Properties

Label 9248.2.a.bl.1.6
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9248,2,Mod(1,9248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9248.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,0,0,0, 0,0,0,-24,0,0,0,0,0,0,0,0,0,-24,0,0,0,-24,0,30,0,0,0,0,0,-24,0,0,0,0,0, 0,0,0,0,0,0,-24,0,0,0,0,0,0,0,0,0,0,0,0,0,-18,0,-48,0,0,0,-24,0,-24,0, 0,0,48,0,0,0,0,0,0,0,48,0,-24,0,0,0,0,0,0,0,-48,0,0,0,24,0,-48,0,0,0,6, 0,-48,0,0,0,24,0,0,0,0,0,0,0,24,0,-24,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(145)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3359232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} + 36x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.65785\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65785 q^{3} +1.41421 q^{5} -1.67555 q^{7} +4.06418 q^{9} -5.48628 q^{11} -3.06418 q^{13} +3.75877 q^{15} +3.75877 q^{19} -4.45336 q^{21} +4.50398 q^{23} -3.00000 q^{25} +2.82843 q^{27} -5.74762 q^{29} +4.16283 q^{31} -14.5817 q^{33} -2.36959 q^{35} -3.37882 q^{37} -8.14413 q^{39} -0.550391 q^{41} -1.63041 q^{43} +5.74762 q^{45} -10.1284 q^{47} -4.19253 q^{49} +13.6459 q^{53} -7.75877 q^{55} +9.99026 q^{57} -9.88713 q^{59} +10.0810 q^{61} -6.80973 q^{63} -4.33340 q^{65} -4.00000 q^{67} +11.9709 q^{69} -3.64015 q^{71} -9.21719 q^{73} -7.97356 q^{75} +9.19253 q^{77} -4.84513 q^{79} -4.67499 q^{81} -13.1480 q^{83} -15.2763 q^{87} -15.9709 q^{89} +5.13418 q^{91} +11.0642 q^{93} +5.31570 q^{95} -2.05537 q^{97} -22.2972 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{9} - 18 q^{25} - 24 q^{33} - 24 q^{43} - 24 q^{47} + 30 q^{49} - 24 q^{55} - 24 q^{67} - 18 q^{81} - 48 q^{83} - 24 q^{87} - 24 q^{89} + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.65785 1.53451 0.767256 0.641341i \(-0.221622\pi\)
0.767256 + 0.641341i \(0.221622\pi\)
\(4\) 0 0
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) −1.67555 −0.633298 −0.316649 0.948543i \(-0.602558\pi\)
−0.316649 + 0.948543i \(0.602558\pi\)
\(8\) 0 0
\(9\) 4.06418 1.35473
\(10\) 0 0
\(11\) −5.48628 −1.65418 −0.827088 0.562073i \(-0.810004\pi\)
−0.827088 + 0.562073i \(0.810004\pi\)
\(12\) 0 0
\(13\) −3.06418 −0.849850 −0.424925 0.905229i \(-0.639700\pi\)
−0.424925 + 0.905229i \(0.639700\pi\)
\(14\) 0 0
\(15\) 3.75877 0.970510
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 3.75877 0.862321 0.431161 0.902275i \(-0.358104\pi\)
0.431161 + 0.902275i \(0.358104\pi\)
\(20\) 0 0
\(21\) −4.45336 −0.971804
\(22\) 0 0
\(23\) 4.50398 0.939144 0.469572 0.882894i \(-0.344408\pi\)
0.469572 + 0.882894i \(0.344408\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 2.82843 0.544331
\(28\) 0 0
\(29\) −5.74762 −1.06731 −0.533653 0.845704i \(-0.679181\pi\)
−0.533653 + 0.845704i \(0.679181\pi\)
