0.557091i
\(315\) 0 0
\(316\) 12.2361i 0.688336i
\(317\) 26.3650i 1.48081i −0.672164 0.740403i \(-0.734635\pi\)
0.672164 0.740403i \(-0.265365\pi\)
\(318\) −7.64859 −0.428912
\(319\) 35.0672i 1.96339i
\(320\) 0 0
\(321\) 11.7078 0.653464
\(322\) 0.249598i 0.0139096i
\(323\) 24.8572i 1.38309i
\(324\) 15.0616 0.836756
\(325\) 0 0
\(326\) 7.53957 0.417578
\(327\) 15.8509 0.876556
\(328\) −21.0032 −1.15971
\(329\) 15.0648 0.830550
\(330\) 0 0
\(331\) 34.9649i 1.92185i 0.276816 + 0.960923i \(0.410721\pi\)
−0.276816 + 0.960923i \(0.589279\pi\)
\(332\) 10.0084i 0.549281i
\(333\) −12.4571 + 10.2450i −0.682647 + 0.561423i
\(334\) 5.15173 0.281890
\(335\) 0 0
\(336\) −6.90272 −0.376574
\(337\) 9.97937i 0.543611i 0.962352 + 0.271805i \(0.0876207\pi\)
−0.962352 + 0.271805i \(0.912379\pi\)
\(338\) −13.7155 −0.746028
\(339\) 11.1601i 0.606131i
\(340\) 0 0
\(341\) 0.296880i 0.0160769i
\(342\) 7.62429i 0.412274i
\(343\) 20.1618i 1.08864i
\(344\) −1.08793 −0.0586571
\(345\) 0 0
\(346\) 5.35883i 0.288092i
\(347\) −14.3875 −0.772361 −0.386180 0.922423i \(-0.626206\pi\)
−0.386180 + 0.922423i \(0.626206\pi\)
\(348\) 29.0729 1.55847
\(349\) −7.24895 −0.388027 −0.194014 0.980999i \(-0.562151\pi\)
−0.194014 + 0.980999i \(0.562151\pi\)
\(350\) 0 0
\(351\) 4.74029i 0.253018i
\(352\) −25.3098 −1.34902
\(353\) 10.8049 0.575085 0.287543 0.957768i \(-0.407162\pi\)
0.287543 + 0.957768i \(0.407162\pi\)
\(354\) −15.5867 −0.828426
\(355\) 0 0
\(356\) 3.55653i 0.188496i
\(357\) −30.9519 −1.63815
\(358\) 2.74573i 0.145116i
\(359\) −13.1745 −0.695323 −0.347662 0.937620i \(-0.613024\pi\)
−0.347662 + 0.937620i \(0.613024\pi\)
\(360\) 0 0
\(361\) 1.85701 0.0977371
\(362\) −9.36910 −0.492429
\(363\) 18.8753i 0.990694i
\(364\) 18.8360i 0.987273i
\(365\) 0 0
\(366\) −3.94248 −0.206077
\(367\) 24.5181i 1.27983i 0.768444 + 0.639917i \(0.221031\pi\)
−0.768444 + 0.639917i \(0.778969\pi\)
\(368\) −0.221889 −0.0115668
\(369\) 22.7969 1.18676
\(370\) 0 0
\(371\) 10.0471 0.521617
\(372\) −0.246131 −0.0127613
\(373\) 18.8794i 0.977539i 0.872413 + 0.488770i \(0.162554\pi\)
−0.872413 + 0.488770i \(0.837446\pi\)
\(374\) −18.1447 −0.938238
\(375\) 0 0
\(376\) 16.9700i 0.875162i
\(377\) 46.1123i 2.37491i
\(378\) 1.24752 0.0641656
\(379\) 4.90409 0.251906 0.125953 0.992036i \(-0.459801\pi\)
0.125953 + 0.992036i \(0.459801\pi\)
\(380\) 0 0
\(381\) −21.8466 −1.11923
\(382\) 2.72224i 0.139282i
\(383\) −4.51567 −0.230740 −0.115370 0.993323i \(-0.536805\pi\)
−0.115370 + 0.993323i \(0.536805\pi\)
\(384\) 25.4043i 1.29641i
\(385\) 0 0
\(386\) 5.83514 0.297001
\(387\) 1.18084 0.0600253
\(388\) −13.0263 −0.661313
\(389\) 9.09674i 0.461223i 0.973046 + 0.230612i \(0.0740727\pi\)
−0.973046 + 0.230612i \(0.925927\pi\)
\(390\) 0 0
\(391\) −0.994954 −0.0503170
\(392\) 5.61106 0.283401
\(393\) 53.4534 2.69636
\(394\) 5.41516i 0.272812i
\(395\) 0 0
\(396\) 17.5138 0.880101
\(397\) 23.4743i 1.17814i −0.808081 0.589071i \(-0.799494\pi\)
0.808081 0.589071i \(-0.200506\pi\)
\(398\) 1.05009i 0.0526362i
\(399\) 21.3463i 1.06865i
\(400\) 0 0
\(401\) 21.4285i 1.07009i 0.844825 + 0.535043i \(0.179705\pi\)
−0.844825 + 0.535043i \(0.820295\pi\)
\(402\) 18.8563 0.940464
