Properties

Label 185.2.c.b.36.6
Level $185$
Weight $2$
Character 185.36
Analytic conductor $1.477$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(36,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.36"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 21x^{10} + 162x^{8} + 574x^{6} + 985x^{4} + 765x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 36.6
Root \(-0.694469i\) of defining polynomial
Character \(\chi\) \(=\) 185.36
Dual form 185.2.c.b.36.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.694469i q^{2} -2.37730 q^{3} +1.51771 q^{4} +1.00000i q^{5} +1.65096i q^{6} +2.16868 q^{7} -2.44294i q^{8} +2.65157 q^{9} +0.694469 q^{10} +4.35199 q^{11} -3.60806 q^{12} -5.72273i q^{13} -1.50608i q^{14} -2.37730i q^{15} +1.33888 q^{16} +6.00355i q^{17} -1.84143i q^{18} -4.14041i q^{19} +1.51771i q^{20} -5.15560 q^{21} -3.02232i q^{22} +0.165727i q^{23} +5.80761i q^{24} -1.00000 q^{25} -3.97426 q^{26} +0.828325 q^{27} +3.29143 q^{28} +8.05774i q^{29} -1.65096 q^{30} +0.0682170i q^{31} -5.81569i q^{32} -10.3460 q^{33} +4.16928 q^{34} +2.16868i q^{35} +4.02432 q^{36} +(-3.86375 + 4.69802i) q^{37} -2.87539 q^{38} +13.6047i q^{39} +2.44294 q^{40} -8.59751 q^{41} +3.58040i q^{42} +0.445335i q^{43} +6.60506 q^{44} +2.65157i q^{45} +0.115093 q^{46} -6.94655 q^{47} -3.18292 q^{48} -2.29684 q^{49} +0.694469i q^{50} -14.2723i q^{51} -8.68547i q^{52} +4.63281 q^{53} -0.575246i q^{54} +4.35199i q^{55} -5.29795i q^{56} +9.84301i q^{57} +5.59585 q^{58} -9.44099i q^{59} -3.60806i q^{60} +2.38799i q^{61} +0.0473746 q^{62} +5.75039 q^{63} -1.36106 q^{64} +5.72273 q^{65} +7.18497i q^{66} +11.4214 q^{67} +9.11167i q^{68} -0.393984i q^{69} +1.50608 q^{70} -2.32872 q^{71} -6.47763i q^{72} -10.6095 q^{73} +(3.26263 + 2.68326i) q^{74} +2.37730 q^{75} -6.28395i q^{76} +9.43805 q^{77} +9.44802 q^{78} -8.06222i q^{79} +1.33888i q^{80} -9.92389 q^{81} +5.97071i q^{82} -6.59438 q^{83} -7.82472 q^{84} -6.00355 q^{85} +0.309271 q^{86} -19.1557i q^{87} -10.6316i q^{88} +2.34335i q^{89} +1.84143 q^{90} -12.4108i q^{91} +0.251527i q^{92} -0.162173i q^{93} +4.82416i q^{94} +4.14041 q^{95} +13.8257i q^{96} +8.58288i q^{97} +1.59509i q^{98} +11.5396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} - 18 q^{4} - 18 q^{7} + 22 q^{9} - 2 q^{10} + 2 q^{11} - 36 q^{12} + 30 q^{16} - 6 q^{21} - 12 q^{25} - 12 q^{26} + 26 q^{27} + 24 q^{28} - 12 q^{30} - 18 q^{33} + 4 q^{34} - 22 q^{36} + 10 q^{37}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.694469i 0.491064i −0.969389 0.245532i \(-0.921037\pi\)
0.969389 0.245532i \(-0.0789626\pi\)
\(3\) −2.37730 −1.37254 −0.686268 0.727349i \(-0.740752\pi\)
−0.686268 + 0.727349i \(0.740752\pi\)
\(4\) 1.51771 0.758856
\(5\) 1.00000i 0.447214i
\(6\) 1.65096i 0.674003i
\(7\) 2.16868 0.819682 0.409841 0.912157i \(-0.365584\pi\)
0.409841 + 0.912157i \(0.365584\pi\)
\(8\) 2.44294i 0.863711i
\(9\) 2.65157 0.883856
\(10\) 0.694469 0.219610
\(11\) 4.35199 1.31217 0.656087 0.754686i \(-0.272211\pi\)
0.656087 + 0.754686i \(0.272211\pi\)
\(12\) −3.60806 −1.04156
\(13\) 5.72273i 1.58720i −0.608439 0.793601i \(-0.708204\pi\)
0.608439 0.793601i \(-0.291796\pi\)
\(14\) 1.50608i 0.402516i
\(15\) 2.37730i 0.613817i
\(16\) 1.33888 0.334720
\(17\) 6.00355i 1.45608i 0.685537 + 0.728038i \(0.259568\pi\)
−0.685537 + 0.728038i \(0.740432\pi\)
\(18\) 1.84143i 0.434030i
\(19\) 4.14041i 0.949875i −0.880019 0.474938i \(-0.842471\pi\)
0.880019 0.474938i \(-0.157529\pi\)
\(20\) 1.51771i 0.339371i
\(21\) −5.15560 −1.12504
\(22\) 3.02232i 0.644361i
\(23\) 0.165727i 0.0345566i 0.999851 + 0.0172783i \(0.00550012\pi\)
−0.999851 + 0.0172783i \(0.994500\pi\)
\(24\) 5.80761i 1.18547i
\(25\) −1.00000 −0.200000
\(26\) −3.97426 −0.779417
\(27\) 0.828325 0.159411
\(28\) 3.29143 0.622021
\(29\) 8.05774i 1.49629i 0.663538 + 0.748143i \(0.269054\pi\)
−0.663538 + 0.748143i \(0.730946\pi\)
\(30\) −1.65096 −0.301423
\(31\) 0.0682170i 0.0122521i 0.999981 + 0.00612607i \(0.00195000\pi\)
−0.999981 + 0.00612607i \(0.998050\pi\)
\(32\) 5.81569i 1.02808i
\(33\) −10.3460 −1.80101
\(34\) 4.16928 0.715026
\(35\) 2.16868i 0.366573i
\(36\) 4.02432 0.670720
\(37\) −3.86375 + 4.69802i −0.635197 + 0.772350i
\(38\) −2.87539 −0.466449
\(39\) 13.6047i 2.17849i
\(40\) 2.44294 0.386263
\(41\) −8.59751 −1.34271 −0.671353 0.741138i \(-0.734287\pi\)
−0.671353 + 0.741138i \(0.734287\pi\)
\(42\) 3.58040i 0.552468i
\(43\) 0.445335i 0.0679129i 0.999423 + 0.0339565i \(0.0108108\pi\)
−0.999423 + 0.0339565i \(0.989189\pi\)
\(44\) 6.60506 0.995751
\(45\) 2.65157i 0.395273i
\(46\) 0.115093 0.0169695
\(47\) −6.94655 −1.01326 −0.506629 0.862164i \(-0.669109\pi\)
−0.506629 + 0.862164i \(0.669109\pi\)
\(48\) −3.18292 −0.459415
\(49\) −2.29684 −0.328121
\(50\) 0.694469i 0.0982127i
\(51\) 14.2723i 1.99852i
\(52\) 8.68547i 1.20446i
\(53\) 4.63281 0.636365 0.318182 0.948030i \(-0.396928\pi\)
0.318182 + 0.948030i \(0.396928\pi\)
\(54\) 0.575246i 0.0782811i
\(55\) 4.35199i 0.586822i
\(56\) 5.29795i 0.707968i
\(57\) 9.84301i 1.30374i
\(58\) 5.59585 0.734772
\(59\) 9.44099i 1.22911i −0.788873 0.614556i \(-0.789335\pi\)
0.788873 0.614556i \(-0.210665\pi\)
\(60\) 3.60806i 0.465799i
\(61\) 2.38799i 0.305750i 0.988246 + 0.152875i \(0.0488532\pi\)
−0.988246 + 0.152875i \(0.951147\pi\)
\(62\) 0.0473746 0.00601658
\(63\) 5.75039 0.724482
\(64\) −1.36106 −0.170133
\(65\) 5.72273 0.709818
\(66\) 7.18497i 0.884408i