\(30\) 0 0
\(31\) 4.16283 0.747666 0.373833 0.927496i \(-0.378043\pi\)
0.373833 + 0.927496i \(0.378043\pi\)
\(32\) 0 0
\(33\) −14.5817 −2.53835
\(34\) 0 0
\(35\) −2.36959 −0.400533
\(36\) 0 0
\(37\) −3.37882 −0.555474 −0.277737 0.960657i \(-0.589584\pi\)
−0.277737 + 0.960657i \(0.589584\pi\)
\(38\) 0 0
\(39\) −8.14413 −1.30410
\(40\) 0 0
\(41\) −0.550391 −0.0859567 −0.0429783 0.999076i \(-0.513685\pi\)
−0.0429783 + 0.999076i \(0.513685\pi\)
\(42\) 0 0
\(43\) −1.63041 −0.248636 −0.124318 0.992242i \(-0.539674\pi\)
−0.124318 + 0.992242i \(0.539674\pi\)
\(44\) 0 0
\(45\) 5.74762 0.856804
\(46\) 0 0
\(47\) −10.1284 −1.47737 −0.738686 0.674049i \(-0.764553\pi\)
−0.738686 + 0.674049i \(0.764553\pi\)
\(48\) 0 0
\(49\) −4.19253 −0.598933
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.6459 1.87441 0.937204 0.348782i \(-0.113405\pi\)
0.937204 + 0.348782i \(0.113405\pi\)
\(54\) 0 0
\(55\) −7.75877 −1.04619
\(56\) 0 0
\(57\) 9.99026 1.32324
\(58\) 0 0
\(59\) −9.88713 −1.28719 −0.643597 0.765364i \(-0.722559\pi\)
−0.643597 + 0.765364i \(0.722559\pi\)
\(60\) 0 0
\(61\) 10.0810 1.29074 0.645371 0.763869i \(-0.276703\pi\)
0.645371 + 0.763869i \(0.276703\pi\)
\(62\) 0 0
\(63\) −6.80973 −0.857946
\(64\) 0 0
\(65\) −4.33340 −0.537492
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 11.9709 1.44113
\(70\) 0 0
\(71\) −3.64015 −0.432007 −0.216003 0.976393i \(-0.569302\pi\)
−0.216003 + 0.976393i \(0.569302\pi\)
\(72\) 0 0
\(73\) −9.21719 −1.07879 −0.539396 0.842053i \(-0.681347\pi\)
−0.539396 + 0.842053i \(0.681347\pi\)
\(74\) 0 0
\(75\) −7.97356 −0.920707
\(76\) 0 0
\(77\) 9.19253 1.04759
\(78\) 0 0
\(79\) −4.84513 −0.545119 −0.272560 0.962139i \(-0.587870\pi\)
−0.272560 + 0.962139i \(0.587870\pi\)
\(80\) 0 0
\(81\) −4.67499 −0.519444
\(82\) 0 0
\(83\) −13.1480 −1.44318 −0.721588 0.692323i \(-0.756587\pi\)
−0.721588 + 0.692323i \(0.756587\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −15.2763 −1.63779
\(88\) 0 0
\(89\) −15.9709 −1.69291 −0.846456 0.532458i \(-0.821268\pi\)
−0.846456 + 0.532458i \(0.821268\pi\)
\(90\) 0 0
\(91\) 5.13418 0.538209
\(92\) 0 0
\(93\) 11.0642 1.14730
\(94\) 0 0
\(95\) 5.31570 0.545380
\(96\) 0 0
\(97\) −2.05537 −0.208691 −0.104345 0.994541i \(-0.533275\pi\)
−0.104345 + 0.994541i \(0.533275\pi\)
\(98\) 0 0
\(99\) −22.2972 −2.24095
\(100\) 0 0
\(101\) 11.0642 1.10093 0.550463 0.834859i \(-0.314451\pi\)
0.550463 + 0.834859i \(0.314451\pi\)
\(102\) 0 0
\(103\) −6.77837 −0.667893 −0.333946 0.942592i \(-0.608380\pi\)
−0.333946 + 0.942592i \(0.608380\pi\)
\(104\) 0 0
\(105\) −6.29801 −0.614623
\(106\) 0 0
\(107\) 9.93816 0.960758 0.480379 0.877061i \(-0.340499\pi\)
0.480379 + 0.877061i \(0.340499\pi\)
\(108\) 0 0
\(109\) −19.8486 −1.90115 −0.950576 0.310493i \(-0.899506\pi\)