\(403\) 0.390388i 0.0194466i
\(404\) −1.48245 −0.0737546
\(405\) 0 0
\(406\) 12.1356 0.602279
\(407\) 20.4457 16.8150i 1.01346 0.833488i
\(408\) 34.8663i 1.72614i
\(409\) 22.3741i 1.10633i 0.833072 + 0.553164i \(0.186580\pi\)
−0.833072 + 0.553164i \(0.813420\pi\)
\(410\) 0 0
\(411\) −20.6084 −1.01654
\(412\) 29.1155 1.43442
\(413\) 20.4745 1.00748
\(414\) −0.305176 −0.0149986
\(415\) 0 0
\(416\) −33.2817 −1.63177
\(417\) 33.2849i 1.62997i
\(418\) 12.5136i 0.612062i
\(419\) 3.38447 0.165342 0.0826710 0.996577i \(-0.473655\pi\)
0.0826710 + 0.996577i \(0.473655\pi\)
\(420\) 0 0
\(421\) 38.7578i 1.88894i −0.328597 0.944470i \(-0.606576\pi\)
0.328597 0.944470i \(-0.393424\pi\)
\(422\) 8.07380 0.393026
\(423\) 18.4193i 0.895575i
\(424\) 11.3177i 0.549635i
\(425\) 0 0
\(426\) 3.84462i 0.186273i
\(427\) 5.17877 0.250618
\(428\) 7.47445i 0.361291i
\(429\) 59.2073i 2.85856i
\(430\) 0 0
\(431\) 4.50684i 0.217087i 0.994092 + 0.108543i \(0.0346186\pi\)
−0.994092 + 0.108543i \(0.965381\pi\)
\(432\) 1.10903i 0.0533581i
\(433\) 5.62353i 0.270250i 0.990829 + 0.135125i \(0.0431436\pi\)
−0.990829 + 0.135125i \(0.956856\pi\)
\(434\) −0.102740 −0.00493169
\(435\) 0 0
\(436\) 10.1195i 0.484636i
\(437\) 0.686179i 0.0328244i
\(438\) 17.5160 0.836945
\(439\) 31.3943i 1.49837i 0.662362 + 0.749184i \(0.269554\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(440\) 0 0
\(441\) −6.09024 −0.290012
\(442\) −23.8597 −1.13489
\(443\) 25.2783i 1.20101i 0.799622 + 0.600504i \(0.205033\pi\)
−0.799622 + 0.600504i \(0.794967\pi\)
\(444\) −13.9407 16.9508i −0.661594 0.804448i
\(445\) 0 0
\(446\) 1.80172i 0.0853138i
\(447\) 46.4112i 2.19517i
\(448\) 2.95170i 0.139455i
\(449\) 12.0163i 0.567086i −0.958960 0.283543i \(-0.908490\pi\)
0.958960 0.283543i \(-0.0915098\pi\)
\(450\) 0 0
\(451\) −37.4163 −1.76186
\(452\) −7.12478 −0.335121
\(453\) 55.2236i 2.59463i
\(454\) 2.07941 0.0975913
\(455\) 0 0
\(456\) 24.0459 1.12605
\(457\) 38.7961 1.81480 0.907402 0.420264i \(-0.138063\pi\)
0.907402 + 0.420264i \(0.138063\pi\)
\(458\) 4.79001 0.223823
\(459\) 4.97290i 0.232115i
\(460\) 0 0
\(461\) 34.7227i 1.61720i −0.588360 0.808599i \(-0.700226\pi\)
0.588360 0.808599i \(-0.299774\pi\)
\(462\) 15.5819 0.724934
\(463\) 6.90276 0.320798 0.160399 0.987052i \(-0.448722\pi\)
0.160399 + 0.987052i \(0.448722\pi\)
\(464\) 10.7883i 0.500836i
\(465\) 0 0
\(466\) 16.5777i 0.767947i
\(467\) −27.2476 −1.26087 −0.630434 0.776243i \(-0.717123\pi\)
−0.630434 + 0.776243i \(0.717123\pi\)
\(468\) 23.0301 1.06457
\(469\) −24.7692 −1.14374
\(470\) 0 0
\(471\) −33.7927 −1.55708
\(472\) 23.0638i 1.06160i
\(473\) −1.93809 −0.0891135
\(474\) −13.3104 −0.611368
\(475\) 0 0
\(476\) 19.7603i 0.905710i
\(477\) 12.2842i 0.562455i
\(478\) 3.69210i 0.168873i
\(479\) 38.6778i 1.76724i −0.468209 0.883618i \(-0.655101\pi\)
0.468209 0.883618i \(-0.344899\pi\)
\(480\) 0 0
\(481\) 26.8855 22.1112i 1.22588 1.00819i
\(482\) 9.29030i 0.423162i
\(483\) 0.854424 0.0388776
\(484\) −12.0503 −0.547741
\(485\) 0 0
\(486\) 14.6582i 0.664911i
\(487\) −2.02287 −0.0916651 −0.0458326 0.998949i \(-0.514594\pi\)
−0.0458326 + 0.998949i \(0.514594\pi\)
\(488\) 5.83371i 0.264080i