\(67\) 11.4214 1.39534 0.697671 0.716418i \(-0.254220\pi\)
0.697671 + 0.716418i \(0.254220\pi\)
\(68\) 9.11167i 1.10495i
\(69\) 0.393984i 0.0474301i
\(70\) 1.50608 0.180011
\(71\) −2.32872 −0.276368 −0.138184 0.990407i \(-0.544126\pi\)
−0.138184 + 0.990407i \(0.544126\pi\)
\(72\) 6.47763i 0.763396i
\(73\) −10.6095 −1.24175 −0.620876 0.783909i \(-0.713223\pi\)
−0.620876 + 0.783909i \(0.713223\pi\)
\(74\) 3.26263 + 2.68326i 0.379273 + 0.311922i
\(75\) 2.37730 0.274507
\(76\) 6.28395i 0.720819i
\(77\) 9.43805 1.07557
\(78\) 9.44802 1.06978
\(79\) 8.06222i 0.907071i −0.891238 0.453535i \(-0.850163\pi\)
0.891238 0.453535i \(-0.149837\pi\)
\(80\) 1.33888i 0.149691i
\(81\) −9.92389 −1.10265
\(82\) 5.97071i 0.659354i
\(83\) −6.59438 −0.723827 −0.361914 0.932212i \(-0.617876\pi\)
−0.361914 + 0.932212i \(0.617876\pi\)
\(84\) −7.82472 −0.853747
\(85\) −6.00355 −0.651177
\(86\) 0.309271 0.0333496
\(87\) 19.1557i 2.05371i
\(88\) 10.6316i 1.13334i
\(89\) 2.34335i 0.248395i 0.992258 + 0.124197i \(0.0396356\pi\)
−0.992258 + 0.124197i \(0.960364\pi\)
\(90\) 1.84143 0.194104
\(91\) 12.4108i 1.30100i
\(92\) 0.251527i 0.0262235i
\(93\) 0.162173i 0.0168165i
\(94\) 4.82416i 0.497575i
\(95\) 4.14041 0.424797
\(96\) 13.8257i 1.41108i
\(97\) 8.58288i 0.871460i 0.900078 + 0.435730i \(0.143510\pi\)
−0.900078 + 0.435730i \(0.856490\pi\)
\(98\) 1.59509i 0.161128i
\(99\) 11.5396 1.15977
\(100\) −1.51771 −0.151771
\(101\) 0.976765 0.0971918 0.0485959 0.998819i \(-0.484525\pi\)
0.0485959 + 0.998819i \(0.484525\pi\)
\(102\) −9.91165 −0.981399
\(103\) 19.1838i 1.89023i 0.326732 + 0.945117i \(0.394053\pi\)
−0.326732 + 0.945117i \(0.605947\pi\)
\(104\) −13.9803 −1.37088
\(105\) 5.15560i 0.503135i
\(106\) 3.21734i 0.312496i
\(107\) −4.92481 −0.476099 −0.238050 0.971253i \(-0.576508\pi\)
−0.238050 + 0.971253i \(0.576508\pi\)
\(108\) 1.25716 0.120970
\(109\) 6.66759i 0.638640i −0.947647 0.319320i \(-0.896546\pi\)
0.947647 0.319320i \(-0.103454\pi\)
\(110\) 3.02232 0.288167
\(111\) 9.18531 11.1686i 0.871831 1.06008i
\(112\) 2.90359 0.274364
\(113\) 4.69442i 0.441614i −0.975318 0.220807i \(-0.929131\pi\)
0.975318 0.220807i \(-0.0708691\pi\)
\(114\) 6.83566 0.640219
\(115\) −0.165727 −0.0154542
\(116\) 12.2293i 1.13547i
\(117\) 15.1742i 1.40286i
\(118\) −6.55648 −0.603573
\(119\) 13.0198i 1.19352i
\(120\) −5.80761 −0.530160
\(121\) 7.93978 0.721798
\(122\) 1.65838 0.150143
\(123\) 20.4389 1.84291
\(124\) 0.103534i 0.00929762i
\(125\) 1.00000i 0.0894427i
\(126\) 3.99347i 0.355767i
\(127\) 9.18965 0.815450 0.407725 0.913105i \(-0.366322\pi\)
0.407725 + 0.913105i \(0.366322\pi\)
\(128\) 10.6862i 0.944533i
\(129\) 1.05870i 0.0932130i
\(130\) 3.97426i 0.348566i
\(131\) 22.4849i 1.96451i 0.187544 + 0.982256i \(0.439947\pi\)
−0.187544 + 0.982256i \(0.560053\pi\)
\(132\) −15.7022 −1.36670
\(133\) 8.97921i 0.778596i
\(134\) 7.93178i 0.685202i
\(135\) 0.828325i 0.0712909i
\(136\) 14.6663 1.25763
\(137\) 8.66881 0.740626 0.370313 0.928907i \(-0.379250\pi\)
0.370313 + 0.928907i \(0.379250\pi\)
\(138\) −0.273610 −0.0232912
\(139\) 14.0011 1.18756 0.593779 0.804628i \(-0.297635\pi\)
0.593779 + 0.804628i \(0.297635\pi\)
\(140\) 3.29143i 0.278176i
\(141\) 16.5141 1.39073
\(142\) 1.61722i 0.135714i
\(143\) 24.9053i 2.08268i
\(144\) 3.55013 0.295844
\(145\) −8.05774 −0.669159
\(146\) 7.36799i 0.609779i
\(147\) 5.46030 0.450358
\(148\) −5.86407 + 7.13025i −0.482023 + 0.586103i
\(149\) −19.5226 −1.59935 −0.799677 0.600430i \(-0.794996\pi\)
−0.799677 + 0.600430i \(0.794996\pi\)
\(150\) 1.65096i 0.134801i
\(151\) −23.2295 −1.89039 −0.945195 0.326506i \(-0.894129\pi\)
−0.945195 + 0.326506i \(0.894129\pi\)
\(152\) −10.1148 −0.820417
\(153\) 15.9188i 1.28696i
\(154\) 6.55443i 0.528171i
\(155\) −0.0682170 −0.00547933
\(156\) 20.6480i 1.65316i
\(157\) 14.2147 1.13446 0.567229 0.823560i \(-0.308016\pi\)
0.567229 + 0.823560i \(0.308016\pi\)
\(158\) −5.59896 −0.445429
\(159\) −11.0136 −0.873434
\(160\) 5.81569 0.459771
\(161\) 0.359409i 0.0283254i
\(162\) 6.89183i 0.541473i
\(163\) 10.8566i 0.850354i 0.905110 + 0.425177i \(0.139788\pi\)
−0.905110 + 0.425177i \(0.860212\pi\)
\(164\) −13.0486 −1.01892
\(165\) 10.3460i 0.805434i
\(166\) 4.57959i 0.355445i
\(167\) 7.41823i 0.574040i −0.957925 0.287020i \(-0.907335\pi\)
0.957925 0.287020i \(-0.0926646\pi\)
\(168\) 12.5948i 0.971712i
\(169\) −19.7497 −1.51921
\(170\) 4.16928i 0.319769i
\(171\) 10.9786i 0.839553i
\(172\) 0.675890i 0.0515362i
\(173\) −7.71644 −0.586670 −0.293335 0.956010i \(-0.594765\pi\)
−0.293335 + 0.956010i \(0.594765\pi\)
\(174\) −13.3030 −1.00850
\(175\) −2.16868 −0.163936
\(176\) 5.82678 0.439210
\(177\) 22.4441i 1.68700i
\(178\) 1.62738 0.121978
\(179\) 3.95371i 0.295514i −0.989024 0.147757i \(-0.952795\pi\)
0.989024 0.147757i \(-0.0472054\pi\)
\(180\) 4.02432i 0.299955i
\(181\) 13.4910 1.00278 0.501390 0.865221i \(-0.332822\pi\)
0.501390 + 0.865221i \(0.332822\pi\)
\(182\) −8.61889 −0.638874
\(183\) 5.67697i 0.419654i
\(184\) 0.404862 0.0298469
\(185\) −4.69802 3.86375i −0.345406 0.284069i
\(186\) −0.112624 −0.00825798
\(187\) 26.1274i 1.91062i
\(188\) −10.5429 −0.768918
\(189\) 1.79637 0.130667
\(190\) 2.87539i 0.208602i
\(191\) 3.91989i 0.283633i 0.989893 + 0.141817i \(0.0452943\pi\)
−0.989893 + 0.141817i \(0.954706\pi\)
\(192\) 3.23566 0.233513
\(193\) 8.40231i 0.604811i 0.953179 + 0.302406i \(0.0977897\pi\)
−0.953179 + 0.302406i \(0.902210\pi\)