−0.950576 + 0.310493i \(0.899506\pi\)
\(110\) 0 0
\(111\) −8.98040 −0.852382
\(112\) 0 0
\(113\) 16.3790 1.54081 0.770404 0.637555i \(-0.220054\pi\)
0.770404 + 0.637555i \(0.220054\pi\)
\(114\) 0 0
\(115\) 6.36959 0.593967
\(116\) 0 0
\(117\) −12.4534 −1.15131
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 19.0993 1.73630
\(122\) 0 0
\(123\) −1.46286 −0.131902
\(124\) 0 0
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) 21.4047 1.89936 0.949679 0.313226i \(-0.101410\pi\)
0.949679 + 0.313226i \(0.101410\pi\)
\(128\) 0 0
\(129\) −4.33340 −0.381535
\(130\) 0 0
\(131\) −3.34015 −0.291830 −0.145915 0.989297i \(-0.546613\pi\)
−0.145915 + 0.989297i \(0.546613\pi\)
\(132\) 0 0
\(133\) −6.29801 −0.546106
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 7.97090 0.681000 0.340500 0.940244i \(-0.389404\pi\)
0.340500 + 0.940244i \(0.389404\pi\)
\(138\) 0 0
\(139\) 2.47633 0.210040 0.105020 0.994470i \(-0.466509\pi\)
0.105020 + 0.994470i \(0.466509\pi\)
\(140\) 0 0
\(141\) −26.9197 −2.26705
\(142\) 0 0
\(143\) 16.8109 1.40580
\(144\) 0 0
\(145\) −8.12836 −0.675023
\(146\) 0 0
\(147\) −11.1431 −0.919070
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −10.3696 −0.843865 −0.421932 0.906627i \(-0.638648\pi\)
−0.421932 + 0.906627i \(0.638648\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.88713 0.472865
\(156\) 0 0
\(157\) 2.48246 0.198122 0.0990609 0.995081i \(-0.468416\pi\)
0.0990609 + 0.995081i \(0.468416\pi\)
\(158\) 0 0
\(159\) 36.2688 2.87630
\(160\) 0 0
\(161\) −7.54664 −0.594758
\(162\) 0 0
\(163\) −10.1197 −0.792635 −0.396317 0.918114i \(-0.629712\pi\)
−0.396317 + 0.918114i \(0.629712\pi\)
\(164\) 0 0
\(165\) −20.6217 −1.60539
\(166\) 0 0
\(167\) −4.32245 −0.334482 −0.167241 0.985916i \(-0.553486\pi\)
−0.167241 + 0.985916i \(0.553486\pi\)
\(168\) 0 0
\(169\) −3.61081 −0.277755
\(170\) 0 0
\(171\) 15.2763 1.16821
\(172\) 0 0
\(173\) 4.70227 0.357507 0.178754 0.983894i \(-0.442794\pi\)
0.178754 + 0.983894i \(0.442794\pi\)
\(174\) 0 0
\(175\) 5.02665 0.379979
\(176\) 0 0
\(177\) −26.2785 −1.97521
\(178\) 0 0
\(179\) −7.75877 −0.579918 −0.289959 0.957039i \(-0.593642\pi\)
−0.289959 + 0.957039i \(0.593642\pi\)
\(180\) 0 0
\(181\) −5.10646 −0.379560 −0.189780 0.981827i \(-0.560778\pi\)
−0.189780 + 0.981827i \(0.560778\pi\)
\(182\) 0 0
\(183\) 26.7939 1.98066
\(184\) 0 0
\(185\) −4.77837 −0.351313
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.73917 −0.344724
\(190\) 0 0
\(191\) −19.6851 −1.42436 −0.712182 0.701995i \(-0.752293\pi\)
−0.712182 + 0.701995i \(0.752293\pi\)
\(192\) 0 0
\(193\) −4.42416 −0.318458 −0.159229 0.987242i \(-0.550901\pi\)
−0.159229 + 0.987242i \(0.550901\pi\)
\(194\) 0 0
\(195\) −11.5175 −0.824788
\(196\) 0 0