\(489\) 25.8094i 1.16714i
\(490\) 0 0
\(491\) 34.4832 1.55621 0.778103 0.628137i \(-0.216182\pi\)
0.778103 + 0.628137i \(0.216182\pi\)
\(492\) 31.0204i 1.39851i
\(493\) 48.3751i 2.17871i
\(494\) 16.4551i 0.740349i
\(495\) 0 0
\(496\) 0.0913343i 0.00410103i
\(497\) 5.05023i 0.226534i
\(498\) 10.8871 0.487862
\(499\) 8.93562i 0.400013i 0.979795 + 0.200007i \(0.0640964\pi\)
−0.979795 + 0.200007i \(0.935904\pi\)
\(500\) 0 0
\(501\) 17.6354i 0.787891i
\(502\) 8.66619i 0.386791i
\(503\) −2.50197 −0.111557 −0.0557786 0.998443i \(-0.517764\pi\)
−0.0557786 + 0.998443i \(0.517764\pi\)
\(504\) 14.0479i 0.625742i
\(505\) 0 0
\(506\) 0.500881 0.0222669
\(507\) 46.9510i 2.08517i
\(508\) 13.9473i 0.618809i
\(509\) 12.8713 0.570508 0.285254 0.958452i \(-0.407922\pi\)
0.285254 + 0.958452i \(0.407922\pi\)
\(510\) 0 0
\(511\) −23.0086 −1.01784
\(512\) −14.3281 −0.633219
\(513\) 3.42961 0.151421
\(514\) 14.4651 0.638028
\(515\) 0 0
\(516\) 1.60680i 0.0707353i
\(517\) 30.2313i 1.32957i
\(518\) −5.81911 7.07559i −0.255677 0.310884i
\(519\) −18.3443 −0.805226
\(520\) 0 0
\(521\) 21.2718 0.931935 0.465967 0.884802i \(-0.345706\pi\)
0.465967 + 0.884802i \(0.345706\pi\)
\(522\) 14.8378i 0.649433i
\(523\) 22.9221 1.00231 0.501156 0.865357i \(-0.332908\pi\)
0.501156 + 0.865357i \(0.332908\pi\)
\(524\) 34.1256i 1.49078i
\(525\) 0 0
\(526\) 3.78713i 0.165127i
\(527\) 0.409545i 0.0178401i
\(528\) 13.8520i 0.602832i
\(529\) −22.9725 −0.998806
\(530\) 0 0
\(531\) 25.0335i 1.08636i
\(532\) −13.6279 −0.590843
\(533\) −49.2013 −2.13114
\(534\) 3.86878 0.167419
\(535\) 0 0
\(536\) 27.9017i 1.20517i
\(537\) 9.39917 0.405604
\(538\) 13.8959 0.599097
\(539\) 9.99583 0.430551
\(540\) 0 0
\(541\) 27.5498i 1.18446i 0.805770 + 0.592228i \(0.201752\pi\)
−0.805770 + 0.592228i \(0.798248\pi\)
\(542\) −7.02511 −0.301754
\(543\) 32.0722i 1.37635i
\(544\) −34.9148 −1.49696
\(545\) 0 0
\(546\) 20.4897 0.876878
\(547\) −14.7301 −0.629812 −0.314906 0.949123i \(-0.601973\pi\)
−0.314906 + 0.949123i \(0.601973\pi\)
\(548\) 13.1568i 0.562029i
\(549\) 6.33191i 0.270239i
\(550\) 0 0
\(551\) 33.3624 1.42128
\(552\) 0.962481i 0.0409659i
\(553\) 17.4843 0.743510
\(554\) 9.59369 0.407597
\(555\) 0 0
\(556\) 21.2497 0.901187
\(557\) −41.3384 −1.75156 −0.875782 0.482707i \(-0.839654\pi\)
−0.875782 + 0.482707i \(0.839654\pi\)
\(558\) 0.125617i 0.00531780i
\(559\) −2.54853 −0.107791
\(560\) 0 0
\(561\) 62.1127i 2.62240i
\(562\) 13.8078i 0.582448i
\(563\) 12.3396 0.520052 0.260026 0.965602i \(-0.416269\pi\)
0.260026 + 0.965602i \(0.416269\pi\)
\(564\) −25.0636 −1.05537
\(565\) 0 0
\(566\) −17.3311 −0.728481
\(567\) 21.5217i 0.903826i
\(568\) −5.68892 −0.238702
\(569\) 20.3376i 0.852597i 0.904582 + 0.426299i \(0.140183\pi\)
−0.904582 + 0.426299i \(0.859817\pi\)
\(570\) 0 0
\(571\) 2.20913 0.0924493 0.0462246 0.998931i \(-0.485281\pi\)
0.0462246 + 0.998931i \(0.485281\pi\)
\(572\) −37.7990 −1.58046
\(573\) 9.31876 0.389297
\(574\) 12.9485i 0.540461i
\(575\) 0 0
\(576\) −3.60895 −0.150373
\(577\) 27.2952 1.13631 0.568157 0.822920i \(-0.307656\pi\)
0.568157 + 0.822920i \(0.307656\pi\)
\(578\) −13.2245 −0.550068
\(579\) 19.9748i 0.830126i
\(580\) 0 0
