Properties

Label 925.2.a.k.1.3
Level $925$
Weight $2$
Character 925.1
Self dual yes
Analytic conductor $7.386$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(1,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 9x^{4} + 26x^{3} - 23x^{2} - 9x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.548343\) of defining polynomial
Character \(\chi\) \(=\) 925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.548343 q^{2} -2.30011 q^{3} -1.69932 q^{4} +1.26125 q^{6} -1.23269 q^{7} +2.02850 q^{8} +2.29051 q^{9} -0.976048 q^{11} +3.90863 q^{12} -6.96588 q^{13} +0.675937 q^{14} +2.28633 q^{16} -2.51901 q^{17} -1.25599 q^{18} -2.92164 q^{19} +2.83532 q^{21} +0.535210 q^{22} -8.99438 q^{23} -4.66577 q^{24} +3.81970 q^{26} +1.63190 q^{27} +2.09473 q^{28} -0.687767 q^{29} +6.60794 q^{31} -5.31069 q^{32} +2.24502 q^{33} +1.38128 q^{34} -3.89232 q^{36} +1.00000 q^{37} +1.60206 q^{38} +16.0223 q^{39} -0.193259 q^{41} -1.55473 q^{42} +9.21747 q^{43} +1.65862 q^{44} +4.93201 q^{46} +3.18723 q^{47} -5.25881 q^{48} -5.48048 q^{49} +5.79402 q^{51} +11.8373 q^{52} +1.28828 q^{53} -0.894839 q^{54} -2.50051 q^{56} +6.72011 q^{57} +0.377133 q^{58} +12.2588 q^{59} -3.67468 q^{61} -3.62342 q^{62} -2.82349 q^{63} -1.66057 q^{64} -1.23104 q^{66} +8.16762 q^{67} +4.28061 q^{68} +20.6881 q^{69} -2.82331 q^{71} +4.64630 q^{72} +0.837276 q^{73} -0.548343 q^{74} +4.96481 q^{76} +1.20316 q^{77} -8.78573 q^{78} +3.44333 q^{79} -10.6251 q^{81} +0.105972 q^{82} +4.66960 q^{83} -4.81812 q^{84} -5.05434 q^{86} +1.58194 q^{87} -1.97991 q^{88} -6.74431 q^{89} +8.58676 q^{91} +15.2843 q^{92} -15.1990 q^{93} -1.74770 q^{94} +12.2152 q^{96} +2.21791 q^{97} +3.00518 q^{98} -2.23565 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} - q^{3} + 7 q^{4} + 6 q^{6} + 10 q^{9} + 16 q^{11} + 11 q^{12} - q^{13} - 3 q^{14} + 3 q^{16} + 4 q^{17} - 23 q^{18} + 9 q^{19} + 2 q^{21} + q^{22} - q^{23} + 24 q^{26} - q^{27} + 7 q^{28}+ \cdots + 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.548343 −0.387737 −0.193869 0.981027i \(-0.562104\pi\)
−0.193869 + 0.981027i \(0.562104\pi\)
\(3\) −2.30011 −1.32797 −0.663985 0.747746i \(-0.731136\pi\)
−0.663985 + 0.747746i \(0.731136\pi\)
\(4\) −1.69932 −0.849660
\(5\) 0 0
\(6\) 1.26125 0.514904
\(7\) −1.23269 −0.465912 −0.232956 0.972487i \(-0.574840\pi\)
−0.232956 + 0.972487i \(0.574840\pi\)
\(8\) 2.02850 0.717182
\(9\) 2.29051 0.763505
\(10\) 0 0
\(11\) −0.976048 −0.294290 −0.147145 0.989115i \(-0.547008\pi\)
−0.147145 + 0.989115i \(0.547008\pi\)
\(12\) 3.90863 1.12832
\(13\) −6.96588 −1.93199 −0.965994 0.258564i \(-0.916751\pi\)
−0.965994 + 0.258564i \(0.916751\pi\)
\(14\) 0.675937 0.180652
\(15\) 0 0
\(16\) 2.28633 0.571582
\(17\) −2.51901 −0.610951 −0.305475 0.952200i \(-0.598815\pi\)
−0.305475 + 0.952200i \(0.598815\pi\)
\(18\) −1.25599 −0.296039
\(19\) −2.92164 −0.670271 −0.335136 0.942170i \(-0.608782\pi\)
−0.335136 + 0.942170i \(0.608782\pi\)
\(20\) 0 0
\(21\) 2.83532 0.618718
\(22\) 0.535210 0.114107
\(23\) −8.99438 −1.87546 −0.937729 0.347368i \(-0.887075\pi\)
−0.937729 + 0.347368i \(0.887075\pi\)
\(24\) −4.66577 −0.952396
\(25\) 0 0
\(26\) 3.81970 0.749104
\(27\) 1.63190 0.314059
\(28\) 2.09473 0.395867
\(29\) −0.687767 −0.127715 −0.0638576 0.997959i \(-0.520340\pi\)
−0.0638576 + 0.997959i \(0.520340\pi\)
\(30\) 0 0
\(31\) 6.60794 1.18682 0.593411 0.804900i \(-0.297781\pi\)
0.593411 + 0.804900i \(0.297781\pi\)
\(32\) −5.31069 −0.938806
\(33\) 2.24502 0.390808
\(34\) 1.38128 0.236888
\(35\) 0 0
\(36\) −3.89232 −0.648719
\(37\) 1.00000 0.164399
\(38\) 1.60206 0.259889
\(39\) 16.0223 2.56562
\(40\) 0 0
\(41\) −0.193259 −0.0301820 −0.0150910 0.999886i \(-0.504804\pi\)
−0.0150910 + 0.999886i \(0.504804\pi\)
\(42\) −1.55473 −0.239900
\(43\) 9.21747 1.40565 0.702826 0.711362i \(-0.251921\pi\)
0.702826 + 0.711362i \(0.251921\pi\)
\(44\) 1.65862 0.250046
\(45\) 0 0
\(46\) 4.93201 0.727185
\(47\) 3.18723 0.464905 0.232453 0.972608i \(-0.425325\pi\)
0.232453 + 0.972608i \(0.425325\pi\)
\(48\) −5.25881 −0.759043
\(49\) −5.48048 −0.782926
\(50\) 0 0
\(51\) 5.79402 0.811324
\(52\) 11.8373 1.64153
\(53\) 1.28828 0.176959 0.0884795 0.996078i \(-0.471799\pi\)
0.0884795 + 0.996078i \(0.471799\pi\)
\(54\) −0.894839 −0.121772
\(55\) 0 0
\(56\) −2.50051 −0.334144
\(57\) 6.72011 0.890100
\(58\) 0.377133 0.0495199
\(59\) 12.2588 1.59596 0.797978 0.602686i \(-0.205903\pi\)
0.797978 + 0.602686i \(0.205903\pi\)
\(60\) 0 0
\(61\) −3.67468 −0.470495 −0.235247 0.971936i \(-0.575590\pi\)
−0.235247 + 0.971936i \(0.575590\pi\)
\(62\) −3.62342 −0.460175
\(63\) −2.82349 −0.355726
\(64\) −1.66057 −0.207572
\(65\) 0 0
\(66\) −1.23104 −0.151531
\(67\) 8.16762 0.997833 0.498917 0.866650i \(-0.333731\pi\)
0.498917 + 0.866650i \(0.333731\pi\)
\(68\) 4.28061 0.519100