\(197\) −9.43986 −0.672563 −0.336281 0.941762i \(-0.609169\pi\)
−0.336281 + 0.941762i \(0.609169\pi\)
\(198\) 0 0
\(199\) −21.1334 −1.49811 −0.749053 0.662510i \(-0.769491\pi\)
−0.749053 + 0.662510i \(0.769491\pi\)
\(200\) 0 0
\(201\) −10.6314 −0.749882
\(202\) 0 0
\(203\) 9.63041 0.675923
\(204\) 0 0
\(205\) −0.778371 −0.0543638
\(206\) 0 0
\(207\) 18.3050 1.27228
\(208\) 0 0
\(209\) −20.6217 −1.42643
\(210\) 0 0
\(211\) 15.0169 1.03381 0.516903 0.856044i \(-0.327085\pi\)
0.516903 + 0.856044i \(0.327085\pi\)
\(212\) 0 0
\(213\) −9.67499 −0.662920
\(214\) 0 0
\(215\) −2.30575 −0.157251
\(216\) 0 0
\(217\) −6.97502 −0.473495
\(218\) 0 0
\(219\) −24.4979 −1.65542
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −20.4979 −1.37264 −0.686322 0.727298i \(-0.740776\pi\)
−0.686322 + 0.727298i \(0.740776\pi\)
\(224\) 0 0
\(225\) −12.1925 −0.812836
\(226\) 0 0
\(227\) −24.1022 −1.59972 −0.799859 0.600188i \(-0.795093\pi\)
−0.799859 + 0.600188i \(0.795093\pi\)
\(228\) 0 0
\(229\) 29.9709 1.98053 0.990267 0.139184i \(-0.0444479\pi\)
0.990267 + 0.139184i \(0.0444479\pi\)
\(230\) 0 0
\(231\) 24.4324 1.60753
\(232\) 0 0
\(233\) 16.1975 1.06113 0.530567 0.847643i \(-0.321979\pi\)
0.530567 + 0.847643i \(0.321979\pi\)
\(234\) 0 0
\(235\) −14.3237 −0.934372
\(236\) 0 0
\(237\) −12.8776 −0.836492
\(238\) 0 0
\(239\) 16.9067 1.09361 0.546803 0.837262i \(-0.315845\pi\)
0.546803 + 0.837262i \(0.315845\pi\)
\(240\) 0 0
\(241\) −10.0810 −0.649375 −0.324688 0.945821i \(-0.605259\pi\)
−0.324688 + 0.945821i \(0.605259\pi\)
\(242\) 0 0
\(243\) −20.9107 −1.34142
\(244\) 0 0
\(245\) −5.92914 −0.378799
\(246\) 0 0
\(247\) −11.5175 −0.732844
\(248\) 0 0
\(249\) −34.9453 −2.21457
\(250\) 0 0
\(251\) −17.8135 −1.12438 −0.562188 0.827010i \(-0.690040\pi\)
−0.562188 + 0.827010i \(0.690040\pi\)
\(252\) 0 0
\(253\) −24.7101 −1.55351
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.28581 −0.392098 −0.196049 0.980594i \(-0.562811\pi\)
−0.196049 + 0.980594i \(0.562811\pi\)
\(258\) 0 0
\(259\) 5.66138 0.351781
\(260\) 0 0
\(261\) −23.3593 −1.44591
\(262\) 0 0
\(263\) 1.40467 0.0866155 0.0433077 0.999062i \(-0.486210\pi\)
0.0433077 + 0.999062i \(0.486210\pi\)
\(264\) 0 0
\(265\) 19.2982 1.18548
\(266\) 0 0
\(267\) −42.4483 −2.59779
\(268\) 0 0
\(269\) 9.21719 0.561982 0.280991 0.959710i \(-0.409337\pi\)
0.280991 + 0.959710i \(0.409337\pi\)
\(270\) 0 0
\(271\) −0.906726 −0.0550797 −0.0275399 0.999621i \(-0.508767\pi\)
−0.0275399 + 0.999621i \(0.508767\pi\)
\(272\) 0 0
\(273\) 13.6459 0.825887
\(274\) 0 0
\(275\) 16.4588 0.992505
\(276\) 0 0
\(277\) 17.2428 1.03602 0.518011 0.855374i \(-0.326673\pi\)
0.518011 + 0.855374i \(0.326673\pi\)
\(278\) 0 0
\(279\) 16.9185 1.01288
\(280\) 0 0
\(281\) 18.7784 1.12022 0.560112 0.828417i \(-0.310758\pi\)