\(581\) −14.3011 −0.593309
\(582\) 14.1700i 0.587366i
\(583\) 20.1619i 0.835021i
\(584\) 25.9185i 1.07251i
\(585\) 0 0
\(586\) 3.60779i 0.149036i
\(587\) −0.417280 −0.0172230 −0.00861150 0.999963i \(-0.502741\pi\)
−0.00861150 + 0.999963i \(0.502741\pi\)
\(588\) 8.28716i 0.341757i
\(589\) −0.282447 −0.0116380
\(590\) 0 0
\(591\) 18.5372 0.762517
\(592\) 6.29008 5.17309i 0.258521 0.212613i
\(593\) 2.54532i 0.104524i −0.998633 0.0522619i \(-0.983357\pi\)
0.998633 0.0522619i \(-0.0166431\pi\)
\(594\) 2.50346i 0.102718i
\(595\) 0 0
\(596\) −29.6297 −1.21368
\(597\) 3.59466 0.147120
\(598\) 0.658644 0.0269340
\(599\) 17.2975 0.706757 0.353379 0.935480i \(-0.385033\pi\)
0.353379 + 0.935480i \(0.385033\pi\)
\(600\) 0 0
\(601\) −39.3207 −1.60392 −0.801962 0.597375i \(-0.796211\pi\)
−0.801962 + 0.597375i \(0.796211\pi\)
\(602\) 0.670709i 0.0273361i
\(603\) 30.2845i 1.23328i
\(604\) 35.2557 1.43453
\(605\) 0 0
\(606\) 1.61260i 0.0655075i
\(607\) −14.0635 −0.570820 −0.285410 0.958405i \(-0.592130\pi\)
−0.285410 + 0.958405i \(0.592130\pi\)
\(608\) 24.0794i 0.976547i
\(609\) 41.5425i 1.68339i
\(610\) 0 0
\(611\) 39.7533i 1.60825i
\(612\) 24.1602 0.976619
\(613\) 28.9940i 1.17105i −0.810653 0.585527i \(-0.800887\pi\)
0.810653 0.585527i \(-0.199113\pi\)
\(614\) 14.4007i 0.581163i
\(615\) 0 0
\(616\) 23.0566i 0.928977i
\(617\) 13.4011i 0.539510i 0.962929 + 0.269755i \(0.0869427\pi\)
−0.962929 + 0.269755i \(0.913057\pi\)
\(618\) 31.6717i 1.27402i
\(619\) −42.6050 −1.71244 −0.856220 0.516611i \(-0.827193\pi\)
−0.856220 + 0.516611i \(0.827193\pi\)
\(620\) 0 0
\(621\) 0.137276i 0.00550870i
\(622\) 16.5282i 0.662719i
\(623\) −5.08197 −0.203605
\(624\) 18.2150i 0.729184i
\(625\) 0 0
\(626\) 9.56014 0.382100
\(627\) 42.8366 1.71073
\(628\) 21.5738i 0.860890i
\(629\) 28.2048 23.1962i 1.12460 0.924895i
\(630\) 0 0
\(631\) 37.8981i 1.50870i −0.656472 0.754350i \(-0.727952\pi\)
0.656472 0.754350i \(-0.272048\pi\)
\(632\) 19.6955i 0.783446i
\(633\) 27.6382i 1.09852i
\(634\) 18.3097i 0.727170i
\(635\) 0 0
\(636\) −16.7155 −0.662811
\(637\) 13.1442 0.520793
\(638\) 24.3531i 0.964147i
\(639\) 6.17475 0.244269
\(640\) 0 0
\(641\) −5.17563 −0.204425 −0.102213 0.994763i \(-0.532592\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(642\) −8.13068 −0.320892
\(643\) 40.7663 1.60767 0.803834 0.594854i \(-0.202790\pi\)
0.803834 + 0.594854i \(0.202790\pi\)
\(644\) 0.545480i 0.0214949i
\(645\) 0 0
\(646\) 17.2625i 0.679185i
\(647\) 0.183619 0.00721883 0.00360941 0.999993i \(-0.498851\pi\)
0.00360941 + 0.999993i \(0.498851\pi\)
\(648\) −24.2435 −0.952374
\(649\) 41.0871i 1.61281i
\(650\) 0 0
\(651\) 0.351700i 0.0137842i
\(652\) 16.4772 0.645297
\(653\) −16.8021 −0.657516 −0.328758 0.944414i \(-0.606630\pi\)
−0.328758 + 0.944414i \(0.606630\pi\)
\(654\) −11.0080 −0.430445
\(655\) 0 0
\(656\) −11.5110 −0.449430
\(657\) 28.1319i 1.09753i
\(658\) −10.4620 −0.407853
\(659\) −21.1834 −0.825190 −0.412595 0.910915i \(-0.635377\pi\)
−0.412595 + 0.910915i \(0.635377\pi\)
\(660\) 0 0
\(661\) 26.3955i 1.02666i 0.858190 + 0.513332i \(0.171589\pi\)
−0.858190 + 0.513332i \(0.828411\pi\)
\(662\) 24.2821i 0.943749i
\(663\) 81.6764i 3.17205i