\(69\) 20.6881 2.49055
\(70\) 0 0
\(71\) −2.82331 −0.335066 −0.167533 0.985866i \(-0.553580\pi\)
−0.167533 + 0.985866i \(0.553580\pi\)
\(72\) 4.64630 0.547572
\(73\) 0.837276 0.0979958 0.0489979 0.998799i \(-0.484397\pi\)
0.0489979 + 0.998799i \(0.484397\pi\)
\(74\) −0.548343 −0.0637436
\(75\) 0 0
\(76\) 4.96481 0.569503
\(77\) 1.20316 0.137113
\(78\) −8.78573 −0.994788
\(79\) 3.44333 0.387405 0.193703 0.981060i \(-0.437950\pi\)
0.193703 + 0.981060i \(0.437950\pi\)
\(80\) 0 0
\(81\) −10.6251 −1.18057
\(82\) 0.105972 0.0117027
\(83\) 4.66960 0.512555 0.256278 0.966603i \(-0.417504\pi\)
0.256278 + 0.966603i \(0.417504\pi\)
\(84\) −4.81812 −0.525700
\(85\) 0 0
\(86\) −5.05434 −0.545023
\(87\) 1.58194 0.169602
\(88\) −1.97991 −0.211059
\(89\) −6.74431 −0.714895 −0.357448 0.933933i \(-0.616353\pi\)
−0.357448 + 0.933933i \(0.616353\pi\)
\(90\) 0 0
\(91\) 8.58676 0.900137
\(92\) 15.2843 1.59350
\(93\) −15.1990 −1.57606
\(94\) −1.74770 −0.180261
\(95\) 0 0
\(96\) 12.2152 1.24671
\(97\) 2.21791 0.225195 0.112597 0.993641i \(-0.464083\pi\)
0.112597 + 0.993641i \(0.464083\pi\)
\(98\) 3.00518 0.303569
\(99\) −2.23565 −0.224692
\(100\) 0 0
\(101\) 4.83925 0.481523 0.240762 0.970584i \(-0.422603\pi\)
0.240762 + 0.970584i \(0.422603\pi\)
\(102\) −3.17711 −0.314581
\(103\) 8.95741 0.882600 0.441300 0.897360i \(-0.354517\pi\)
0.441300 + 0.897360i \(0.354517\pi\)
\(104\) −14.1303 −1.38559
\(105\) 0 0
\(106\) −0.706420 −0.0686136
\(107\) −15.6463 −1.51259 −0.756293 0.654233i \(-0.772992\pi\)
−0.756293 + 0.654233i \(0.772992\pi\)
\(108\) −2.77311 −0.266843
\(109\) −12.4852 −1.19586 −0.597931 0.801548i \(-0.704010\pi\)
−0.597931 + 0.801548i \(0.704010\pi\)
\(110\) 0 0
\(111\) −2.30011 −0.218317
\(112\) −2.81833 −0.266307
\(113\) 19.4522 1.82991 0.914953 0.403561i \(-0.132228\pi\)
0.914953 + 0.403561i \(0.132228\pi\)
\(114\) −3.68493 −0.345125
\(115\) 0 0
\(116\) 1.16874 0.108514
\(117\) −15.9555 −1.47508
\(118\) −6.72202 −0.618812
\(119\) 3.10516 0.284650
\(120\) 0 0
\(121\) −10.0473 −0.913394
\(122\) 2.01499 0.182428
\(123\) 0.444518 0.0400808
\(124\) −11.2290 −1.00839
\(125\) 0 0
\(126\) 1.54824 0.137928
\(127\) −5.25778 −0.466553 −0.233276 0.972410i \(-0.574945\pi\)
−0.233276 + 0.972410i \(0.574945\pi\)
\(128\) 11.5319 1.01929
\(129\) −21.2012 −1.86666
\(130\) 0 0
\(131\) 15.2972 1.33653 0.668263 0.743926i \(-0.267038\pi\)
0.668263 + 0.743926i \(0.267038\pi\)
\(132\) −3.81501 −0.332054
\(133\) 3.60148 0.312288
\(134\) −4.47866 −0.386897
\(135\) 0 0
\(136\) −5.10981 −0.438163
\(137\) −3.28024 −0.280249 −0.140125 0.990134i \(-0.544750\pi\)
−0.140125 + 0.990134i \(0.544750\pi\)
\(138\) −11.3442 −0.965680
\(139\) 0.561230 0.0476029 0.0238015 0.999717i \(-0.492423\pi\)
0.0238015 + 0.999717i \(0.492423\pi\)
\(140\) 0 0
\(141\) −7.33099 −0.617380
\(142\) 1.54815 0.129918
\(143\) 6.79904 0.568564
\(144\) 5.23686 0.436405
\(145\) 0 0
\(146\) −0.459115 −0.0379966
\(147\) 12.6057 1.03970
\(148\) −1.69932 −0.139683
\(149\) 12.7327 1.04311 0.521553 0.853219i \(-0.325353\pi\)
0.521553 + 0.853219i \(0.325353\pi\)
\(150\) 0 0
\(151\) −18.1594 −1.47779 −0.738894 0.673822i \(-0.764651\pi\)
−0.738894 + 0.673822i \(0.764651\pi\)
\(152\) −5.92655 −0.480707
\(153\) −5.76984 −0.466464
\(154\) −0.659747 −0.0531639
\(155\) 0 0
\(156\) −27.2270 −2.17991
\(157\) −12.5146 −0.998777 −0.499388 0.866378i \(-0.666442\pi\)
−0.499388 + 0.866378i \(0.666442\pi\)
\(158\) −1.88813 −0.150211
\(159\) −2.96319 −0.234996
\(160\) 0 0
\(161\) 11.0873 0.873799
\(162\) 5.82620 0.457749
\(163\) −8.40802 −0.658567 −0.329284 0.944231i \(-0.606807\pi\)
−0.329284 + 0.944231i \(0.606807\pi\)
\(164\) 0.328409 0.0256444
\(165\) 0 0
\(166\) −2.56055 −0.198737
\(167\) 11.9553 0.925130 0.462565 0.886585i \(-0.346929\pi\)
0.462565 + 0.886585i \(0.346929\pi\)
\(168\) 5.75144 0.443733
\(169\) 35.5235 2.73258
\(170\) 0 0
\(171\) −6.69207 −0.511755
\(172\) −15.6634 −1.19433
\(173\) 21.6980 1.64967 0.824834 0.565375i \(-0.191268\pi\)
0.824834 + 0.565375i \(0.191268\pi\)
\(174\) −0.867447 −0.0657610
\(175\) 0 0
\(176\) −2.23156 −0.168211
\(177\) −28.1966 −2.11938
\(178\) 3.69820 0.277192
\(179\) −3.99480 −0.298586 −0.149293 0.988793i \(-0.547700\pi\)
−0.149293 + 0.988793i \(0.547700\pi\)
\(180\) 0 0
\(181\) 17.2016 1.27859 0.639293 0.768964i \(-0.279227\pi\)
0.639293 + 0.768964i \(0.279227\pi\)
\(182\) −4.70849 −0.349017
\(183\) 8.45218 0.624803
\(184\) −18.2451 −1.34504
\(185\) 0 0
\(186\) 8.33428 0.611099
\(187\) 2.45868 0.179797
\(188\) −5.41612 −0.395011
\(189\) −2.01162 −0.146324
\(190\) 0 0
\(191\) −20.4730 −1.48137 −0.740686 0.671852i \(-0.765499\pi\)
−0.740686 + 0.671852i \(0.765499\pi\)
\(192\) 3.81950 0.275649
\(193\) −20.4667 −1.47322 −0.736611 0.676317i \(-0.763575\pi\)
−0.736611 + 0.676317i \(0.763575\pi\)