0.560112 + 0.828417i \(0.310758\pi\)
\(282\) 0 0
\(283\) 11.8473 0.704251 0.352125 0.935953i \(-0.385459\pi\)
0.352125 + 0.935953i \(0.385459\pi\)
\(284\) 0 0
\(285\) 14.1284 0.836892
\(286\) 0 0
\(287\) 0.922208 0.0544362
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −5.46286 −0.320238
\(292\) 0 0
\(293\) −20.3851 −1.19091 −0.595454 0.803389i \(-0.703028\pi\)
−0.595454 + 0.803389i \(0.703028\pi\)
\(294\) 0 0
\(295\) −13.9825 −0.814093
\(296\) 0 0
\(297\) −15.5175 −0.900419
\(298\) 0 0
\(299\) −13.8010 −0.798132
\(300\) 0 0
\(301\) 2.73184 0.157461
\(302\) 0 0
\(303\) 29.4069 1.68939
\(304\) 0 0
\(305\) 14.2567 0.816337
\(306\) 0 0
\(307\) −14.1284 −0.806348 −0.403174 0.915123i \(-0.632093\pi\)
−0.403174 + 0.915123i \(0.632093\pi\)
\(308\) 0 0
\(309\) −18.0159 −1.02489
\(310\) 0 0
\(311\) −10.0012 −0.567116 −0.283558 0.958955i \(-0.591515\pi\)
−0.283558 + 0.958955i \(0.591515\pi\)
\(312\) 0 0
\(313\) −8.98023 −0.507593 −0.253796 0.967258i \(-0.581679\pi\)
−0.253796 + 0.967258i \(0.581679\pi\)
\(314\) 0 0
\(315\) −9.63041 −0.542612
\(316\) 0 0
\(317\) 30.3396 1.70404 0.852022 0.523506i \(-0.175376\pi\)
0.852022 + 0.523506i \(0.175376\pi\)
\(318\) 0 0
\(319\) 31.5330 1.76551
\(320\) 0 0
\(321\) 26.4142 1.47429
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 9.19253 0.509910
\(326\) 0 0
\(327\) −52.7547 −2.91734
\(328\) 0 0
\(329\) 16.9706 0.935617
\(330\) 0 0
\(331\) −19.4439 −1.06873 −0.534366 0.845253i \(-0.679450\pi\)
−0.534366 + 0.845253i \(0.679450\pi\)
\(332\) 0 0
\(333\) −13.7321 −0.752515
\(334\) 0 0
\(335\) −5.65685 −0.309067
\(336\) 0 0
\(337\) 21.5762 1.17533 0.587667 0.809103i \(-0.300047\pi\)
0.587667 + 0.809103i \(0.300047\pi\)
\(338\) 0 0
\(339\) 43.5330 2.36439
\(340\) 0 0
\(341\) −22.8384 −1.23677
\(342\) 0 0
\(343\) 18.7536 1.01260
\(344\) 0 0
\(345\) 16.9294 0.911449
\(346\) 0 0
\(347\) −9.88272 −0.530532 −0.265266 0.964175i \(-0.585460\pi\)
−0.265266 + 0.964175i \(0.585460\pi\)
\(348\) 0 0
\(349\) −18.8675 −1.00996 −0.504978 0.863132i \(-0.668499\pi\)
−0.504978 + 0.863132i \(0.668499\pi\)
\(350\) 0 0
\(351\) −8.66680 −0.462600
\(352\) 0 0
\(353\) −12.1284 −0.645527 −0.322764 0.946480i \(-0.604612\pi\)
−0.322764 + 0.946480i \(0.604612\pi\)
\(354\) 0 0
\(355\) −5.14796 −0.273225
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.2371 0.909740 0.454870 0.890558i \(-0.349686\pi\)
0.454870 + 0.890558i \(0.349686\pi\)
\(360\) 0 0
\(361\) −4.87164 −0.256402
\(362\) 0 0
\(363\) 50.7630 2.66437
\(364\) 0 0
\(365\) −13.0351 −0.682287
\(366\) 0 0
\(367\) 30.9010 1.61302 0.806509 0.591222i \(-0.201354\pi\)
0.806509 + 0.591222i \(0.201354\pi\)
\(368\) 0 0
\(369\) −2.23689 −0.116448
\(370\) 0 0
\(371\) −22.8644 −1.18706
\(372\) 0 0
\(373\) −14.4142 −0.746337 −0.373169 0.927764i \(-0.621729\pi\)