\(664\) 16.1097i 0.625177i
\(665\) 0 0
\(666\) 8.65109 7.11484i 0.335223 0.275694i
\(667\) 1.33539i 0.0517065i
\(668\) 11.2587 0.435614
\(669\) 6.16763 0.238454
\(670\) 0 0
\(671\) 10.3925i 0.401197i
\(672\) 29.9834 1.15663
\(673\) 44.0680i 1.69870i −0.527832 0.849349i \(-0.676995\pi\)
0.527832 0.849349i \(-0.323005\pi\)
\(674\) 6.93036i 0.266948i
\(675\) 0 0
\(676\) −29.9744 −1.15286
\(677\) 1.37058i 0.0526756i 0.999653 + 0.0263378i \(0.00838456\pi\)
−0.999653 + 0.0263378i \(0.991615\pi\)
\(678\) 7.75031i 0.297649i
\(679\) 18.6135i 0.714320i
\(680\) 0 0
\(681\) 7.11821i 0.272770i
\(682\) 0.206174i 0.00789480i
\(683\) −9.46755 −0.362266 −0.181133 0.983459i \(-0.557976\pi\)
−0.181133 + 0.983459i \(0.557976\pi\)
\(684\) 16.6623i 0.637100i
\(685\) 0 0
\(686\) 14.0018i 0.534590i
\(687\) 16.3972i 0.625591i
\(688\) −0.596249 −0.0227318
\(689\) 26.5123i 1.01004i
\(690\) 0 0
\(691\) 28.7211 1.09260 0.546301 0.837589i \(-0.316036\pi\)
0.546301 + 0.837589i \(0.316036\pi\)
\(692\) 11.7113i 0.445198i
\(693\) 25.0256i 0.950645i
\(694\) 9.99166 0.379278
\(695\) 0 0
\(696\) −46.7963 −1.77381
\(697\) −51.6157 −1.95508
\(698\) 5.03417 0.190546
\(699\) 56.7487 2.14643
\(700\) 0 0
\(701\) 17.9577i 0.678252i 0.940741 + 0.339126i \(0.110131\pi\)
−0.940741 + 0.339126i \(0.889869\pi\)
\(702\) 3.29198i 0.124248i
\(703\) −15.9975 19.4517i −0.603358 0.733636i
\(704\) 5.92332 0.223244
\(705\) 0 0
\(706\) −7.50365 −0.282403
\(707\) 2.11829i 0.0796664i
\(708\) −34.0637 −1.28019
\(709\) 15.3109i 0.575012i −0.957779 0.287506i \(-0.907174\pi\)
0.957779 0.287506i \(-0.0928261\pi\)
\(710\) 0 0
\(711\) 21.3775i 0.801720i
\(712\) 5.72467i 0.214541i
\(713\) 0.0113054i 0.000423392i
\(714\) 21.4952 0.804436
\(715\) 0 0
\(716\) 6.00060i 0.224253i
\(717\) 12.6388 0.472004
\(718\) 9.14928 0.341448
\(719\) −13.6890 −0.510514 −0.255257 0.966873i \(-0.582160\pi\)
−0.255257 + 0.966873i \(0.582160\pi\)
\(720\) 0 0
\(721\) 41.6034i 1.54939i
\(722\) −1.28963 −0.0479951
\(723\) −31.8025 −1.18275
\(724\) −20.4755 −0.760966
\(725\) 0 0
\(726\) 13.1083i 0.486494i
\(727\) 11.9352 0.442651 0.221326 0.975200i \(-0.428962\pi\)
0.221326 + 0.975200i \(0.428962\pi\)
\(728\) 30.3188i 1.12369i
\(729\) 20.4063 0.755790
\(730\) 0 0
\(731\) −2.67359 −0.0988864
\(732\) −8.61601 −0.318457
\(733\) 10.0865i 0.372555i 0.982497 + 0.186277i \(0.0596423\pi\)
−0.982497 + 0.186277i \(0.940358\pi\)
\(734\) 17.0271i 0.628480i
\(735\) 0 0
\(736\) 0.963820 0.0355269
\(737\) 49.7056i 1.83093i
\(738\) −15.8317 −0.582774
\(739\) −11.5583 −0.425180 −0.212590 0.977142i \(-0.568190\pi\)
−0.212590 + 0.977142i \(0.568190\pi\)
\(740\) 0 0
\(741\) 56.3289 2.06929
\(742\) −6.97737 −0.256147
\(743\) 4.00230i 0.146830i −0.997301 0.0734151i \(-0.976610\pi\)
0.997301 0.0734151i \(-0.0233898\pi\)
\(744\) 0.396178 0.0145246
\(745\) 0 0
\(746\) 13.1112i 0.480034i
\(747\) 17.4855i 0.639759i
\(748\) −39.6539 −1.44989
\(749\) 10.6803 0.390250
\(750\) 0 0
\(751\) 12.6259 0.460724 0.230362 0.973105i \(-0.426009\pi\)
0.230362 + 0.973105i \(0.426009\pi\)
\(752\) 9.30059i 0.339158i
\(753\) −29.6661 −1.08109
\(754\) 32.0236i 1.16623i
\(755\) 0 0
\(756\) 2.72637 0.0991572