\(194\) 5.96054 0.427942
\(195\) −13.6047 −0.974251
\(196\) −3.48595 −0.248996
\(197\) −7.79756 −0.555553 −0.277776 0.960646i \(-0.589597\pi\)
−0.277776 + 0.960646i \(0.589597\pi\)
\(198\) 8.01389i 0.569522i
\(199\) 1.51208i 0.107188i −0.998563 0.0535941i \(-0.982932\pi\)
0.998563 0.0535941i \(-0.0170677\pi\)
\(200\) 2.44294i 0.172742i
\(201\) −27.1520 −1.91516
\(202\) 0.678333i 0.0477273i
\(203\) 17.4746i 1.22648i
\(204\) 21.6612i 1.51659i
\(205\) 8.59751i 0.600476i
\(206\) 13.3225 0.928225
\(207\) 0.439438i 0.0305430i
\(208\) 7.66205i 0.531267i
\(209\) 18.0190i 1.24640i
\(210\) −3.58040 −0.247071
\(211\) −11.6259 −0.800357 −0.400178 0.916437i \(-0.631052\pi\)
−0.400178 + 0.916437i \(0.631052\pi\)
\(212\) 7.03127 0.482910
\(213\) 5.53606 0.379325
\(214\) 3.42013i 0.233795i
\(215\) −0.445335 −0.0303716
\(216\) 2.02355i 0.137685i
\(217\) 0.147941i 0.0100429i
\(218\) −4.63044 −0.313613
\(219\) 25.2221 1.70435
\(220\) 6.60506i 0.445313i
\(221\) 34.3568 2.31109
\(222\) −7.75626 6.37891i −0.520566 0.428124i
\(223\) 2.59438 0.173733 0.0868663 0.996220i \(-0.472315\pi\)
0.0868663 + 0.996220i \(0.472315\pi\)
\(224\) 12.6124i 0.842698i
\(225\) −2.65157 −0.176771
\(226\) −3.26013 −0.216860
\(227\) 2.99424i 0.198735i −0.995051 0.0993673i \(-0.968318\pi\)
0.995051 0.0993673i \(-0.0316819\pi\)
\(228\) 14.9389i 0.989350i
\(229\) 6.89738 0.455792 0.227896 0.973686i \(-0.426815\pi\)
0.227896 + 0.973686i \(0.426815\pi\)
\(230\) 0.115093i 0.00758898i
\(231\) −22.4371 −1.47625
\(232\) 19.6846 1.29236
\(233\) 23.8710 1.56384 0.781922 0.623376i \(-0.214239\pi\)
0.781922 + 0.623376i \(0.214239\pi\)
\(234\) −10.5380 −0.688893
\(235\) 6.94655i 0.453143i
\(236\) 14.3287i 0.932720i
\(237\) 19.1663i 1.24499i
\(238\) 9.04182 0.586094
\(239\) 5.31643i 0.343892i −0.985106 0.171946i \(-0.944995\pi\)
0.985106 0.171946i \(-0.0550054\pi\)
\(240\) 3.18292i 0.205457i
\(241\) 13.3776i 0.861725i −0.902418 0.430862i \(-0.858209\pi\)
0.902418 0.430862i \(-0.141791\pi\)
\(242\) 5.51393i 0.354449i
\(243\) 21.1071 1.35402
\(244\) 3.62428i 0.232021i
\(245\) 2.29684i 0.146740i
\(246\) 14.1942i 0.904988i
\(247\) −23.6945 −1.50764
\(248\) 0.166650 0.0105823
\(249\) 15.6768 0.993479
\(250\) −0.694469 −0.0439221
\(251\) 12.4789i 0.787660i −0.919183 0.393830i \(-0.871150\pi\)
0.919183 0.393830i \(-0.128850\pi\)
\(252\) 8.72745 0.549778
\(253\) 0.721243i 0.0453442i
\(254\) 6.38193i 0.400438i
\(255\) 14.2723 0.893764
\(256\) −10.1433 −0.633959
\(257\) 20.8290i 1.29928i −0.760243 0.649639i \(-0.774920\pi\)
0.760243 0.649639i \(-0.225080\pi\)
\(258\) −0.735231 −0.0457735
\(259\) −8.37922 + 10.1885i −0.520660 + 0.633082i
\(260\) 8.68547 0.538650
\(261\) 21.3657i 1.32250i
\(262\) 15.6150 0.964701
\(263\) −5.45327 −0.336263 −0.168132 0.985765i \(-0.553773\pi\)
−0.168132 + 0.985765i \(0.553773\pi\)
\(264\) 25.2747i 1.55555i
\(265\) 4.63281i 0.284591i
\(266\) −6.23578 −0.382340
\(267\) 5.57085i 0.340931i
\(268\) 17.3344 1.05886
\(269\) 20.0095 1.22000 0.609999 0.792402i \(-0.291170\pi\)
0.609999 + 0.792402i \(0.291170\pi\)
\(270\) 0.575246 0.0350084
\(271\) 10.1158 0.614491 0.307246 0.951630i \(-0.400593\pi\)
0.307246 + 0.951630i \(0.400593\pi\)
\(272\) 8.03803i 0.487377i
\(273\) 29.5041i 1.78567i
\(274\) 6.02022i 0.363695i
\(275\) −4.35199 −0.262435
\(276\) 0.597955i 0.0359927i
\(277\) 13.8144i 0.830029i −0.909815 0.415014i \(-0.863777\pi\)
0.909815 0.415014i \(-0.136223\pi\)
\(278\) 9.72334i 0.583167i
\(279\) 0.180882i 0.0108291i
\(280\) 5.29795 0.316613
\(281\) 19.8826i 1.18609i 0.805168 + 0.593047i \(0.202075\pi\)
−0.805168 + 0.593047i \(0.797925\pi\)
\(282\) 11.4685i 0.682939i
\(283\) 24.9559i 1.48348i −0.670690 0.741738i \(-0.734002\pi\)
0.670690 0.741738i \(-0.265998\pi\)
\(284\) −3.53432 −0.209723
\(285\) −9.84301 −0.583050
\(286\) −17.2959 −1.02273
\(287\) −18.6452 −1.10059
\(288\) 15.4207i 0.908674i
\(289\) −19.0427 −1.12016
\(290\) 5.59585i 0.328600i
\(291\) 20.4041i 1.19611i
\(292\) −16.1022 −0.942312
\(293\) 5.19503 0.303497 0.151748 0.988419i \(-0.451510\pi\)
0.151748 + 0.988419i \(0.451510\pi\)
\(294\) 3.79201i 0.221154i
\(295\) 9.44099 0.549676
\(296\) 11.4770 + 9.43892i 0.667087 + 0.548626i
\(297\) 3.60486 0.209175
\(298\) 13.5578i 0.785385i
\(299\) 0.948414 0.0548482
\(300\) 3.60806 0.208312
\(301\) 0.965787i 0.0556670i
\(302\) 16.1322i 0.928302i
\(303\) −2.32207 −0.133399
\(304\) 5.54351i 0.317942i
\(305\) −2.38799 −0.136736
\(306\) 11.0551 0.631980
\(307\) −20.7362 −1.18348 −0.591739 0.806130i \(-0.701558\pi\)
−0.591739 + 0.806130i \(0.701558\pi\)
\(308\) 14.3242 0.816200
\(309\) 45.6057i 2.59442i
\(310\) 0.0473746i 0.00269070i
\(311\) 23.7997i 1.34956i 0.738020 + 0.674779i \(0.235761\pi\)
−0.738020 + 0.674779i \(0.764239\pi\)
\(312\) 33.2354 1.88159
\(313\) 13.7661i 0.778107i 0.921215 + 0.389053i \(0.127198\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(314\) 9.87167i 0.557091i
\(315\) 5.75039i 0.323998i
\(316\) 12.2361i 0.688336i
\(317\) −26.3650 −1.48081 −0.740403 0.672164i \(-0.765365\pi\)
−0.740403 + 0.672164i \(0.765365\pi\)
\(318\) 7.64859i 0.428912i
\(319\) 35.0672i 1.96339i
\(320\) 1.36106i 0.0760857i
\(321\) 11.7078 0.653464
\(322\) 0.249598 0.0139096
\(323\) 24.8572 1.38309
\(324\) −15.0616 −0.836756
\(325\) 5.72273i 0.317440i
\(326\) 7.53957 0.417578
\(327\) 15.8509i 0.876556i
\(328\) 21.0032i 1.15971i
\(329\) −15.0648 −0.830550
\(330\) −7.18497 −0.395519