\(194\) −1.21618 −0.0873164
\(195\) 0 0
\(196\) 9.31309 0.665220
\(197\) −17.1879 −1.22459 −0.612294 0.790630i \(-0.709753\pi\)
−0.612294 + 0.790630i \(0.709753\pi\)
\(198\) 1.22591 0.0871213
\(199\) −12.8818 −0.913164 −0.456582 0.889681i \(-0.650926\pi\)
−0.456582 + 0.889681i \(0.650926\pi\)
\(200\) 0 0
\(201\) −18.7864 −1.32509
\(202\) −2.65357 −0.186704
\(203\) 0.847803 0.0595041
\(204\) −9.84588 −0.689350
\(205\) 0 0
\(206\) −4.91174 −0.342217
\(207\) −20.6018 −1.43192
\(208\) −15.9263 −1.10429
\(209\) 2.85167 0.197254
\(210\) 0 0
\(211\) 14.6270 1.00697 0.503484 0.864005i \(-0.332051\pi\)
0.503484 + 0.864005i \(0.332051\pi\)
\(212\) −2.18920 −0.150355
\(213\) 6.49394 0.444957
\(214\) 8.57955 0.586486
\(215\) 0 0
\(216\) 3.31030 0.225237
\(217\) −8.14554 −0.552955
\(218\) 6.84615 0.463680
\(219\) −1.92583 −0.130135
\(220\) 0 0
\(221\) 17.5472 1.18035
\(222\) 1.26125 0.0846496
\(223\) 3.59602 0.240807 0.120404 0.992725i \(-0.461581\pi\)
0.120404 + 0.992725i \(0.461581\pi\)
\(224\) 6.54642 0.437401
\(225\) 0 0
\(226\) −10.6665 −0.709523
\(227\) 21.7284 1.44217 0.721084 0.692848i \(-0.243644\pi\)
0.721084 + 0.692848i \(0.243644\pi\)
\(228\) −11.4196 −0.756282
\(229\) −14.6078 −0.965314 −0.482657 0.875809i \(-0.660328\pi\)
−0.482657 + 0.875809i \(0.660328\pi\)
\(230\) 0 0
\(231\) −2.76741 −0.182082
\(232\) −1.39513 −0.0915950
\(233\) 18.5161 1.21303 0.606517 0.795071i \(-0.292566\pi\)
0.606517 + 0.795071i \(0.292566\pi\)
\(234\) 8.74907 0.571944
\(235\) 0 0
\(236\) −20.8316 −1.35602
\(237\) −7.92005 −0.514462
\(238\) −1.70269 −0.110369
\(239\) 18.0845 1.16979 0.584896 0.811109i \(-0.301136\pi\)
0.584896 + 0.811109i \(0.301136\pi\)
\(240\) 0 0
\(241\) −12.4643 −0.802899 −0.401449 0.915881i \(-0.631493\pi\)
−0.401449 + 0.915881i \(0.631493\pi\)
\(242\) 5.50939 0.354157
\(243\) 19.5432 1.25370
\(244\) 6.24446 0.399761
\(245\) 0 0
\(246\) −0.243748 −0.0155408
\(247\) 20.3518 1.29496
\(248\) 13.4042 0.851167
\(249\) −10.7406 −0.680658
\(250\) 0 0
\(251\) 4.32919 0.273256 0.136628 0.990622i \(-0.456373\pi\)
0.136628 + 0.990622i \(0.456373\pi\)
\(252\) 4.79801 0.302246
\(253\) 8.77895 0.551928
\(254\) 2.88307 0.180900
\(255\) 0 0
\(256\) −3.00231 −0.187645
\(257\) −16.4633 −1.02695 −0.513475 0.858105i \(-0.671642\pi\)
−0.513475 + 0.858105i \(0.671642\pi\)
\(258\) 11.6255 0.723775
\(259\) −1.23269 −0.0765955
\(260\) 0 0
\(261\) −1.57534 −0.0975111
\(262\) −8.38813 −0.518221
\(263\) −19.3023 −1.19023 −0.595116 0.803640i \(-0.702894\pi\)
−0.595116 + 0.803640i \(0.702894\pi\)
\(264\) 4.55402 0.280280
\(265\) 0 0
\(266\) −1.97485 −0.121086
\(267\) 15.5127 0.949359
\(268\) −13.8794 −0.847819
\(269\) −9.62970 −0.587133 −0.293567 0.955939i \(-0.594842\pi\)
−0.293567 + 0.955939i \(0.594842\pi\)
\(270\) 0 0
\(271\) −3.65132 −0.221802 −0.110901 0.993831i \(-0.535374\pi\)
−0.110901 + 0.993831i \(0.535374\pi\)
\(272\) −5.75929 −0.349208
\(273\) −19.7505 −1.19536
\(274\) 1.79870 0.108663
\(275\) 0 0
\(276\) −35.1557 −2.11612
\(277\) 25.0654 1.50603 0.753017 0.658002i \(-0.228598\pi\)
0.753017 + 0.658002i \(0.228598\pi\)
\(278\) −0.307747 −0.0184574
\(279\) 15.1356 0.906144
\(280\) 0 0
\(281\) 11.5359 0.688177 0.344089 0.938937i \(-0.388188\pi\)
0.344089 + 0.938937i \(0.388188\pi\)
\(282\) 4.01990 0.239381
\(283\) 30.7318 1.82682 0.913408 0.407045i \(-0.133441\pi\)
0.913408 + 0.407045i \(0.133441\pi\)
\(284\) 4.79771 0.284692
\(285\) 0 0
\(286\) −3.72821 −0.220454
\(287\) 0.238228 0.0140622
\(288\) −12.1642 −0.716783
\(289\) −10.6546 −0.626739
\(290\) 0 0
\(291\) −5.10144 −0.299052
\(292\) −1.42280 −0.0832631
\(293\) 16.2157 0.947332 0.473666 0.880705i \(-0.342930\pi\)
0.473666 + 0.880705i \(0.342930\pi\)
\(294\) −6.91226 −0.403131
\(295\) 0 0
\(296\) 2.02850 0.117904
\(297\) −1.59281 −0.0924242
\(298\) −6.98190 −0.404451
\(299\) 62.6538 3.62336
\(300\) 0 0
\(301\) −11.3623 −0.654910
\(302\) 9.95756 0.572993
\(303\) −11.1308 −0.639448
\(304\) −6.67983 −0.383115
\(305\) 0 0
\(306\) 3.16385 0.180865
\(307\) 0.434062 0.0247732 0.0123866 0.999923i \(-0.496057\pi\)
0.0123866 + 0.999923i \(0.496057\pi\)
\(308\) −2.04456 −0.116500
\(309\) −20.6030 −1.17207
\(310\) 0 0
\(311\) −21.0126 −1.19151 −0.595756 0.803165i \(-0.703148\pi\)
−0.595756 + 0.803165i \(0.703148\pi\)
\(312\) 32.5012 1.84002
\(313\) 2.16272 0.122244 0.0611222 0.998130i \(-0.480532\pi\)
0.0611222 + 0.998130i \(0.480532\pi\)
\(314\) 6.86232 0.387263
\(315\) 0 0
\(316\) −5.85132 −0.329162
\(317\) −28.3991 −1.59505 −0.797526 0.603284i \(-0.793858\pi\)
−0.797526 + 0.603284i \(0.793858\pi\)
\(318\) 1.62485 0.0911168
\(319\) 0.671294 0.0375853
\(320\) 0 0
\(321\) 35.9883 2.00867
\(322\) −6.07963 −0.338805
\(323\) 7.35967 0.409503
\(324\) 18.0554 1.00308
\(325\) 0 0
\(326\) 4.61048 0.255351