\(757\) 0.686799 0.0249621 0.0124811 0.999922i \(-0.496027\pi\)
0.0124811 + 0.999922i \(0.496027\pi\)
\(758\) −3.40574 −0.123702
\(759\) 1.71461i 0.0622365i
\(760\) 0 0
\(761\) 45.5758 1.65212 0.826060 0.563582i \(-0.190577\pi\)
0.826060 + 0.563582i \(0.190577\pi\)
\(762\) 15.1718 0.549616
\(763\) 14.4599 0.523482
\(764\) 5.94927i 0.215237i
\(765\) 0 0
\(766\) 3.13599 0.113308
\(767\) 54.0283i 1.95085i
\(768\) 24.1138i 0.870131i
\(769\) 40.5462i 1.46213i −0.682306 0.731067i \(-0.739023\pi\)
0.682306 0.731067i \(-0.260977\pi\)
\(770\) 0 0
\(771\) 49.5169i 1.78331i
\(772\) 12.7523 0.458965
\(773\) 33.7970i 1.21559i −0.794093 0.607797i \(-0.792054\pi\)
0.794093 0.607797i \(-0.207946\pi\)
\(774\) −0.820054 −0.0294762
\(775\) 0 0
\(776\) 20.9675 0.752689
\(777\) −24.2211 + 19.9200i −0.868928 + 0.714624i
\(778\) 6.31741i 0.226490i
\(779\) 35.5972i 1.27540i
\(780\) 0 0
\(781\) −10.1345 −0.362642
\(782\) 0.690964 0.0247088
\(783\) −6.67443 −0.238525
\(784\) 3.07520 0.109828
\(785\) 0 0
\(786\) −37.1217 −1.32409
\(787\) 7.98198i 0.284527i 0.989829 + 0.142263i \(0.0454380\pi\)
−0.989829 + 0.142263i \(0.954562\pi\)
\(788\) 11.8345i 0.421585i
\(789\) −12.9641 −0.461533
\(790\) 0 0
\(791\) 10.1807i 0.361983i
\(792\) −28.1906 −1.00171
\(793\) 13.6658i 0.485287i
\(794\) 16.3022i 0.578543i
\(795\) 0 0
\(796\) 2.29490i 0.0813405i
\(797\) −26.0890 −0.924119 −0.462060 0.886849i \(-0.652889\pi\)
−0.462060 + 0.886849i \(0.652889\pi\)
\(798\) 14.8243i 0.524776i
\(799\) 41.7040i 1.47538i
\(800\) 0 0
\(801\) 6.21355i 0.219545i
\(802\) 14.8814i 0.525481i
\(803\) 46.1725i 1.62939i
\(804\) 41.2090 1.45333
\(805\) 0 0
\(806\) 0.271112i 0.00954953i
\(807\) 47.5685i 1.67449i
\(808\) 2.38618 0.0839455
\(809\) 37.3911i 1.31460i −0.753629 0.657300i \(-0.771698\pi\)
0.753629 0.657300i \(-0.228302\pi\)
\(810\) 0 0
\(811\) 40.7822 1.43206 0.716029 0.698070i \(-0.245958\pi\)
0.716029 + 0.698070i \(0.245958\pi\)
\(812\) 26.5215 0.930722
\(813\) 24.0483i 0.843412i
\(814\) −14.1989 + 11.6775i −0.497672 + 0.409296i
\(815\) 0 0
\(816\) 19.1088i 0.668943i
\(817\) 1.84387i 0.0645088i
\(818\) 15.5381i 0.543278i
\(819\) 32.9080i 1.14990i
\(820\) 0 0
\(821\) −49.7348 −1.73576 −0.867879 0.496776i \(-0.834517\pi\)
−0.867879 + 0.496776i \(0.834517\pi\)
\(822\) 14.3119 0.499184
\(823\) 6.32881i 0.220608i 0.993898 + 0.110304i \(0.0351825\pi\)
−0.993898 + 0.110304i \(0.964817\pi\)
\(824\) −46.8649 −1.63262
\(825\) 0 0
\(826\) −14.2189 −0.494738
\(827\) −24.9486 −0.867548 −0.433774 0.901022i \(-0.642818\pi\)
−0.433774 + 0.901022i \(0.642818\pi\)
\(828\) −0.666940 −0.0231778
\(829\) 16.7582i 0.582036i 0.956718 + 0.291018i \(0.0939939\pi\)
−0.956718 + 0.291018i \(0.906006\pi\)
\(830\) 0 0
\(831\) 32.8411i 1.13924i
\(832\) 7.78900 0.270035
\(833\) 13.7892 0.477769
\(834\) 23.1153i 0.800418i
\(835\) 0 0
\(836\) 27.3477i 0.945839i
\(837\) 0.0565059 0.00195313
\(838\) −2.35041 −0.0811935
\(839\) 45.1407 1.55843 0.779215 0.626756i \(-0.215618\pi\)
0.779215 + 0.626756i \(0.215618\pi\)
\(840\) 0 0
\(841\) −35.9272 −1.23887
\(842\) 26.9161i 0.927590i
\(843\) 47.2669 1.62796
\(844\) 17.6447 0.607356
\(845\) 0 0
\(846\) 12.7916i 0.439784i
\(847\) 17.2188i 0.591645i