\(331\) 34.9649i 1.92185i −0.276816 0.960923i \(-0.589279\pi\)
0.276816 0.960923i \(-0.410721\pi\)
\(332\) −10.0084 −0.549281
\(333\) −10.2450 + 12.4571i −0.561423 + 0.682647i
\(334\) −5.15173 −0.281890
\(335\) 11.4214i 0.624016i
\(336\) −6.90272 −0.376574
\(337\) 9.97937 0.543611 0.271805 0.962352i \(-0.412379\pi\)
0.271805 + 0.962352i \(0.412379\pi\)
\(338\) 13.7155i 0.746028i
\(339\) 11.1601i 0.606131i
\(340\) −9.11167 −0.494150
\(341\) 0.296880i 0.0160769i
\(342\) −7.62429 −0.412274
\(343\) −20.1618 −1.08864
\(344\) 1.08793 0.0586571
\(345\) 0.393984 0.0212114
\(346\) 5.35883i 0.288092i
\(347\) 14.3875i 0.772361i −0.922423 0.386180i \(-0.873794\pi\)
0.922423 0.386180i \(-0.126206\pi\)
\(348\) 29.0729i 1.55847i
\(349\) 7.24895 0.388027 0.194014 0.980999i \(-0.437849\pi\)
0.194014 + 0.980999i \(0.437849\pi\)
\(350\) 1.50608i 0.0805033i
\(351\) 4.74029i 0.253018i
\(352\) 25.3098i 1.34902i
\(353\) 10.8049i 0.575085i −0.957768 0.287543i \(-0.907162\pi\)
0.957768 0.287543i \(-0.0928383\pi\)
\(354\) 15.5867 0.828426
\(355\) 2.32872i 0.123595i
\(356\) 3.55653i 0.188496i
\(357\) 30.9519i 1.63815i
\(358\) −2.74573 −0.145116
\(359\) 13.1745 0.695323 0.347662 0.937620i \(-0.386976\pi\)
0.347662 + 0.937620i \(0.386976\pi\)
\(360\) 6.47763 0.341401
\(361\) 1.85701 0.0977371
\(362\) 9.36910i 0.492429i
\(363\) −18.8753 −0.990694
\(364\) 18.8360i 0.987273i
\(365\) 10.6095i 0.555328i
\(366\) −3.94248 −0.206077
\(367\) 24.5181 1.27983 0.639917 0.768444i \(-0.278969\pi\)
0.639917 + 0.768444i \(0.278969\pi\)
\(368\) 0.221889i 0.0115668i
\(369\) −22.7969 −1.18676
\(370\) −2.68326 + 3.26263i −0.139496 + 0.169616i
\(371\) 10.0471 0.521617
\(372\) 0.246131i 0.0127613i
\(373\) −18.8794 −0.977539 −0.488770 0.872413i \(-0.662554\pi\)
−0.488770 + 0.872413i \(0.662554\pi\)
\(374\) 18.1447 0.938238
\(375\) 2.37730i 0.122763i
\(376\) 16.9700i 0.875162i
\(377\) 46.1123 2.37491
\(378\) 1.24752i 0.0641656i
\(379\) −4.90409 −0.251906 −0.125953 0.992036i \(-0.540199\pi\)
−0.125953 + 0.992036i \(0.540199\pi\)
\(380\) 6.28395 0.322360
\(381\) −21.8466 −1.11923
\(382\) 2.72224 0.139282
\(383\) 4.51567i 0.230740i 0.993323 + 0.115370i \(0.0368053\pi\)
−0.993323 + 0.115370i \(0.963195\pi\)
\(384\) 25.4043i 1.29641i
\(385\) 9.43805i 0.481007i
\(386\) 5.83514 0.297001
\(387\) 1.18084i 0.0600253i
\(388\) 13.0263i 0.661313i
\(389\) 9.09674i 0.461223i 0.973046 + 0.230612i \(0.0740727\pi\)
−0.973046 + 0.230612i \(0.925927\pi\)
\(390\) 9.44802i 0.478419i
\(391\) −0.994954 −0.0503170
\(392\) 5.61106i 0.283401i
\(393\) 53.4534i 2.69636i
\(394\) 5.41516i 0.272812i
\(395\) 8.06222 0.405654
\(396\) 17.5138 0.880101
\(397\) −23.4743 −1.17814 −0.589071 0.808081i \(-0.700506\pi\)
−0.589071 + 0.808081i \(0.700506\pi\)
\(398\) −1.05009 −0.0526362
\(399\) 21.3463i 1.06865i
\(400\) −1.33888 −0.0669439
\(401\) 21.4285i 1.07009i −0.844825 0.535043i \(-0.820295\pi\)
0.844825 0.535043i \(-0.179705\pi\)
\(402\) 18.8563i 0.940464i
\(403\) 0.390388 0.0194466
\(404\) 1.48245 0.0737546
\(405\) 9.92389i 0.493122i
\(406\) 12.1356 0.602279
\(407\) −16.8150 + 20.4457i −0.833488 + 1.01346i
\(408\) −34.8663 −1.72614
\(409\) 22.3741i 1.10633i 0.833072 + 0.553164i \(0.186580\pi\)
−0.833072 + 0.553164i \(0.813420\pi\)
\(410\) −5.97071 −0.294872
\(411\) −20.6084 −1.01654
\(412\) 29.1155i 1.43442i
\(413\) 20.4745i 1.00748i
\(414\) 0.305176 0.0149986
\(415\) 6.59438i 0.323705i
\(416\) −33.2817 −1.63177
\(417\) −33.2849 −1.62997
\(418\) −12.5136 −0.612062
\(419\) −3.38447 −0.165342 −0.0826710 0.996577i \(-0.526345\pi\)
−0.0826710 + 0.996577i \(0.526345\pi\)
\(420\) 7.82472i 0.381807i
\(421\) 38.7578i 1.88894i 0.328597 + 0.944470i \(0.393424\pi\)
−0.328597 + 0.944470i \(0.606576\pi\)
\(422\) 8.07380i 0.393026i
\(423\) −18.4193 −0.895575
\(424\) 11.3177i 0.549635i
\(425\) 6.00355i 0.291215i
\(426\) 3.84462i 0.186273i
\(427\) 5.17877i 0.250618i
\(428\) −7.47445 −0.361291
\(429\) 59.2073i 2.85856i
\(430\) 0.309271i 0.0149144i
\(431\) 4.50684i 0.217087i −0.994092 0.108543i \(-0.965381\pi\)
0.994092 0.108543i \(-0.0346186\pi\)
\(432\) 1.10903 0.0533581
\(433\) −5.62353 −0.270250 −0.135125 0.990829i \(-0.543144\pi\)
−0.135125 + 0.990829i \(0.543144\pi\)
\(434\) 0.102740 0.00493169
\(435\) 19.1557 0.918446
\(436\) 10.1195i 0.484636i
\(437\) 0.686179 0.0328244
\(438\) 17.5160i 0.836945i
\(439\) 31.3943i 1.49837i 0.662362 + 0.749184i \(0.269554\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(440\) 10.6316 0.506844
\(441\) −6.09024 −0.290012
\(442\) 23.8597i 1.13489i
\(443\) −25.2783 −1.20101 −0.600504 0.799622i \(-0.705033\pi\)
−0.600504 + 0.799622i \(0.705033\pi\)
\(444\) 13.9407 16.9508i 0.661594 0.804448i
\(445\) −2.34335 −0.111085
\(446\) 1.80172i 0.0853138i
\(447\) 46.4112 2.19517
\(448\) −2.95170 −0.139455
\(449\) 12.0163i 0.567086i −0.958960 0.283543i \(-0.908490\pi\)
0.958960 0.283543i \(-0.0915098\pi\)
\(450\) 1.84143i 0.0868060i
\(451\) −37.4163 −1.76186
\(452\) 7.12478i 0.335121i
\(453\) 55.2236 2.59463
\(454\) −2.07941 −0.0975913
\(455\) 12.4108 0.581825
\(456\) 24.0459 1.12605
\(457\) 38.7961i 1.81480i 0.420264 + 0.907402i \(0.361937\pi\)
−0.420264 + 0.907402i \(0.638063\pi\)
\(458\) 4.79001i 0.223823i
\(459\) 4.97290i 0.232115i
\(460\) −0.251527 −0.0117275
\(461\) 34.7227i 1.61720i 0.588360 + 0.808599i \(0.299774\pi\)
−0.588360 + 0.808599i \(0.700226\pi\)
\(462\) 15.5819i 0.724934i
\(463\) 6.90276i 0.320798i −0.987052 0.160399i \(-0.948722\pi\)