\(327\) 28.7173 1.58807
\(328\) −0.392026 −0.0216460
\(329\) −3.92886 −0.216605
\(330\) 0 0
\(331\) 16.2418 0.892728 0.446364 0.894851i \(-0.352719\pi\)
0.446364 + 0.894851i \(0.352719\pi\)
\(332\) −7.93515 −0.435498
\(333\) 2.29051 0.125519
\(334\) −6.55561 −0.358707
\(335\) 0 0
\(336\) 6.48247 0.353648
\(337\) −11.0000 −0.599207 −0.299604 0.954064i \(-0.596854\pi\)
−0.299604 + 0.954064i \(0.596854\pi\)
\(338\) −19.4791 −1.05952
\(339\) −44.7422 −2.43006
\(340\) 0 0
\(341\) −6.44967 −0.349269
\(342\) 3.66955 0.198427
\(343\) 15.3845 0.830687
\(344\) 18.6976 1.00811
\(345\) 0 0
\(346\) −11.8980 −0.639638
\(347\) 8.15833 0.437962 0.218981 0.975729i \(-0.429727\pi\)
0.218981 + 0.975729i \(0.429727\pi\)
\(348\) −2.68822 −0.144104
\(349\) −28.2422 −1.51177 −0.755886 0.654704i \(-0.772793\pi\)
−0.755886 + 0.654704i \(0.772793\pi\)
\(350\) 0 0
\(351\) −11.3676 −0.606757
\(352\) 5.18349 0.276281
\(353\) 1.95167 0.103877 0.0519385 0.998650i \(-0.483460\pi\)
0.0519385 + 0.998650i \(0.483460\pi\)
\(354\) 15.4614 0.821764
\(355\) 0 0
\(356\) 11.4607 0.607418
\(357\) −7.14222 −0.378006
\(358\) 2.19052 0.115773
\(359\) 25.2874 1.33462 0.667310 0.744780i \(-0.267446\pi\)
0.667310 + 0.744780i \(0.267446\pi\)
\(360\) 0 0
\(361\) −10.4640 −0.550736
\(362\) −9.43239 −0.495755
\(363\) 23.1100 1.21296
\(364\) −14.5917 −0.764811
\(365\) 0 0
\(366\) −4.63470 −0.242259
\(367\) 7.03397 0.367170 0.183585 0.983004i \(-0.441230\pi\)
0.183585 + 0.983004i \(0.441230\pi\)
\(368\) −20.5641 −1.07198
\(369\) −0.442663 −0.0230441
\(370\) 0 0
\(371\) −1.58805 −0.0824474
\(372\) 25.8280 1.33912
\(373\) 25.0922 1.29923 0.649613 0.760265i \(-0.274931\pi\)
0.649613 + 0.760265i \(0.274931\pi\)
\(374\) −1.34820 −0.0697138
\(375\) 0 0
\(376\) 6.46529 0.333422
\(377\) 4.79091 0.246744
\(378\) 1.10306 0.0567352
\(379\) −18.9929 −0.975601 −0.487801 0.872955i \(-0.662201\pi\)
−0.487801 + 0.872955i \(0.662201\pi\)
\(380\) 0 0
\(381\) 12.0935 0.619568
\(382\) 11.2262 0.574383
\(383\) −30.2394 −1.54516 −0.772580 0.634918i \(-0.781034\pi\)
−0.772580 + 0.634918i \(0.781034\pi\)
\(384\) −26.5247 −1.35359
\(385\) 0 0
\(386\) 11.2228 0.571223
\(387\) 21.1127 1.07322
\(388\) −3.76894 −0.191339
\(389\) −20.8628 −1.05779 −0.528894 0.848688i \(-0.677393\pi\)
−0.528894 + 0.848688i \(0.677393\pi\)
\(390\) 0 0
\(391\) 22.6570 1.14581
\(392\) −11.1171 −0.561500
\(393\) −35.1853 −1.77487
\(394\) 9.42488 0.474819
\(395\) 0 0
\(396\) 3.79909 0.190911
\(397\) −28.4743 −1.42908 −0.714541 0.699593i \(-0.753365\pi\)
−0.714541 + 0.699593i \(0.753365\pi\)
\(398\) 7.06363 0.354068
\(399\) −8.28380 −0.414709
\(400\) 0 0
\(401\) −26.5071 −1.32370 −0.661851 0.749636i \(-0.730229\pi\)
−0.661851 + 0.749636i \(0.730229\pi\)
\(402\) 10.3014 0.513788
\(403\) −46.0302 −2.29293
\(404\) −8.22343 −0.409131
\(405\) 0 0
\(406\) −0.464887 −0.0230720
\(407\) −0.976048 −0.0483809
\(408\) 11.7531 0.581867
\(409\) 7.94050 0.392632 0.196316 0.980541i \(-0.437102\pi\)
0.196316 + 0.980541i \(0.437102\pi\)
\(410\) 0 0
\(411\) 7.54491 0.372163
\(412\) −15.2215 −0.749910
\(413\) −15.1113 −0.743576
\(414\) 11.2968 0.555209
\(415\) 0 0
\(416\) 36.9936 1.81376
\(417\) −1.29089 −0.0632153
\(418\) −1.56369 −0.0764827
\(419\) 31.9064 1.55873 0.779366 0.626569i \(-0.215541\pi\)
0.779366 + 0.626569i \(0.215541\pi\)
\(420\) 0 0
\(421\) 11.0436 0.538232 0.269116 0.963108i \(-0.413268\pi\)
0.269116 + 0.963108i \(0.413268\pi\)
\(422\) −8.02064 −0.390439
\(423\) 7.30040 0.354957
\(424\) 2.61327 0.126912
\(425\) 0 0
\(426\) −3.56091 −0.172527
\(427\) 4.52974 0.219209
\(428\) 26.5881 1.28518
\(429\) −15.6385 −0.755036
\(430\) 0 0
\(431\) 40.0005 1.92676 0.963379 0.268143i \(-0.0864100\pi\)
0.963379 + 0.268143i \(0.0864100\pi\)
\(432\) 3.73105 0.179510
\(433\) −3.42091 −0.164398 −0.0821992 0.996616i \(-0.526194\pi\)
−0.0821992 + 0.996616i \(0.526194\pi\)
\(434\) 4.46655 0.214401
\(435\) 0 0
\(436\) 21.2163 1.01608
\(437\) 26.2784 1.25707
\(438\) 1.05602 0.0504584
\(439\) 1.87199 0.0893451 0.0446725 0.999002i \(-0.485776\pi\)
0.0446725 + 0.999002i \(0.485776\pi\)
\(440\) 0 0
\(441\) −12.5531 −0.597767
\(442\) −9.62187 −0.457666
\(443\) −39.0684 −1.85620 −0.928098 0.372335i \(-0.878557\pi\)
−0.928098 + 0.372335i \(0.878557\pi\)
\(444\) 3.90863 0.185495
\(445\) 0 0
\(446\) −1.97185 −0.0933700
\(447\) −29.2867 −1.38521
\(448\) 2.04697 0.0967102
\(449\) 27.7382 1.30905 0.654523 0.756042i \(-0.272870\pi\)
0.654523 + 0.756042i \(0.272870\pi\)
\(450\) 0 0
\(451\) 0.188630 0.00888225
\(452\) −33.0554 −1.55480
\(453\) 41.7685 1.96246
\(454\) −11.9146 −0.559182
\(455\) 0 0
\(456\) 13.6317 0.638364
\(457\) 3.94335 0.184462 0.0922310 0.995738i \(-0.470600\pi\)
0.0922310 + 0.995738i \(0.470600\pi\)
\(458\) 8.01012 0.374288
\(459\) −4.11077 −0.191874
\(460\) 0 0