\(848\) 6.20276i 0.213004i
\(849\) 59.3278i 2.03612i
\(850\) 0 0
\(851\) −0.778591 + 0.640329i −0.0266898 + 0.0219502i
\(852\) 8.40215i 0.287853i
\(853\) −3.04298 −0.104190 −0.0520948 0.998642i \(-0.516590\pi\)
−0.0520948 + 0.998642i \(0.516590\pi\)
\(854\) −3.59649 −0.123070
\(855\) 0 0
\(856\) 12.0310i 0.411212i
\(857\) 0.397815 0.0135891 0.00679455 0.999977i \(-0.497837\pi\)
0.00679455 + 0.999977i \(0.497837\pi\)
\(858\) 41.1177i 1.40373i
\(859\) 28.4886i 0.972018i 0.873954 + 0.486009i \(0.161548\pi\)
−0.873954 + 0.486009i \(0.838452\pi\)
\(860\) 0 0
\(861\) 44.3253 1.51060
\(862\) 3.12986i 0.106603i
\(863\) 31.2137i 1.06253i 0.847207 + 0.531263i \(0.178282\pi\)
−0.847207 + 0.531263i \(0.821718\pi\)
\(864\) 4.81729i 0.163887i
\(865\) 0 0
\(866\) 3.90537i 0.132710i
\(867\) 45.2702i 1.53746i
\(868\) −0.224531 −0.00762109
\(869\) 35.0867i 1.19023i
\(870\) 0 0
\(871\) 65.3614i 2.21469i
\(872\) 16.2885i 0.551600i
\(873\) −22.7581 −0.770245
\(874\) 0.476530i 0.0161189i
\(875\) 0 0
\(876\) 38.2799 1.29336
\(877\) 31.9398i 1.07853i 0.842136 + 0.539266i \(0.181298\pi\)
−0.842136 + 0.539266i \(0.818702\pi\)
\(878\) 21.8024i 0.735794i
\(879\) 12.3502 0.416561
\(880\) 0 0
\(881\) 20.6857 0.696920 0.348460 0.937324i \(-0.386705\pi\)
0.348460 + 0.937324i \(0.386705\pi\)
\(882\) 4.22948 0.142414
\(883\) 30.1761 1.01551 0.507754 0.861502i \(-0.330476\pi\)
0.507754 + 0.861502i \(0.330476\pi\)
\(884\) −52.1437 −1.75378
\(885\) 0 0
\(886\) 17.5550i 0.589771i
\(887\) 34.4783i 1.15767i −0.815445 0.578834i \(-0.803508\pi\)
0.815445 0.578834i \(-0.196492\pi\)
\(888\) 22.4392 + 27.2843i 0.753009 + 0.915601i
\(889\) −19.9294 −0.668410
\(890\) 0 0
\(891\) −43.1886 −1.44687
\(892\) 3.93753i 0.131838i
\(893\) −28.7616 −0.962469
\(894\) 32.2311i 1.07797i
\(895\) 0 0
\(896\) 23.1748i 0.774217i
\(897\) 2.25467i 0.0752812i
\(898\) 8.34497i 0.278475i
\(899\) 0.549676 0.0183327
\(900\) 0 0
\(901\) 27.8133i 0.926595i
\(902\) 25.9844 0.865187
\(903\) 2.29597 0.0764050
\(904\) 11.4682 0.381426
\(905\) 0 0
\(906\) 38.3511i 1.27413i
\(907\) 1.66867 0.0554073 0.0277037 0.999616i \(-0.491181\pi\)
0.0277037 + 0.999616i \(0.491181\pi\)
\(908\) 4.54439 0.150811
\(909\) −2.58996 −0.0859036
\(910\) 0 0
\(911\) 53.6779i 1.77843i −0.457492 0.889214i \(-0.651252\pi\)
0.457492 0.889214i \(-0.348748\pi\)
\(912\) 13.1786 0.436387
\(913\) 28.6986i 0.949787i
\(914\) −26.9427 −0.891184
\(915\) 0 0
\(916\) 10.4682 0.345880
\(917\) 48.7624 1.61028
\(918\) 3.45352i 0.113983i
\(919\) 2.69177i 0.0887932i −0.999014 0.0443966i \(-0.985863\pi\)
0.999014 0.0443966i \(-0.0141365\pi\)
\(920\) 0 0
\(921\) 49.2963 1.62437
\(922\) 24.1139i 0.794147i
\(923\) −13.3266 −0.438651
\(924\) 34.0531 1.12026
\(925\) 0 0
\(926\) −4.79375 −0.157532
\(927\) 50.8671 1.67070
\(928\) 46.8614i 1.53830i
\(929\) 38.5193 1.26378 0.631888 0.775060i \(-0.282280\pi\)
0.631888 + 0.775060i \(0.282280\pi\)
\(930\) 0 0
\(931\) 9.50988i 0.311674i
\(932\) 36.2294i 1.18673i
\(933\) 56.5791 1.85232
\(934\) 18.9226 0.619167
\(935\) 0 0
\(936\) −37.0698 −1.21166
\(937\) 56.0419i 1.83081i 0.402537 + 0.915404i \(0.368129\pi\)
−0.402537 + 0.915404i \(0.631871\pi\)
\(938\) 17.2015 0.561648