0.987052 0.160399i \(-0.0512782\pi\)
\(464\) 10.7883i 0.500836i
\(465\) 0.162173 0.00752057
\(466\) 16.5777i 0.767947i
\(467\) 27.2476i 1.26087i −0.776243 0.630434i \(-0.782877\pi\)
0.776243 0.630434i \(-0.217123\pi\)
\(468\) 23.0301i 1.06457i
\(469\) 24.7692 1.14374
\(470\) −4.82416 −0.222522
\(471\) −33.7927 −1.55708
\(472\) −23.0638 −1.06160
\(473\) 1.93809i 0.0891135i
\(474\) 13.3104 0.611368
\(475\) 4.14041i 0.189975i
\(476\) 19.7603i 0.905710i
\(477\) 12.2842 0.562455
\(478\) −3.69210 −0.168873
\(479\) 38.6778i 1.76724i −0.468209 0.883618i \(-0.655101\pi\)
0.468209 0.883618i \(-0.344899\pi\)
\(480\) −13.8257 −0.631052
\(481\) 26.8855 + 22.1112i 1.22588 + 1.00819i
\(482\) −9.29030 −0.423162
\(483\) 0.854424i 0.0388776i
\(484\) 12.0503 0.547741
\(485\) −8.58288 −0.389729
\(486\) 14.6582i 0.664911i
\(487\) 2.02287i 0.0916651i −0.998949 0.0458326i \(-0.985406\pi\)
0.998949 0.0458326i \(-0.0145941\pi\)
\(488\) 5.83371 0.264080
\(489\) 25.8094i 1.16714i
\(490\) −1.59509 −0.0720587
\(491\) 34.4832 1.55621 0.778103 0.628137i \(-0.216182\pi\)
0.778103 + 0.628137i \(0.216182\pi\)
\(492\) 31.0204 1.39851
\(493\) −48.3751 −2.17871
\(494\) 16.4551i 0.740349i
\(495\) 11.5396i 0.518666i
\(496\) 0.0913343i 0.00410103i
\(497\) −5.05023 −0.226534
\(498\) 10.8871i 0.487862i
\(499\) 8.93562i 0.400013i 0.979795 + 0.200007i \(0.0640964\pi\)
−0.979795 + 0.200007i \(0.935904\pi\)
\(500\) 1.51771i 0.0678742i
\(501\) 17.6354i 0.787891i
\(502\) −8.66619 −0.386791
\(503\) 2.50197i 0.111557i 0.998443 + 0.0557786i \(0.0177641\pi\)
−0.998443 + 0.0557786i \(0.982236\pi\)
\(504\) 14.0479i 0.625742i
\(505\) 0.976765i 0.0434655i
\(506\) 0.500881 0.0222669
\(507\) 46.9510 2.08517
\(508\) 13.9473 0.618809
\(509\) −12.8713 −0.570508 −0.285254 0.958452i \(-0.592078\pi\)
−0.285254 + 0.958452i \(0.592078\pi\)
\(510\) 9.91165i 0.438895i
\(511\) −23.0086 −1.01784
\(512\) 14.3281i 0.633219i
\(513\) 3.42961i 0.151421i
\(514\) −14.4651 −0.638028
\(515\) −19.1838 −0.845338
\(516\) 1.60680i 0.0707353i
\(517\) −30.2313 −1.32957
\(518\) 7.07559 + 5.81911i 0.310884 + 0.255677i
\(519\) 18.3443 0.805226
\(520\) 13.9803i 0.613077i
\(521\) 21.2718 0.931935 0.465967 0.884802i \(-0.345706\pi\)
0.465967 + 0.884802i \(0.345706\pi\)
\(522\) 14.8378 0.649433
\(523\) 22.9221i 1.00231i −0.865357 0.501156i \(-0.832908\pi\)
0.865357 0.501156i \(-0.167092\pi\)
\(524\) 34.1256i 1.49078i
\(525\) 5.15560 0.225009
\(526\) 3.78713i 0.165127i
\(527\) −0.409545 −0.0178401
\(528\) −13.8520 −0.602832
\(529\) 22.9725 0.998806
\(530\) 3.21734 0.139752
\(531\) 25.0335i 1.08636i
\(532\) 13.6279i 0.590843i
\(533\) 49.2013i 2.13114i
\(534\) −3.86878 −0.167419
\(535\) 4.92481i 0.212918i
\(536\) 27.9017i 1.20517i
\(537\) 9.39917i 0.405604i
\(538\) 13.8959i 0.599097i
\(539\) −9.99583 −0.430551
\(540\) 1.25716i 0.0540996i
\(541\) 27.5498i 1.18446i −0.805770 0.592228i \(-0.798248\pi\)
0.805770 0.592228i \(-0.201752\pi\)
\(542\) 7.02511i 0.301754i
\(543\) −32.0722 −1.37635
\(544\) 34.9148 1.49696
\(545\) 6.66759 0.285608
\(546\) 20.4897 0.876878
\(547\) 14.7301i 0.629812i −0.949123 0.314906i \(-0.898027\pi\)
0.949123 0.314906i \(-0.101973\pi\)
\(548\) 13.1568 0.562029
\(549\) 6.33191i 0.270239i
\(550\) 3.02232i 0.128872i
\(551\) 33.3624 1.42128
\(552\) −0.962481 −0.0409659
\(553\) 17.4843i 0.743510i
\(554\) −9.59369 −0.407597
\(555\) 11.1686 + 9.18531i 0.474082 + 0.389895i
\(556\) 21.2497 0.901187
\(557\) 41.3384i 1.75156i −0.482707 0.875782i \(-0.660346\pi\)
0.482707 0.875782i \(-0.339654\pi\)
\(558\) 0.125617 0.00531780
\(559\) 2.54853 0.107791
\(560\) 2.90359i 0.122699i
\(561\) 62.1127i 2.62240i
\(562\) 13.8078 0.582448
\(563\) 12.3396i 0.520052i −0.965602 0.260026i \(-0.916269\pi\)
0.965602 0.260026i \(-0.0837311\pi\)
\(564\) 25.0636 1.05537
\(565\) 4.69442 0.197496
\(566\) −17.3311 −0.728481
\(567\) −21.5217 −0.903826
\(568\) 5.68892i 0.238702i
\(569\) 20.3376i 0.852597i 0.904582 + 0.426299i \(0.140183\pi\)
−0.904582 + 0.426299i \(0.859817\pi\)
\(570\) 6.83566i 0.286314i
\(571\) 2.20913 0.0924493 0.0462246 0.998931i \(-0.485281\pi\)
0.0462246 + 0.998931i \(0.485281\pi\)
\(572\) 37.7990i 1.58046i
\(573\) 9.31876i 0.389297i
\(574\) 12.9485i 0.540461i
\(575\) 0.165727i 0.00691131i
\(576\) −3.60895 −0.150373
\(577\) 27.2952i 1.13631i 0.822920 + 0.568157i \(0.192344\pi\)
−0.822920 + 0.568157i \(0.807656\pi\)
\(578\) 13.2245i 0.550068i
\(579\) 19.9748i 0.830126i
\(580\) −12.2293 −0.507796
\(581\) −14.3011 −0.593309
\(582\) −14.1700 −0.587366
\(583\) 20.1619 0.835021
\(584\) 25.9185i 1.07251i
\(585\) 15.1742 0.627377
\(586\) 3.60779i 0.149036i
\(587\) 0.417280i 0.0172230i −0.999963 0.00861150i \(-0.997259\pi\)
0.999963 0.00861150i \(-0.00274116\pi\)
\(588\) 8.28716 0.341757
\(589\) 0.282447 0.0116380
\(590\) 6.55648i 0.269926i
\(591\) 18.5372 0.762517
\(592\) −5.17309 + 6.29008i −0.212613 + 0.258521i
\(593\) 2.54532 0.104524 0.0522619 0.998633i \(-0.483357\pi\)
0.0522619 + 0.998633i \(0.483357\pi\)
\(594\) 2.50346i 0.102718i
\(595\) −13.0198 −0.533758
\(596\) −29.6297 −1.21368
\(597\) 3.59466i 0.147120i
\(598\) 0.658644i 0.0269340i
\(599\) −17.2975 −0.706757 −0.353379 0.935480i \(-0.614967\pi\)
−0.353379 + 0.935480i \(0.614967\pi\)
\(600\) 5.80761i 0.237095i
\(601\) −39.3207 −1.60392 −0.801962 0.597375i \(-0.796211\pi\)
−0.801962 + 0.597375i \(0.796211\pi\)
\(602\) 0.670709 0.0273361
\(603\) 30.2845 1.23328