\(461\) 31.1870 1.45252 0.726261 0.687419i \(-0.241256\pi\)
0.726261 + 0.687419i \(0.241256\pi\)
\(462\) 1.51749 0.0706001
\(463\) −29.8007 −1.38496 −0.692478 0.721439i \(-0.743481\pi\)
−0.692478 + 0.721439i \(0.743481\pi\)
\(464\) −1.57246 −0.0729996
\(465\) 0 0
\(466\) −10.1532 −0.470338
\(467\) 17.4785 0.808807 0.404404 0.914581i \(-0.367479\pi\)
0.404404 + 0.914581i \(0.367479\pi\)
\(468\) 27.1134 1.25332
\(469\) −10.0681 −0.464903
\(470\) 0 0
\(471\) 28.7851 1.32635
\(472\) 24.8669 1.14459
\(473\) −8.99670 −0.413669
\(474\) 4.34291 0.199476
\(475\) 0 0
\(476\) −5.27666 −0.241855
\(477\) 2.95083 0.135109
\(478\) −9.91653 −0.453572
\(479\) −4.30979 −0.196919 −0.0984597 0.995141i \(-0.531392\pi\)
−0.0984597 + 0.995141i \(0.531392\pi\)
\(480\) 0 0
\(481\) −6.96588 −0.317617
\(482\) 6.83474 0.311314
\(483\) −25.5020 −1.16038
\(484\) 17.0736 0.776074
\(485\) 0 0
\(486\) −10.7164 −0.486105
\(487\) 38.1250 1.72761 0.863804 0.503829i \(-0.168076\pi\)
0.863804 + 0.503829i \(0.168076\pi\)
\(488\) −7.45408 −0.337430
\(489\) 19.3394 0.874558
\(490\) 0 0
\(491\) 36.0217 1.62564 0.812818 0.582517i \(-0.197932\pi\)
0.812818 + 0.582517i \(0.197932\pi\)
\(492\) −0.755377 −0.0340550
\(493\) 1.73250 0.0780277
\(494\) −11.1598 −0.502103
\(495\) 0 0
\(496\) 15.1079 0.678366
\(497\) 3.48027 0.156111
\(498\) 5.88954 0.263917
\(499\) 20.1879 0.903733 0.451867 0.892085i \(-0.350758\pi\)
0.451867 + 0.892085i \(0.350758\pi\)
\(500\) 0 0
\(501\) −27.4985 −1.22854
\(502\) −2.37388 −0.105952
\(503\) 3.01511 0.134437 0.0672185 0.997738i \(-0.478588\pi\)
0.0672185 + 0.997738i \(0.478588\pi\)
\(504\) −5.72744 −0.255121
\(505\) 0 0
\(506\) −4.81388 −0.214003
\(507\) −81.7081 −3.62878
\(508\) 8.93465 0.396411
\(509\) 24.8656 1.10215 0.551073 0.834457i \(-0.314218\pi\)
0.551073 + 0.834457i \(0.314218\pi\)
\(510\) 0 0
\(511\) −1.03210 −0.0456575
\(512\) −21.4176 −0.946532
\(513\) −4.76782 −0.210504
\(514\) 9.02752 0.398187
\(515\) 0 0
\(516\) 36.0276 1.58603
\(517\) −3.11089 −0.136817
\(518\) 0.675937 0.0296989
\(519\) −49.9078 −2.19071
\(520\) 0 0
\(521\) 38.3050 1.67817 0.839085 0.544000i \(-0.183091\pi\)
0.839085 + 0.544000i \(0.183091\pi\)
\(522\) 0.863828 0.0378087
\(523\) 3.02688 0.132356 0.0661781 0.997808i \(-0.478919\pi\)
0.0661781 + 0.997808i \(0.478919\pi\)
\(524\) −25.9949 −1.13559
\(525\) 0 0
\(526\) 10.5843 0.461497
\(527\) −16.6455 −0.725090
\(528\) 5.13285 0.223379
\(529\) 57.8989 2.51734
\(530\) 0 0
\(531\) 28.0789 1.21852
\(532\) −6.12006 −0.265338
\(533\) 1.34622 0.0583113
\(534\) −8.50626 −0.368102
\(535\) 0 0
\(536\) 16.5680 0.715628
\(537\) 9.18850 0.396513
\(538\) 5.28038 0.227653
\(539\) 5.34921 0.230407
\(540\) 0 0
\(541\) −26.8271 −1.15339 −0.576693 0.816961i \(-0.695657\pi\)
−0.576693 + 0.816961i \(0.695657\pi\)
\(542\) 2.00218 0.0860008
\(543\) −39.5656 −1.69792
\(544\) 13.3777 0.573564
\(545\) 0 0
\(546\) 10.8301 0.463484
\(547\) −28.1420 −1.20326 −0.601632 0.798773i \(-0.705483\pi\)
−0.601632 + 0.798773i \(0.705483\pi\)
\(548\) 5.57417 0.238117
\(549\) −8.41691 −0.359225
\(550\) 0 0
\(551\) 2.00941 0.0856038
\(552\) 41.9657 1.78618
\(553\) −4.24455 −0.180497
\(554\) −13.7444 −0.583945
\(555\) 0 0
\(556\) −0.953710 −0.0404463
\(557\) 16.3022 0.690748 0.345374 0.938465i \(-0.387752\pi\)
0.345374 + 0.938465i \(0.387752\pi\)
\(558\) −8.29950 −0.351346
\(559\) −64.2078 −2.71570
\(560\) 0 0
\(561\) −5.65524 −0.238764
\(562\) −6.32566 −0.266832
\(563\) 10.0364 0.422985 0.211492 0.977380i \(-0.432168\pi\)
0.211492 + 0.977380i \(0.432168\pi\)
\(564\) 12.4577 0.524563
\(565\) 0 0
\(566\) −16.8516 −0.708325
\(567\) 13.0974 0.550040
\(568\) −5.72709 −0.240303
\(569\) −4.06296 −0.170328 −0.0851640 0.996367i \(-0.527141\pi\)
−0.0851640 + 0.996367i \(0.527141\pi\)
\(570\) 0 0
\(571\) −30.9715 −1.29612 −0.648058 0.761591i \(-0.724418\pi\)
−0.648058 + 0.761591i \(0.724418\pi\)
\(572\) −11.5537 −0.483086
\(573\) 47.0901 1.96722
\(574\) −0.130631 −0.00545243
\(575\) 0 0
\(576\) −3.80357 −0.158482
\(577\) −1.38260 −0.0575583 −0.0287792 0.999586i \(-0.509162\pi\)
−0.0287792 + 0.999586i \(0.509162\pi\)
\(578\) 5.84236 0.243010
\(579\) 47.0756 1.95639
\(580\) 0 0
\(581\) −5.75616 −0.238806
\(582\) 2.79734 0.115954
\(583\) −1.25742 −0.0520772
\(584\) 1.69841 0.0702808
\(585\) 0 0
\(586\) −8.89178 −0.367316
\(587\) 20.3736 0.840907 0.420453 0.907314i \(-0.361871\pi\)
0.420453 + 0.907314i \(0.361871\pi\)
\(588\) −21.4211 −0.883393
\(589\) −19.3061 −0.795493
\(590\) 0 0
\(591\) 39.5341 1.62622
\(592\) 2.28633 0.0939674
\(593\) 28.4271 1.16736 0.583681 0.811983i \(-0.301612\pi\)
0.583681 + 0.811983i \(0.301612\pi\)
\(594\) 0.873407 0.0358363
\(595\) 0 0
\(596\) −21.6370 −0.886284
\(597\) 29.6295 1.21265
\(598\) −34.3558 −1.40491
\(599\) 4.99991 0.204291 0.102145 0.994769i \(-0.467429\pi\)