\(939\) 32.7262i 1.06798i
\(940\) 0 0
\(941\) −36.5917 −1.19286 −0.596428 0.802666i \(-0.703414\pi\)
−0.596428 + 0.802666i \(0.703414\pi\)
\(942\) 23.4680 0.764627
\(943\) 1.42484 0.0463993
\(944\) 12.6403i 0.411408i
\(945\) 0 0
\(946\) 1.34594 0.0437604
\(947\) 8.48377 0.275685 0.137843 0.990454i \(-0.455983\pi\)
0.137843 + 0.990454i \(0.455983\pi\)
\(948\) −29.0890 −0.944767
\(949\) 60.7156i 1.97091i
\(950\) 0 0
\(951\) 62.6776 2.03246
\(952\) 31.8065i 1.03086i
\(953\) 16.3555i 0.529807i −0.964275 0.264904i \(-0.914660\pi\)
0.964275 0.264904i \(-0.0853402\pi\)
\(954\) 8.53100i 0.276201i
\(955\) 0 0
\(956\) 8.06882i 0.260964i
\(957\) −83.3653 −2.69482
\(958\) 26.8606i 0.867825i
\(959\) −18.7998 −0.607078
\(960\) 0 0
\(961\) 30.9953 0.999850
\(962\) −18.6712 + 15.3556i −0.601983 + 0.495083i
\(963\) 13.0585i 0.420803i
\(964\) 20.3033i 0.653925i
\(965\) 0 0
\(966\) −0.593371 −0.0190914
\(967\) −26.0712 −0.838393 −0.419197 0.907895i \(-0.637688\pi\)
−0.419197 + 0.907895i \(0.637688\pi\)
\(968\) 19.3964 0.623425
\(969\) 59.0930 1.89834
\(970\) 0 0
\(971\) 12.3808 0.397320 0.198660 0.980068i \(-0.436341\pi\)
0.198660 + 0.980068i \(0.436341\pi\)
\(972\) 32.0345i 1.02751i
\(973\) 30.3639i 0.973421i
\(974\) 1.40482 0.0450134
\(975\) 0 0
\(976\) 3.19722i 0.102341i
\(977\) 15.7957 0.505348 0.252674 0.967552i \(-0.418690\pi\)
0.252674 + 0.967552i \(0.418690\pi\)
\(978\) 17.9238i 0.573141i
\(979\) 10.1982i 0.325937i
\(980\) 0 0
\(981\) 17.6796i 0.564466i
\(982\) −23.9475 −0.764196
\(983\) 26.9238i 0.858737i −0.903129 0.429369i \(-0.858736\pi\)
0.903129 0.429369i \(-0.141264\pi\)
\(984\) 49.9310i 1.59174i
\(985\) 0 0
\(986\) 33.5950i 1.06988i
\(987\) 35.8136i 1.13996i
\(988\) 35.9614i 1.14408i
\(989\) 0.0738042 0.00234684
\(990\) 0 0
\(991\) 54.2528i 1.72340i −0.507420 0.861699i \(-0.669401\pi\)
0.507420 0.861699i \(-0.330599\pi\)
\(992\) 0.396729i 0.0125962i
\(993\) −83.1222 −2.63780
\(994\) 3.50723i 0.111243i
\(995\) 0 0
\(996\) 23.7929 0.753908
\(997\) 13.2613 0.419989 0.209995 0.977703i \(-0.432655\pi\)
0.209995 + 0.977703i \(0.432655\pi\)
\(998\) 6.20551i 0.196432i
\(999\) 3.20044 + 3.89149i 0.101258 + 0.123121i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.d.f.924.6 12
5.2 odd 4 925.2.c.c.776.6 12
5.3 odd 4 185.2.c.b.36.7 yes 12
5.4 even 2 925.2.d.e.924.7 12
15.8 even 4 1665.2.e.e.406.6 12
20.3 even 4 2960.2.p.h.961.9 12
37.36 even 2 925.2.d.e.924.8 12
185.43 even 4 6845.2.a.h.1.4 6
185.68 even 4 6845.2.a.i.1.3 6
185.73 odd 4 185.2.c.b.36.6 12
185.147 odd 4 925.2.c.c.776.7 12
185.184 even 2 inner 925.2.d.f.924.5 12
555.443 even 4 1665.2.e.e.406.7 12
740.443 even 4 2960.2.p.h.961.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.c.b.36.6 12 185.73 odd 4
185.2.c.b.36.7 yes 12 5.3 odd 4
925.2.c.c.776.6 12 5.2 odd 4
925.2.c.c.776.7 12 185.147 odd 4
925.2.d.e.924.7 12 5.4 even 2
925.2.d.e.924.8 12 37.36 even 2
925.2.d.f.924.5 12 185.184 even 2 inner
925.2.d.f.924.6 12 1.1 even 1 trivial
1665.2.e.e.406.6 12 15.8 even 4
1665.2.e.e.406.7 12 555.443 even 4
2960.2.p.h.961.9 12 20.3 even 4
2960.2.p.h.961.10 12 740.443 even 4
6845.2.a.h.1.4 6 185.43 even 4
6845.2.a.i.1.3 6 185.68 even 4