\(604\) −35.2557 −1.43453
\(605\) 7.93978i 0.322798i
\(606\) 1.61260i 0.0655075i
\(607\) 14.0635i 0.570820i −0.958405 0.285410i \(-0.907870\pi\)
0.958405 0.285410i \(-0.0921298\pi\)
\(608\) −24.0794 −0.976547
\(609\) 41.5425i 1.68339i
\(610\) 1.65838i 0.0671459i
\(611\) 39.7533i 1.60825i
\(612\) 24.1602i 0.976619i
\(613\) 28.9940 1.17105 0.585527 0.810653i \(-0.300887\pi\)
0.585527 + 0.810653i \(0.300887\pi\)
\(614\) 14.4007i 0.581163i
\(615\) 20.4389i 0.824176i
\(616\) 23.0566i 0.928977i
\(617\) 13.4011 0.539510 0.269755 0.962929i \(-0.413057\pi\)
0.269755 + 0.962929i \(0.413057\pi\)
\(618\) −31.6717 −1.27402
\(619\) 42.6050 1.71244 0.856220 0.516611i \(-0.172807\pi\)
0.856220 + 0.516611i \(0.172807\pi\)
\(620\) −0.103534 −0.00415802
\(621\) 0.137276i 0.00550870i
\(622\) 16.5282 0.662719
\(623\) 5.08197i 0.203605i
\(624\) 18.2150i 0.729184i
\(625\) 1.00000 0.0400000
\(626\) 9.56014 0.382100
\(627\) 42.8366i 1.71073i
\(628\) 21.5738 0.860890
\(629\) −28.2048 23.1962i −1.12460 0.924895i
\(630\) 3.99347 0.159104
\(631\) 37.8981i 1.50870i 0.656472 + 0.754350i \(0.272048\pi\)
−0.656472 + 0.754350i \(0.727952\pi\)
\(632\) −19.6955 −0.783446
\(633\) 27.6382 1.09852
\(634\) 18.3097i 0.727170i
\(635\) 9.18965i 0.364680i
\(636\) −16.7155 −0.662811
\(637\) 13.1442i 0.520793i
\(638\) 24.3531 0.964147
\(639\) −6.17475 −0.244269
\(640\) 10.6862 0.422408
\(641\) −5.17563 −0.204425 −0.102213 0.994763i \(-0.532592\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(642\) 8.13068i 0.320892i
\(643\) 40.7663i 1.60767i −0.594854 0.803834i \(-0.702790\pi\)
0.594854 0.803834i \(-0.297210\pi\)
\(644\) 0.545480i 0.0214949i
\(645\) 1.05870 0.0416861
\(646\) 17.2625i 0.679185i
\(647\) 0.183619i 0.00721883i 0.999993 + 0.00360941i \(0.00114891\pi\)
−0.999993 + 0.00360941i \(0.998851\pi\)
\(648\) 24.2435i 0.952374i
\(649\) 41.0871i 1.61281i
\(650\) 3.97426 0.155883
\(651\) 0.351700i 0.0137842i
\(652\) 16.4772i 0.645297i
\(653\) 16.8021i 0.657516i 0.944414 + 0.328758i \(0.106630\pi\)
−0.944414 + 0.328758i \(0.893370\pi\)
\(654\) 11.0080 0.430445
\(655\) −22.4849 −0.878557
\(656\) −11.5110 −0.449430
\(657\) −28.1319 −1.09753
\(658\) 10.4620i 0.407853i
\(659\) 21.1834 0.825190 0.412595 0.910915i \(-0.364623\pi\)
0.412595 + 0.910915i \(0.364623\pi\)
\(660\) 15.7022i 0.611209i
\(661\) 26.3955i 1.02666i −0.858190 0.513332i \(-0.828411\pi\)
0.858190 0.513332i \(-0.171589\pi\)
\(662\) −24.2821 −0.943749
\(663\) −81.6764 −3.17205
\(664\) 16.1097i 0.625177i
\(665\) 8.97921 0.348199
\(666\) 8.65109 + 7.11484i 0.335223 + 0.275694i
\(667\) −1.33539 −0.0517065
\(668\) 11.2587i 0.435614i
\(669\) −6.16763 −0.238454
\(670\) 7.93178 0.306432
\(671\) 10.3925i 0.401197i
\(672\) 29.9834i 1.15663i
\(673\) 44.0680 1.69870 0.849349 0.527832i \(-0.176995\pi\)
0.849349 + 0.527832i \(0.176995\pi\)
\(674\) 6.93036i 0.266948i
\(675\) −0.828325 −0.0318823
\(676\) −29.9744 −1.15286
\(677\) 1.37058 0.0526756 0.0263378 0.999653i \(-0.491615\pi\)
0.0263378 + 0.999653i \(0.491615\pi\)
\(678\) 7.75031 0.297649
\(679\) 18.6135i 0.714320i
\(680\) 14.6663i 0.562428i
\(681\) 7.11821i 0.272770i
\(682\) 0.206174 0.00789480
\(683\) 9.46755i 0.362266i 0.983459 + 0.181133i \(0.0579764\pi\)
−0.983459 + 0.181133i \(0.942024\pi\)
\(684\) 16.6623i 0.637100i
\(685\) 8.66881i 0.331218i
\(686\) 14.0018i 0.534590i
\(687\) −16.3972 −0.625591
\(688\) 0.596249i 0.0227318i
\(689\) 26.5123i 1.01004i
\(690\) 0.273610i 0.0104161i
\(691\) 28.7211 1.09260 0.546301 0.837589i \(-0.316036\pi\)
0.546301 + 0.837589i \(0.316036\pi\)
\(692\) −11.7113 −0.445198
\(693\) 25.0256 0.950645
\(694\) −9.99166 −0.379278
\(695\) 14.0011i 0.531092i
\(696\) −46.7963 −1.77381
\(697\) 51.6157i 1.95508i
\(698\) 5.03417i 0.190546i
\(699\) −56.7487 −2.14643
\(700\) −3.29143 −0.124404
\(701\) 17.9577i 0.678252i −0.940741 0.339126i \(-0.889869\pi\)
0.940741 0.339126i \(-0.110131\pi\)
\(702\) −3.29198 −0.124248
\(703\) 19.4517 + 15.9975i 0.733636 + 0.603358i
\(704\) −5.92332 −0.223244
\(705\) 16.5141i 0.621955i
\(706\) −7.50365 −0.282403
\(707\) 2.11829 0.0796664
\(708\) 34.0637i 1.28019i
\(709\) 15.3109i 0.575012i −0.957779 0.287506i \(-0.907174\pi\)
0.957779 0.287506i \(-0.0928261\pi\)
\(710\) −1.61722 −0.0606932
\(711\) 21.3775i 0.801720i
\(712\) 5.72467 0.214541
\(713\) −0.0113054 −0.000423392
\(714\) −21.4952 −0.804436
\(715\) 24.9053 0.931404
\(716\) 6.00060i 0.224253i
\(717\) 12.6388i 0.472004i
\(718\) 9.14928i 0.341448i
\(719\) 13.6890 0.510514 0.255257 0.966873i \(-0.417840\pi\)
0.255257 + 0.966873i \(0.417840\pi\)
\(720\) 3.55013i 0.132305i
\(721\) 41.6034i 1.54939i
\(722\) 1.28963i 0.0479951i
\(723\) 31.8025i 1.18275i
\(724\) 20.4755 0.760966
\(725\) 8.05774i 0.299257i
\(726\) 13.1083i 0.486494i
\(727\) 11.9352i 0.442651i 0.975200 + 0.221326i \(0.0710383\pi\)
−0.975200 + 0.221326i \(0.928962\pi\)
\(728\) −30.3188 −1.12369
\(729\) −20.4063 −0.755790
\(730\) −7.36799 −0.272702
\(731\) −2.67359 −0.0988864
\(732\) 8.61601i 0.318457i
\(733\) −10.0865 −0.372555 −0.186277 0.982497i \(-0.559642\pi\)
−0.186277 + 0.982497i \(0.559642\pi\)
\(734\) 17.0271i 0.628480i
\(735\) 5.46030i 0.201406i
\(736\) 0.963820 0.0355269
\(737\) 49.7056 1.83093
\(738\) 15.8317i 0.582774i
\(739\) 11.5583 0.425180 0.212590 0.977142i \(-0.431810\pi\)
0.212590 + 0.977142i \(0.431810\pi\)
\(740\) −7.13025 5.86407i −0.262113 0.215567i
\(741\) 56.3289 2.06929
\(742\) 6.97737i 0.256147i