−0.373169 + 0.927764i \(0.621729\pi\)
\(374\) 0 0
\(375\) −30.0702 −1.55282
\(376\) 0 0
\(377\) 17.6117 0.907049
\(378\) 0 0
\(379\) 34.8932 1.79234 0.896172 0.443706i \(-0.146337\pi\)
0.896172 + 0.443706i \(0.146337\pi\)
\(380\) 0 0
\(381\) 56.8904 2.91459
\(382\) 0 0
\(383\) 6.62630 0.338588 0.169294 0.985566i \(-0.445851\pi\)
0.169294 + 0.985566i \(0.445851\pi\)
\(384\) 0 0
\(385\) 13.0002 0.662552
\(386\) 0 0
\(387\) −6.62630 −0.336834
\(388\) 0 0
\(389\) 13.3209 0.675396 0.337698 0.941255i \(-0.390352\pi\)
0.337698 + 0.941255i \(0.390352\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.87763 −0.447817
\(394\) 0 0
\(395\) −6.85204 −0.344764
\(396\) 0 0
\(397\) 27.4701 1.37868 0.689341 0.724437i \(-0.257900\pi\)
0.689341 + 0.724437i \(0.257900\pi\)
\(398\) 0 0
\(399\) −16.7392 −0.838007
\(400\) 0 0
\(401\) −7.25259 −0.362177 −0.181089 0.983467i \(-0.557962\pi\)
−0.181089 + 0.983467i \(0.557962\pi\)
\(402\) 0 0
\(403\) −12.7556 −0.635404
\(404\) 0 0
\(405\) −6.61144 −0.328525
\(406\) 0 0
\(407\) 18.5371 0.918852
\(408\) 0 0
\(409\) −26.4243 −1.30660 −0.653298 0.757101i \(-0.726615\pi\)
−0.653298 + 0.757101i \(0.726615\pi\)
\(410\) 0 0
\(411\) 21.1855 1.04500
\(412\) 0 0
\(413\) 16.5664 0.815178
\(414\) 0 0
\(415\) −18.5940 −0.912744
\(416\) 0 0
\(417\) 6.58172 0.322308
\(418\) 0 0
\(419\) −34.3151 −1.67640 −0.838202 0.545361i \(-0.816393\pi\)
−0.838202 + 0.545361i \(0.816393\pi\)
\(420\) 0 0
\(421\) 22.4142 1.09240 0.546200 0.837655i \(-0.316074\pi\)
0.546200 + 0.837655i \(0.316074\pi\)
\(422\) 0 0
\(423\) −41.1634 −2.00143
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −16.8912 −0.817425
\(428\) 0 0
\(429\) 44.6810 2.15722
\(430\) 0 0
\(431\) 36.0352 1.73575 0.867876 0.496780i \(-0.165485\pi\)
0.867876 + 0.496780i \(0.165485\pi\)
\(432\) 0 0
\(433\) −14.9358 −0.717770 −0.358885 0.933382i \(-0.616843\pi\)
−0.358885 + 0.933382i \(0.616843\pi\)
\(434\) 0 0
\(435\) −21.6040 −1.03583
\(436\) 0 0
\(437\) 16.9294 0.809844
\(438\) 0 0
\(439\) −5.36780 −0.256191 −0.128096 0.991762i \(-0.540886\pi\)
−0.128096 + 0.991762i \(0.540886\pi\)
\(440\) 0 0
\(441\) −17.0392 −0.811391
\(442\) 0 0
\(443\) 13.4783 0.640375 0.320188 0.947354i \(-0.396254\pi\)
0.320188 + 0.947354i \(0.396254\pi\)
\(444\) 0 0
\(445\) −22.5863 −1.07069
\(446\) 0 0
\(447\) 26.5785 1.25712
\(448\) 0 0
\(449\) −9.07682 −0.428362 −0.214181 0.976794i \(-0.568708\pi\)
−0.214181 + 0.976794i \(0.568708\pi\)
\(450\) 0 0
\(451\) 3.01960 0.142187
\(452\) 0 0
\(453\) −27.5608 −1.29492
\(454\) 0 0
\(455\) 7.26083 0.340393
\(456\) 0 0
\(457\) 31.7844 1.48681 0.743405 0.668842i \(-0.233210\pi\)
0.743405 + 0.668842i \(0.233210\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.8675 −0.506151 −0.253076 0.967447i \(-0.581442\pi\)