0.102145 + 0.994769i \(0.467429\pi\)
\(600\) 0 0
\(601\) −26.3404 −1.07445 −0.537223 0.843440i \(-0.680527\pi\)
−0.537223 + 0.843440i \(0.680527\pi\)
\(602\) 6.23043 0.253933
\(603\) 18.7080 0.761850
\(604\) 30.8585 1.25562
\(605\) 0 0
\(606\) 6.10350 0.247938
\(607\) 21.0686 0.855147 0.427573 0.903981i \(-0.359369\pi\)
0.427573 + 0.903981i \(0.359369\pi\)
\(608\) 15.5159 0.629254
\(609\) −1.95004 −0.0790197
\(610\) 0 0
\(611\) −22.2019 −0.898192
\(612\) 9.80480 0.396336
\(613\) −2.19848 −0.0887959 −0.0443980 0.999014i \(-0.514137\pi\)
−0.0443980 + 0.999014i \(0.514137\pi\)
\(614\) −0.238015 −0.00960551
\(615\) 0 0
\(616\) 2.44061 0.0983351
\(617\) 19.0587 0.767275 0.383638 0.923484i \(-0.374671\pi\)
0.383638 + 0.923484i \(0.374671\pi\)
\(618\) 11.2975 0.454454
\(619\) 26.9627 1.08372 0.541862 0.840467i \(-0.317720\pi\)
0.541862 + 0.840467i \(0.317720\pi\)
\(620\) 0 0
\(621\) −14.6779 −0.589004
\(622\) 11.5221 0.461994
\(623\) 8.31363 0.333079
\(624\) 36.6322 1.46646
\(625\) 0 0
\(626\) −1.18592 −0.0473987
\(627\) −6.55915 −0.261947
\(628\) 21.2664 0.848620
\(629\) −2.51901 −0.100440
\(630\) 0 0
\(631\) −32.6629 −1.30029 −0.650145 0.759810i \(-0.725292\pi\)
−0.650145 + 0.759810i \(0.725292\pi\)
\(632\) 6.98479 0.277840
\(633\) −33.6438 −1.33722
\(634\) 15.5725 0.618461
\(635\) 0 0
\(636\) 5.03541 0.199667
\(637\) 38.1764 1.51260
\(638\) −0.368100 −0.0145732
\(639\) −6.46684 −0.255824
\(640\) 0 0
\(641\) −33.9051 −1.33917 −0.669586 0.742735i \(-0.733528\pi\)
−0.669586 + 0.742735i \(0.733528\pi\)
\(642\) −19.7339 −0.778836
\(643\) −23.2105 −0.915331 −0.457666 0.889124i \(-0.651314\pi\)
−0.457666 + 0.889124i \(0.651314\pi\)
\(644\) −18.8408 −0.742432
\(645\) 0 0
\(646\) −4.03562 −0.158779
\(647\) 23.4822 0.923180 0.461590 0.887093i \(-0.347279\pi\)
0.461590 + 0.887093i \(0.347279\pi\)
\(648\) −21.5530 −0.846680
\(649\) −11.9652 −0.469674
\(650\) 0 0
\(651\) 18.7356 0.734308
\(652\) 14.2879 0.559558
\(653\) 6.98761 0.273446 0.136723 0.990609i \(-0.456343\pi\)
0.136723 + 0.990609i \(0.456343\pi\)
\(654\) −15.7469 −0.615753
\(655\) 0 0
\(656\) −0.441853 −0.0172515
\(657\) 1.91779 0.0748203
\(658\) 2.15437 0.0839859
\(659\) 13.4171 0.522656 0.261328 0.965250i \(-0.415840\pi\)
0.261328 + 0.965250i \(0.415840\pi\)
\(660\) 0 0
\(661\) 4.09587 0.159311 0.0796555 0.996822i \(-0.474618\pi\)
0.0796555 + 0.996822i \(0.474618\pi\)
\(662\) −8.90606 −0.346144
\(663\) −40.3604 −1.56747
\(664\) 9.47227 0.367596
\(665\) 0 0
\(666\) −1.25599 −0.0486686
\(667\) 6.18604 0.239524
\(668\) −20.3159 −0.786045
\(669\) −8.27125 −0.319785
\(670\) 0 0
\(671\) 3.58667 0.138462
\(672\) −15.0575 −0.580856
\(673\) 15.0709 0.580939 0.290469 0.956884i \(-0.406189\pi\)
0.290469 + 0.956884i \(0.406189\pi\)
\(674\) 6.03177 0.232335
\(675\) 0 0
\(676\) −60.3658 −2.32176
\(677\) −7.36551 −0.283080 −0.141540 0.989933i \(-0.545205\pi\)
−0.141540 + 0.989933i \(0.545205\pi\)
\(678\) 24.5341 0.942225
\(679\) −2.73399 −0.104921
\(680\) 0 0
\(681\) −49.9778 −1.91515
\(682\) 3.53664 0.135425
\(683\) −46.2794 −1.77083 −0.885415 0.464801i \(-0.846126\pi\)
−0.885415 + 0.464801i \(0.846126\pi\)
\(684\) 11.3720 0.434818
\(685\) 0 0
\(686\) −8.43601 −0.322088
\(687\) 33.5997 1.28191
\(688\) 21.0741 0.803444
\(689\) −8.97401 −0.341883
\(690\) 0 0
\(691\) 5.06739 0.192773 0.0963863 0.995344i \(-0.469272\pi\)
0.0963863 + 0.995344i \(0.469272\pi\)
\(692\) −36.8718 −1.40166
\(693\) 2.75586 0.104687
\(694\) −4.47357 −0.169814
\(695\) 0 0
\(696\) 3.20896 0.121635
\(697\) 0.486823 0.0184397
\(698\) 15.4864 0.586170
\(699\) −42.5892 −1.61087
\(700\) 0 0
\(701\) 20.9220 0.790213 0.395107 0.918635i \(-0.370708\pi\)
0.395107 + 0.918635i \(0.370708\pi\)
\(702\) 6.23335 0.235262
\(703\) −2.92164 −0.110192
\(704\) 1.62080 0.0610862
\(705\) 0 0
\(706\) −1.07019 −0.0402770
\(707\) −5.96528 −0.224348
\(708\) 47.9150 1.80075
\(709\) −11.5698 −0.434515 −0.217257 0.976114i \(-0.569711\pi\)
−0.217257 + 0.976114i \(0.569711\pi\)
\(710\) 0 0
\(711\) 7.88700 0.295786
\(712\) −13.6808 −0.512710
\(713\) −59.4344 −2.22583
\(714\) 3.91639 0.146567
\(715\) 0 0
\(716\) 6.78845 0.253696
\(717\) −41.5964 −1.55345
\(718\) −13.8662 −0.517482
\(719\) 20.2226 0.754176 0.377088 0.926177i \(-0.376925\pi\)
0.377088 + 0.926177i \(0.376925\pi\)
\(720\) 0 0
\(721\) −11.0417 −0.411214
\(722\) 5.73786 0.213541
\(723\) 28.6694 1.06623
\(724\) −29.2310 −1.08636
\(725\) 0 0
\(726\) −12.6722 −0.470310
\(727\) −33.7740 −1.25261 −0.626304 0.779579i \(-0.715433\pi\)
−0.626304 + 0.779579i \(0.715433\pi\)
\(728\) 17.4182 0.645562
\(729\) −13.0763 −0.484307
\(730\) 0 0
\(731\) −23.2189 −0.858784
\(732\) −14.3630 −0.530870
\(733\) −49.8177 −1.84006 −0.920030 0.391849i \(-0.871836\pi\)
−0.920030 + 0.391849i \(0.871836\pi\)