\(743\) 4.00230 0.146830 0.0734151 0.997301i \(-0.476610\pi\)
0.0734151 + 0.997301i \(0.476610\pi\)
\(744\) −0.396178 −0.0145246
\(745\) 19.5226i 0.715253i
\(746\) 13.1112i 0.480034i
\(747\) −17.4855 −0.639759
\(748\) 39.6539i 1.44989i
\(749\) −10.6803 −0.390250
\(750\) 1.65096 0.0602846
\(751\) 12.6259 0.460724 0.230362 0.973105i \(-0.426009\pi\)
0.230362 + 0.973105i \(0.426009\pi\)
\(752\) −9.30059 −0.339158
\(753\) 29.6661i 1.08109i
\(754\) 32.0236i 1.16623i
\(755\) 23.2295i 0.845408i
\(756\) 2.72637 0.0991572
\(757\) 0.686799i 0.0249621i 0.999922 + 0.0124811i \(0.00397295\pi\)
−0.999922 + 0.0124811i \(0.996027\pi\)
\(758\) 3.40574i 0.123702i
\(759\) 1.71461i 0.0622365i
\(760\) 10.1148i 0.366902i
\(761\) 45.5758 1.65212 0.826060 0.563582i \(-0.190577\pi\)
0.826060 + 0.563582i \(0.190577\pi\)
\(762\) 15.1718i 0.549616i
\(763\) 14.4599i 0.523482i
\(764\) 5.94927i 0.215237i
\(765\) −15.9188 −0.575547
\(766\) 3.13599 0.113308
\(767\) −54.0283 −1.95085
\(768\) 24.1138 0.870131
\(769\) 40.5462i 1.46213i −0.682306 0.731067i \(-0.739023\pi\)
0.682306 0.731067i \(-0.260977\pi\)
\(770\) 6.55443 0.236205
\(771\) 49.5169i 1.78331i
\(772\) 12.7523i 0.458965i
\(773\) 33.7970 1.21559 0.607797 0.794093i \(-0.292054\pi\)
0.607797 + 0.794093i \(0.292054\pi\)
\(774\) 0.820054 0.0294762
\(775\) 0.0682170i 0.00245043i
\(776\) 20.9675 0.752689
\(777\) 19.9200 24.2211i 0.714624 0.868928i
\(778\) 6.31741 0.226490
\(779\) 35.5972i 1.27540i
\(780\) −20.6480 −0.739317
\(781\) −10.1345 −0.362642
\(782\) 0.690964i 0.0247088i
\(783\) 6.67443i 0.238525i
\(784\) −3.07520 −0.109828
\(785\) 14.2147i 0.507345i
\(786\) −37.1217 −1.32409
\(787\) 7.98198 0.284527 0.142263 0.989829i \(-0.454562\pi\)
0.142263 + 0.989829i \(0.454562\pi\)
\(788\) −11.8345 −0.421585
\(789\) 12.9641 0.461533
\(790\) 5.59896i 0.199202i
\(791\) 10.1807i 0.361983i
\(792\) 28.1906i 1.00171i
\(793\) 13.6658 0.485287
\(794\) 16.3022i 0.578543i
\(795\) 11.0136i 0.390612i
\(796\) 2.29490i 0.0813405i
\(797\) 26.0890i 0.924119i −0.886849 0.462060i \(-0.847111\pi\)
0.886849 0.462060i \(-0.152889\pi\)
\(798\) 14.8243 0.524776
\(799\) 41.7040i 1.47538i
\(800\) 5.81569i 0.205616i
\(801\) 6.21355i 0.219545i
\(802\) −14.8814 −0.525481
\(803\) −46.1725 −1.62939
\(804\) −41.2090 −1.45333
\(805\) −0.359409 −0.0126675
\(806\) 0.271112i 0.00954953i
\(807\) −47.5685 −1.67449
\(808\) 2.38618i 0.0839455i
\(809\) 37.3911i 1.31460i −0.753629 0.657300i \(-0.771698\pi\)
0.753629 0.657300i \(-0.228302\pi\)
\(810\) −6.89183 −0.242154
\(811\) 40.7822 1.43206 0.716029 0.698070i \(-0.245958\pi\)
0.716029 + 0.698070i \(0.245958\pi\)
\(812\) 26.5215i 0.930722i
\(813\) −24.0483 −0.843412
\(814\) 14.1989 + 11.6775i 0.497672 + 0.409296i
\(815\) −10.8566 −0.380290
\(816\) 19.1088i 0.668943i
\(817\) 1.84387 0.0645088
\(818\) 15.5381 0.543278
\(819\) 32.9080i 1.14990i
\(820\) 13.0486i 0.455675i
\(821\) −49.7348 −1.73576 −0.867879 0.496776i \(-0.834517\pi\)
−0.867879 + 0.496776i \(0.834517\pi\)
\(822\) 14.3119i 0.499184i
\(823\) −6.32881 −0.220608 −0.110304 0.993898i \(-0.535183\pi\)
−0.110304 + 0.993898i \(0.535183\pi\)
\(824\) 46.8649 1.63262
\(825\) 10.3460 0.360201
\(826\) −14.2189 −0.494738
\(827\) 24.9486i 0.867548i −0.901022 0.433774i \(-0.857182\pi\)
0.901022 0.433774i \(-0.142818\pi\)
\(828\) 0.666940i 0.0231778i
\(829\) 16.7582i 0.582036i 0.956718 + 0.291018i \(0.0939939\pi\)
−0.956718 + 0.291018i \(0.906006\pi\)
\(830\) −4.57959 −0.158960
\(831\) 32.8411i 1.13924i
\(832\) 7.78900i 0.270035i
\(833\) 13.7892i 0.477769i
\(834\) 23.1153i 0.800418i
\(835\) 7.41823 0.256718
\(836\) 27.3477i 0.945839i
\(837\) 0.0565059i 0.00195313i
\(838\) 2.35041i 0.0811935i
\(839\) −45.1407 −1.55843 −0.779215 0.626756i \(-0.784382\pi\)
−0.779215 + 0.626756i \(0.784382\pi\)
\(840\) −12.5948 −0.434563
\(841\) −35.9272 −1.23887
\(842\) 26.9161 0.927590
\(843\) 47.2669i 1.62796i
\(844\) −17.6447 −0.607356
\(845\) 19.7497i 0.679410i
\(846\) 12.7916i 0.439784i
\(847\) 17.2188 0.591645
\(848\) 6.20276 0.213004
\(849\) 59.3278i 2.03612i
\(850\) −4.16928 −0.143005
\(851\) −0.778591 0.640329i −0.0266898 0.0219502i
\(852\) 8.40215 0.287853
\(853\) 3.04298i 0.104190i 0.998642 + 0.0520948i \(0.0165898\pi\)
−0.998642 + 0.0520948i \(0.983410\pi\)
\(854\) 3.59649 0.123070
\(855\) 10.9786 0.375460
\(856\) 12.0310i 0.411212i
\(857\) 0.397815i 0.0135891i 0.999977 + 0.00679455i \(0.00216279\pi\)
−0.999977 + 0.00679455i \(0.997837\pi\)
\(858\) 41.1177 1.40373
\(859\) 28.4886i 0.972018i 0.873954 + 0.486009i \(0.161548\pi\)
−0.873954 + 0.486009i \(0.838452\pi\)
\(860\) −0.675890 −0.0230477
\(861\) 44.3253 1.51060
\(862\) −3.12986 −0.106603
\(863\) −31.2137 −1.06253 −0.531263 0.847207i \(-0.678282\pi\)
−0.531263 + 0.847207i \(0.678282\pi\)
\(864\) 4.81729i 0.163887i
\(865\) 7.71644i 0.262367i
\(866\) 3.90537i 0.132710i
\(867\) 45.2702 1.53746
\(868\) 0.224531i 0.00762109i
\(869\) 35.0867i 1.19023i
\(870\) 13.3030i 0.451015i
\(871\) 65.3614i 2.21469i
\(872\) −16.2885 −0.551600
\(873\) 22.7581i 0.770245i
\(874\) 0.476530i 0.0161189i
\(875\) 2.16868i 0.0733146i
\(876\) 38.2799 1.29336
\(877\) 31.9398 1.07853 0.539266 0.842136i \(-0.318702\pi\)
0.539266 + 0.842136i \(0.318702\pi\)
\(878\) 21.8024 0.735794
\(879\) −12.3502 −0.416561
\(880\) 5.82678i 0.196421i
\(881\) 20.6857 0.696920 0.348460 0.937324i \(-0.386705\pi\)
0.348460 + 0.937324i \(0.386705\pi\)
\(882\) 4.22948i 0.142414i