−0.253076 + 0.967447i \(0.581442\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) 15.6471 0.725617
\(466\) 0 0
\(467\) −20.9804 −0.970857 −0.485429 0.874276i \(-0.661336\pi\)
−0.485429 + 0.874276i \(0.661336\pi\)
\(468\) 0 0
\(469\) 6.70220 0.309479
\(470\) 0 0
\(471\) 6.59801 0.304020
\(472\) 0 0
\(473\) 8.94491 0.411287
\(474\) 0 0
\(475\) −11.2763 −0.517393
\(476\) 0 0
\(477\) 55.4593 2.53931
\(478\) 0 0
\(479\) −2.09403 −0.0956788 −0.0478394 0.998855i \(-0.515234\pi\)
−0.0478394 + 0.998855i \(0.515234\pi\)
\(480\) 0 0
\(481\) 10.3533 0.472070
\(482\) 0 0
\(483\) −20.0578 −0.912664
\(484\) 0 0
\(485\) −2.90673 −0.131988
\(486\) 0 0
\(487\) 6.65010 0.301345 0.150672 0.988584i \(-0.451856\pi\)
0.150672 + 0.988584i \(0.451856\pi\)
\(488\) 0 0
\(489\) −26.8966 −1.21631
\(490\) 0 0
\(491\) 0.0154816 0.000698674 0 0.000349337 1.00000i \(-0.499889\pi\)
0.000349337 1.00000i \(0.499889\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −31.5330 −1.41730
\(496\) 0 0
\(497\) 6.09926 0.273589
\(498\) 0 0
\(499\) 15.3581 0.687521 0.343760 0.939057i \(-0.388299\pi\)
0.343760 + 0.939057i \(0.388299\pi\)
\(500\) 0 0
\(501\) −11.4884 −0.513266
\(502\) 0 0
\(503\) −0.630205 −0.0280995 −0.0140497 0.999901i \(-0.504472\pi\)
−0.0140497 + 0.999901i \(0.504472\pi\)
\(504\) 0 0
\(505\) 15.6471 0.696287
\(506\) 0 0
\(507\) −9.59701 −0.426218
\(508\) 0 0
\(509\) 40.9769 1.81627 0.908134 0.418679i \(-0.137507\pi\)
0.908134 + 0.418679i \(0.137507\pi\)
\(510\) 0 0
\(511\) 15.4439 0.683196
\(512\) 0 0
\(513\) 10.6314 0.469388
\(514\) 0 0
\(515\) −9.58606 −0.422412
\(516\) 0 0
\(517\) 55.5670 2.44383
\(518\) 0 0
\(519\) 12.4979 0.548599
\(520\) 0 0
\(521\) −0.131909 −0.00577903 −0.00288951 0.999996i \(-0.500920\pi\)
−0.00288951 + 0.999996i \(0.500920\pi\)
\(522\) 0 0
\(523\) −29.7351 −1.30022 −0.650112 0.759839i \(-0.725278\pi\)
−0.650112 + 0.759839i \(0.725278\pi\)
\(524\) 0 0
\(525\) 13.3601 0.583082
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −2.71419 −0.118008
\(530\) 0 0
\(531\) −40.1830 −1.74380
\(532\) 0 0
\(533\) 1.68650 0.0730503
\(534\) 0 0
\(535\) 14.0547 0.607637
\(536\) 0 0
\(537\) −20.6217 −0.889891
\(538\) 0 0
\(539\) 23.0014 0.990741
\(540\) 0 0
\(541\) −36.6376 −1.57518 −0.787588 0.616203i \(-0.788670\pi\)
−0.787588 + 0.616203i \(0.788670\pi\)
\(542\) 0 0
\(543\) −13.5722 −0.582440
\(544\) 0 0
\(545\) −28.0702 −1.20239
\(546\) 0 0
\(547\) 26.3306 1.12582 0.562908 0.826520i \(-0.309683\pi\)
0.562908 + 0.826520i \(0.309683\pi\)
\(548\) 0 0
\(549\) 40.9710 1.74860
\(550\) 0 0
\(551\) −21.6040 −0.920360
\(552\) 0 0
\(553\) 8.11825 0.345223
\(554\) 0 0
\(555\) −12.7002 −0.539094
\(556\) 0 0
\(557\) −4.54252 −0.192473 −0.0962363 0.995359i \(-0.530680\pi\)