\(734\) −3.85703 −0.142366
\(735\) 0 0
\(736\) 47.7663 1.76069
\(737\) −7.97199 −0.293652
\(738\) 0.242731 0.00893506
\(739\) −6.25259 −0.230005 −0.115003 0.993365i \(-0.536688\pi\)
−0.115003 + 0.993365i \(0.536688\pi\)
\(740\) 0 0
\(741\) −46.8115 −1.71966
\(742\) 0.870796 0.0319679
\(743\) −0.401960 −0.0147465 −0.00737324 0.999973i \(-0.502347\pi\)
−0.00737324 + 0.999973i \(0.502347\pi\)
\(744\) −30.8312 −1.13032
\(745\) 0 0
\(746\) −13.7592 −0.503758
\(747\) 10.6958 0.391338
\(748\) −4.17808 −0.152766
\(749\) 19.2870 0.704733
\(750\) 0 0
\(751\) 48.4218 1.76694 0.883469 0.468490i \(-0.155202\pi\)
0.883469 + 0.468490i \(0.155202\pi\)
\(752\) 7.28705 0.265731
\(753\) −9.95763 −0.362876
\(754\) −2.62706 −0.0956719
\(755\) 0 0
\(756\) 3.41838 0.124325
\(757\) 16.3058 0.592643 0.296322 0.955088i \(-0.404240\pi\)
0.296322 + 0.955088i \(0.404240\pi\)
\(758\) 10.4146 0.378277
\(759\) −20.1926 −0.732944
\(760\) 0 0
\(761\) −37.6100 −1.36336 −0.681681 0.731650i \(-0.738751\pi\)
−0.681681 + 0.731650i \(0.738751\pi\)
\(762\) −6.63138 −0.240230
\(763\) 15.3903 0.557167
\(764\) 34.7901 1.25866
\(765\) 0 0
\(766\) 16.5816 0.599116
\(767\) −85.3932 −3.08337
\(768\) 6.90566 0.249187
\(769\) 35.9898 1.29783 0.648913 0.760863i \(-0.275224\pi\)
0.648913 + 0.760863i \(0.275224\pi\)
\(770\) 0 0
\(771\) 37.8673 1.36376
\(772\) 34.7794 1.25174
\(773\) 11.1521 0.401114 0.200557 0.979682i \(-0.435725\pi\)
0.200557 + 0.979682i \(0.435725\pi\)
\(774\) −11.5770 −0.416128
\(775\) 0 0
\(776\) 4.49903 0.161506
\(777\) 2.83532 0.101717
\(778\) 11.4400 0.410144
\(779\) 0.564634 0.0202301
\(780\) 0 0
\(781\) 2.75569 0.0986064
\(782\) −12.4238 −0.444274
\(783\) −1.12236 −0.0401100
\(784\) −12.5302 −0.447506
\(785\) 0 0
\(786\) 19.2936 0.688181
\(787\) −28.9665 −1.03254 −0.516271 0.856425i \(-0.672680\pi\)
−0.516271 + 0.856425i \(0.672680\pi\)
\(788\) 29.2078 1.04048
\(789\) 44.3975 1.58059
\(790\) 0 0
\(791\) −23.9785 −0.852576
\(792\) −4.53502 −0.161145
\(793\) 25.5974 0.908991
\(794\) 15.6137 0.554109
\(795\) 0 0
\(796\) 21.8902 0.775879
\(797\) 54.2642 1.92214 0.961068 0.276312i \(-0.0891122\pi\)
0.961068 + 0.276312i \(0.0891122\pi\)
\(798\) 4.54237 0.160798
\(799\) −8.02868 −0.284034
\(800\) 0 0
\(801\) −15.4479 −0.545826
\(802\) 14.5350 0.513249
\(803\) −0.817222 −0.0288391
\(804\) 31.9241 1.12588
\(805\) 0 0
\(806\) 25.2403 0.889053
\(807\) 22.1494 0.779695
\(808\) 9.81640 0.345340
\(809\) 16.1657 0.568355 0.284177 0.958772i \(-0.408280\pi\)
0.284177 + 0.958772i \(0.408280\pi\)
\(810\) 0 0
\(811\) −29.0693 −1.02076 −0.510381 0.859948i \(-0.670496\pi\)
−0.510381 + 0.859948i \(0.670496\pi\)
\(812\) −1.44069 −0.0505582
\(813\) 8.39844 0.294546
\(814\) 0.535210 0.0187591
\(815\) 0 0
\(816\) 13.2470 0.463738
\(817\) −26.9302 −0.942167
\(818\) −4.35412 −0.152238
\(819\) 19.6681 0.687259
\(820\) 0 0
\(821\) 30.7078 1.07171 0.535855 0.844310i \(-0.319990\pi\)
0.535855 + 0.844310i \(0.319990\pi\)
\(822\) −4.13720 −0.144301
\(823\) −3.08648 −0.107588 −0.0537940 0.998552i \(-0.517131\pi\)
−0.0537940 + 0.998552i \(0.517131\pi\)
\(824\) 18.1701 0.632985
\(825\) 0 0
\(826\) 8.28615 0.288312
\(827\) 37.0441 1.28815 0.644074 0.764963i \(-0.277243\pi\)
0.644074 + 0.764963i \(0.277243\pi\)
\(828\) 35.0090 1.21665
\(829\) −45.3315 −1.57443 −0.787215 0.616679i \(-0.788478\pi\)
−0.787215 + 0.616679i \(0.788478\pi\)
\(830\) 0 0
\(831\) −57.6532 −1.99997
\(832\) 11.5674 0.401026
\(833\) 13.8054 0.478329
\(834\) 0.707853 0.0245109
\(835\) 0 0
\(836\) −4.84589 −0.167599
\(837\) 10.7835 0.372732
\(838\) −17.4957 −0.604379
\(839\) −45.1775 −1.55970 −0.779850 0.625967i \(-0.784704\pi\)
−0.779850 + 0.625967i \(0.784704\pi\)
\(840\) 0 0
\(841\) −28.5270 −0.983689
\(842\) −6.05569 −0.208693
\(843\) −26.5340 −0.913879
\(844\) −24.8560 −0.855579
\(845\) 0 0
\(846\) −4.00312 −0.137630
\(847\) 12.3852 0.425561
\(848\) 2.94543 0.101147
\(849\) −70.6866 −2.42596
\(850\) 0 0
\(851\) −8.99438 −0.308323
\(852\) −11.0353 −0.378062
\(853\) 21.6482 0.741220 0.370610 0.928789i \(-0.379149\pi\)
0.370610 + 0.928789i \(0.379149\pi\)
\(854\) −2.48385 −0.0849957
\(855\) 0 0
\(856\) −31.7385 −1.08480
\(857\) 1.48050 0.0505729 0.0252865 0.999680i \(-0.491950\pi\)
0.0252865 + 0.999680i \(0.491950\pi\)
\(858\) 8.57529 0.292756
\(859\) 20.1546 0.687666 0.343833 0.939031i \(-0.388275\pi\)
0.343833 + 0.939031i \(0.388275\pi\)
\(860\) 0 0
\(861\) −0.547952 −0.0186741
\(862\) −21.9340 −0.747076
\(863\) 9.07168 0.308803 0.154402 0.988008i \(-0.450655\pi\)
0.154402 + 0.988008i \(0.450655\pi\)
\(864\) −8.66649 −0.294840
\(865\) 0 0
\(866\) 1.87583 0.0637434
\(867\) 24.5067 0.832291
\(868\) 13.8419 0.469824
\(869\) −3.36086 −0.114009
\(870\) 0 0
\(871\) −56.8946 −1.92780
\(872\) −25.3261 −0.857650
\(873\) 5.08016 0.171937