\(883\) 30.1761i 1.01551i −0.861502 0.507754i \(-0.830476\pi\)
0.861502 0.507754i \(-0.169524\pi\)
\(884\) 52.1437 1.75378
\(885\) −22.4441 −0.754450
\(886\) 17.5550i 0.589771i
\(887\) −34.4783 −1.15767 −0.578834 0.815445i \(-0.696492\pi\)
−0.578834 + 0.815445i \(0.696492\pi\)
\(888\) −27.2843 22.4392i −0.915601 0.753009i
\(889\) 19.9294 0.668410
\(890\) 1.62738i 0.0545500i
\(891\) −43.1886 −1.44687
\(892\) 3.93753 0.131838
\(893\) 28.7616i 0.962469i
\(894\) 32.2311i 1.07797i
\(895\) 3.95371 0.132158
\(896\) 23.1748i 0.774217i
\(897\) −2.25467 −0.0752812
\(898\) −8.34497 −0.278475
\(899\) −0.549676 −0.0183327
\(900\) −4.02432 −0.134144
\(901\) 27.8133i 0.926595i
\(902\) 25.9844i 0.865187i
\(903\) 2.29597i 0.0764050i
\(904\) −11.4682 −0.381426
\(905\) 13.4910i 0.448457i
\(906\) 38.3511i 1.27413i
\(907\) 1.66867i 0.0554073i 0.999616 + 0.0277037i \(0.00881948\pi\)
−0.999616 + 0.0277037i \(0.991181\pi\)
\(908\) 4.54439i 0.150811i
\(909\) 2.58996 0.0859036
\(910\) 8.61889i 0.285713i
\(911\) 53.6779i 1.77843i 0.457492 + 0.889214i \(0.348748\pi\)
−0.457492 + 0.889214i \(0.651252\pi\)
\(912\) 13.1786i 0.436387i
\(913\) −28.6986 −0.949787
\(914\) 26.9427 0.891184
\(915\) 5.67697 0.187675
\(916\) 10.4682 0.345880
\(917\) 48.7624i 1.61028i
\(918\) 3.45352 0.113983
\(919\) 2.69177i 0.0887932i −0.999014 0.0443966i \(-0.985863\pi\)
0.999014 0.0443966i \(-0.0141365\pi\)
\(920\) 0.404862i 0.0133479i
\(921\) 49.2963 1.62437
\(922\) 24.1139 0.794147
\(923\) 13.3266i 0.438651i
\(924\) −34.0531 −1.12026
\(925\) 3.86375 4.69802i 0.127039 0.154470i
\(926\) −4.79375 −0.157532
\(927\) 50.8671i 1.67070i
\(928\) 46.8614 1.53830
\(929\) −38.5193 −1.26378 −0.631888 0.775060i \(-0.717720\pi\)
−0.631888 + 0.775060i \(0.717720\pi\)
\(930\) 0.112624i 0.00369308i
\(931\) 9.50988i 0.311674i
\(932\) 36.2294 1.18673
\(933\) 56.5791i 1.85232i
\(934\) −18.9226 −0.619167
\(935\) −26.1274 −0.854457
\(936\) −37.0698 −1.21166
\(937\) 56.0419 1.83081 0.915404 0.402537i \(-0.131871\pi\)
0.915404 + 0.402537i \(0.131871\pi\)
\(938\) 17.2015i 0.561648i
\(939\) 32.7262i 1.06798i
\(940\) 10.5429i 0.343871i
\(941\) −36.5917 −1.19286 −0.596428 0.802666i \(-0.703414\pi\)
−0.596428 + 0.802666i \(0.703414\pi\)
\(942\) 23.4680i 0.764627i
\(943\) 1.42484i 0.0463993i
\(944\) 12.6403i 0.411408i
\(945\) 1.79637i 0.0584359i
\(946\) 1.34594 0.0437604
\(947\) 8.48377i 0.275685i 0.990454 + 0.137843i \(0.0440168\pi\)
−0.990454 + 0.137843i \(0.955983\pi\)
\(948\) 29.0890i 0.944767i
\(949\) 60.7156i 1.97091i
\(950\) 2.87539 0.0932898
\(951\) 62.6776 2.03246
\(952\) 31.8065 1.03086
\(953\) 16.3555 0.529807 0.264904 0.964275i \(-0.414660\pi\)
0.264904 + 0.964275i \(0.414660\pi\)
\(954\) 8.53100i 0.276201i
\(955\) −3.91989 −0.126845
\(956\) 8.06882i 0.260964i
\(957\) 83.3653i 2.69482i
\(958\) −26.8606 −0.867825
\(959\) 18.7998 0.607078
\(960\) 3.23566i 0.104430i
\(961\) 30.9953 0.999850
\(962\) 15.3556 18.6712i 0.495083 0.601983i
\(963\) −13.0585 −0.420803
\(964\) 20.3033i 0.653925i
\(965\) −8.40231 −0.270480
\(966\) −0.593371 −0.0190914
\(967\) 26.0712i 0.838393i −0.907895 0.419197i \(-0.862312\pi\)
0.907895 0.419197i \(-0.137688\pi\)
\(968\) 19.3964i 0.623425i
\(969\) −59.0930 −1.89834
\(970\) 5.96054i 0.191382i
\(971\) 12.3808 0.397320 0.198660 0.980068i \(-0.436341\pi\)
0.198660 + 0.980068i \(0.436341\pi\)
\(972\) 32.0345 1.02751
\(973\) 30.3639 0.973421
\(974\) −1.40482 −0.0450134
\(975\) 13.6047i 0.435698i
\(976\) 3.19722i 0.102341i
\(977\) 15.7957i 0.505348i 0.967552 + 0.252674i \(0.0813100\pi\)
−0.967552 + 0.252674i \(0.918690\pi\)
\(978\) −17.9238 −0.573141
\(979\) 10.1982i 0.325937i
\(980\) 3.48595i 0.111355i
\(981\) 17.6796i 0.564466i
\(982\) 23.9475i 0.764196i
\(983\) 26.9238 0.858737 0.429369 0.903129i \(-0.358736\pi\)
0.429369 + 0.903129i \(0.358736\pi\)
\(984\) 49.9310i 1.59174i
\(985\) 7.79756i 0.248451i
\(986\) 33.5950i 1.06988i
\(987\) 35.8136 1.13996
\(988\) −35.9614 −1.14408
\(989\) −0.0738042 −0.00234684
\(990\) 8.01389 0.254698
\(991\) 54.2528i 1.72340i 0.507420 + 0.861699i \(0.330599\pi\)
−0.507420 + 0.861699i \(0.669401\pi\)
\(992\) 0.396729 0.0125962
\(993\) 83.1222i 2.63780i
\(994\) 3.50723i 0.111243i
\(995\) 1.51208 0.0479360
\(996\) 23.7929 0.753908
\(997\) 13.2613i 0.419989i 0.977703 + 0.209995i \(0.0673446\pi\)
−0.977703 + 0.209995i \(0.932655\pi\)
\(998\) 6.20551 0.196432
\(999\) −3.20044 + 3.89149i −0.101258 + 0.123121i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.c.b.36.6 12
3.2 odd 2 1665.2.e.e.406.7 12
4.3 odd 2 2960.2.p.h.961.10 12
5.2 odd 4 925.2.d.e.924.8 12
5.3 odd 4 925.2.d.f.924.5 12
5.4 even 2 925.2.c.c.776.7 12
37.6 odd 4 6845.2.a.i.1.3 6
37.31 odd 4 6845.2.a.h.1.4 6
37.36 even 2 inner 185.2.c.b.36.7 yes 12
111.110 odd 2 1665.2.e.e.406.6 12
148.147 odd 2 2960.2.p.h.961.9 12
185.73 odd 4 925.2.d.e.924.7 12
185.147 odd 4 925.2.d.f.924.6 12
185.184 even 2 925.2.c.c.776.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.c.b.36.6 12 1.1 even 1 trivial
185.2.c.b.36.7 yes 12 37.36 even 2 inner
925.2.c.c.776.6 12 185.184 even 2
925.2.c.c.776.7 12 5.4 even 2
925.2.d.e.924.7 12 185.73 odd 4
925.2.d.e.924.8 12 5.2 odd 4
925.2.d.f.924.5 12 5.3 odd 4
925.2.d.f.924.6 12 185.147 odd 4
1665.2.e.e.406.6 12 111.110 odd 2
1665.2.e.e.406.7 12 3.2 odd 2
2960.2.p.h.961.9 12 148.147 odd 2
2960.2.p.h.961.10 12 4.3 odd 2
6845.2.a.h.1.4 6 37.31 odd 4
6845.2.a.i.1.3 6 37.6 odd 4