\(874\) −14.4096 −0.487411
\(875\) 0 0
\(876\) 3.27260 0.110571
\(877\) −3.52847 −0.119148 −0.0595739 0.998224i \(-0.518974\pi\)
−0.0595739 + 0.998224i \(0.518974\pi\)
\(878\) −1.02649 −0.0346424
\(879\) −37.2980 −1.25803
\(880\) 0 0
\(881\) −32.2604 −1.08688 −0.543441 0.839448i \(-0.682879\pi\)
−0.543441 + 0.839448i \(0.682879\pi\)
\(882\) 6.88342 0.231777
\(883\) 31.5621 1.06215 0.531074 0.847326i \(-0.321789\pi\)
0.531074 + 0.847326i \(0.321789\pi\)
\(884\) −29.8182 −1.00290
\(885\) 0 0
\(886\) 21.4229 0.719717
\(887\) −34.8507 −1.17017 −0.585087 0.810971i \(-0.698939\pi\)
−0.585087 + 0.810971i \(0.698939\pi\)
\(888\) −4.66577 −0.156573
\(889\) 6.48121 0.217373
\(890\) 0 0
\(891\) 10.3706 0.347428
\(892\) −6.11079 −0.204604
\(893\) −9.31195 −0.311613
\(894\) 16.0592 0.537098
\(895\) 0 0
\(896\) −14.2153 −0.474899
\(897\) −144.111 −4.81172
\(898\) −15.2100 −0.507566
\(899\) −4.54473 −0.151575
\(900\) 0 0
\(901\) −3.24520 −0.108113
\(902\) −0.103434 −0.00344398
\(903\) 26.1345 0.869701
\(904\) 39.4587 1.31238
\(905\) 0 0
\(906\) −22.9035 −0.760918
\(907\) −36.6888 −1.21823 −0.609116 0.793081i \(-0.708476\pi\)
−0.609116 + 0.793081i \(0.708476\pi\)
\(908\) −36.9236 −1.22535
\(909\) 11.0844 0.367645
\(910\) 0 0
\(911\) 27.6843 0.917221 0.458610 0.888637i \(-0.348347\pi\)
0.458610 + 0.888637i \(0.348347\pi\)
\(912\) 15.3644 0.508765
\(913\) −4.55776 −0.150840
\(914\) −2.16231 −0.0715228
\(915\) 0 0
\(916\) 24.8234 0.820188
\(917\) −18.8567 −0.622704
\(918\) 2.25411 0.0743968
\(919\) 34.3200 1.13211 0.566057 0.824366i \(-0.308468\pi\)
0.566057 + 0.824366i \(0.308468\pi\)
\(920\) 0 0
\(921\) −0.998391 −0.0328981
\(922\) −17.1012 −0.563197
\(923\) 19.6669 0.647343
\(924\) 4.70272 0.154708
\(925\) 0 0
\(926\) 16.3410 0.536999
\(927\) 20.5171 0.673869
\(928\) 3.65252 0.119900
\(929\) −22.9783 −0.753894 −0.376947 0.926235i \(-0.623026\pi\)
−0.376947 + 0.926235i \(0.623026\pi\)
\(930\) 0 0
\(931\) 16.0120 0.524772
\(932\) −31.4649 −1.03067
\(933\) 48.3312 1.58229
\(934\) −9.58421 −0.313605
\(935\) 0 0
\(936\) −32.3656 −1.05790
\(937\) 45.7823 1.49564 0.747822 0.663899i \(-0.231100\pi\)
0.747822 + 0.663899i \(0.231100\pi\)
\(938\) 5.52079 0.180260
\(939\) −4.97451 −0.162337
\(940\) 0 0
\(941\) −16.9929 −0.553952 −0.276976 0.960877i \(-0.589332\pi\)
−0.276976 + 0.960877i \(0.589332\pi\)
\(942\) −15.7841 −0.514274
\(943\) 1.73825 0.0566051
\(944\) 28.0276 0.912219
\(945\) 0 0
\(946\) 4.93328 0.160395
\(947\) −23.4730 −0.762769 −0.381384 0.924417i \(-0.624553\pi\)
−0.381384 + 0.924417i \(0.624553\pi\)
\(948\) 13.4587 0.437118
\(949\) −5.83237 −0.189327
\(950\) 0 0
\(951\) 65.3211 2.11818
\(952\) 6.29881 0.204146
\(953\) −24.6541 −0.798623 −0.399312 0.916815i \(-0.630751\pi\)
−0.399312 + 0.916815i \(0.630751\pi\)
\(954\) −1.61807 −0.0523868
\(955\) 0 0
\(956\) −30.7314 −0.993924
\(957\) −1.54405 −0.0499121
\(958\) 2.36325 0.0763530
\(959\) 4.04351 0.130572
\(960\) 0 0
\(961\) 12.6649 0.408546
\(962\) 3.81970 0.123152
\(963\) −35.8381 −1.15487
\(964\) 21.1809 0.682191
\(965\) 0 0
\(966\) 13.9838 0.449922
\(967\) 11.3662 0.365512 0.182756 0.983158i \(-0.441498\pi\)
0.182756 + 0.983158i \(0.441498\pi\)
\(968\) −20.3810 −0.655070
\(969\) −16.9281 −0.543807
\(970\) 0 0
\(971\) −1.93826 −0.0622017 −0.0311008 0.999516i \(-0.509901\pi\)
−0.0311008 + 0.999516i \(0.509901\pi\)
\(972\) −33.2101 −1.06522
\(973\) −0.691822 −0.0221788
\(974\) −20.9056 −0.669858
\(975\) 0 0
\(976\) −8.40152 −0.268926
\(977\) −12.9186 −0.413303 −0.206651 0.978415i \(-0.566257\pi\)
−0.206651 + 0.978415i \(0.566257\pi\)
\(978\) −10.6046 −0.339099
\(979\) 6.58277 0.210386
\(980\) 0 0
\(981\) −28.5974 −0.913046
\(982\) −19.7523 −0.630320
\(983\) 42.8843 1.36780 0.683898 0.729578i \(-0.260283\pi\)
0.683898 + 0.729578i \(0.260283\pi\)
\(984\) 0.901703 0.0287452
\(985\) 0 0
\(986\) −0.950002 −0.0302542
\(987\) 9.03682 0.287645
\(988\) −34.5843 −1.10027
\(989\) −82.9054 −2.63624
\(990\) 0 0
\(991\) −30.3017 −0.962564 −0.481282 0.876566i \(-0.659829\pi\)
−0.481282 + 0.876566i \(0.659829\pi\)
\(992\) −35.0927 −1.11419
\(993\) −37.3579 −1.18552
\(994\) −1.90838 −0.0605302
\(995\) 0 0
\(996\) 18.2517 0.578328
\(997\) −9.76058 −0.309121 −0.154560 0.987983i \(-0.549396\pi\)
−0.154560 + 0.987983i \(0.549396\pi\)
\(998\) −11.0699 −0.350411
\(999\) 1.63190 0.0516309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.a.k.1.3 yes 7
3.2 odd 2 8325.2.a.cm.1.5 7
5.2 odd 4 925.2.b.i.149.6 14
5.3 odd 4 925.2.b.i.149.9 14
5.4 even 2 925.2.a.j.1.5 7
15.14 odd 2 8325.2.a.cn.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
925.2.a.j.1.5 7 5.4 even 2
925.2.a.k.1.3 yes 7 1.1 even 1 trivial
925.2.b.i.149.6 14 5.2 odd 4
925.2.b.i.149.9 14 5.3 odd 4
8325.2.a.cm.1.5 7 3.2 odd 2
8325.2.a.cn.1.3 7 15.14 odd 2