−0.0962363 + 0.995359i \(0.530680\pi\)
\(558\) 0 0
\(559\) 4.99588 0.211303
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.8830 −0.964404 −0.482202 0.876060i \(-0.660163\pi\)
−0.482202 + 0.876060i \(0.660163\pi\)
\(564\) 0 0
\(565\) 23.1634 0.974493
\(566\) 0 0
\(567\) 7.83318 0.328963
\(568\) 0 0
\(569\) 3.77425 0.158225 0.0791124 0.996866i \(-0.474791\pi\)
0.0791124 + 0.996866i \(0.474791\pi\)
\(570\) 0 0
\(571\) 23.3207 0.975939 0.487970 0.872861i \(-0.337738\pi\)
0.487970 + 0.872861i \(0.337738\pi\)
\(572\) 0 0
\(573\) −52.3201 −2.18570
\(574\) 0 0
\(575\) −13.5119 −0.563486
\(576\) 0 0
\(577\) 11.7142 0.487668 0.243834 0.969817i \(-0.421595\pi\)
0.243834 + 0.969817i \(0.421595\pi\)
\(578\) 0 0
\(579\) −11.7588 −0.488678
\(580\) 0 0
\(581\) 22.0301 0.913961
\(582\) 0 0
\(583\) −74.8652 −3.10060
\(584\) 0 0
\(585\) −17.6117 −0.728155
\(586\) 0 0
\(587\) −14.4587 −0.596776 −0.298388 0.954445i \(-0.596449\pi\)
−0.298388 + 0.954445i \(0.596449\pi\)
\(588\) 0 0
\(589\) 15.6471 0.644728
\(590\) 0 0
\(591\) −25.0898 −1.03205
\(592\) 0 0
\(593\) 6.03920 0.248000 0.124000 0.992282i \(-0.460428\pi\)
0.124000 + 0.992282i \(0.460428\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −56.1694 −2.29886
\(598\) 0 0
\(599\) 6.77837 0.276957 0.138478 0.990365i \(-0.455779\pi\)
0.138478 + 0.990365i \(0.455779\pi\)
\(600\) 0 0
\(601\) −7.07107 −0.288435 −0.144217 0.989546i \(-0.546066\pi\)
−0.144217 + 0.989546i \(0.546066\pi\)
\(602\) 0 0
\(603\) −16.2567 −0.662024
\(604\) 0 0
\(605\) 27.0104 1.09813
\(606\) 0 0
\(607\) 7.51393 0.304981 0.152490 0.988305i \(-0.451271\pi\)
0.152490 + 0.988305i \(0.451271\pi\)
\(608\) 0 0
\(609\) 25.5962 1.03721
\(610\) 0 0
\(611\) 31.0351 1.25555
\(612\) 0 0
\(613\) 0.443258 0.0179030 0.00895152 0.999960i \(-0.497151\pi\)
0.00895152 + 0.999960i \(0.497151\pi\)
\(614\) 0 0
\(615\) −2.06879 −0.0834218
\(616\) 0 0
\(617\) 21.5351 0.866970 0.433485 0.901161i \(-0.357284\pi\)
0.433485 + 0.901161i \(0.357284\pi\)
\(618\) 0 0
\(619\) 14.3900 0.578385 0.289192 0.957271i \(-0.406613\pi\)
0.289192 + 0.957271i \(0.406613\pi\)
\(620\) 0 0
\(621\) 12.7392 0.511205
\(622\) 0 0
\(623\) 26.7600 1.07212
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −54.8093 −2.18887
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −31.0196 −1.23487 −0.617435 0.786622i \(-0.711828\pi\)
−0.617435 + 0.786622i \(0.711828\pi\)
\(632\) 0 0
\(633\) 39.9127 1.58639
\(634\) 0 0
\(635\) 30.2708 1.20126
\(636\) 0 0
\(637\) 12.8467 0.509003
\(638\) 0 0
\(639\) −14.7942 −0.585251
\(640\) 0 0
\(641\) 33.7681 1.33376 0.666879 0.745166i \(-0.267630\pi\)
0.666879 + 0.745166i \(0.267630\pi\)
\(642\) 0 0
\(643\) 5.66780 0.223516 0.111758 0.993735i \(-0.464352\pi\)
0.111758 + 0.993735i \(0.464352\pi\)
\(644\) 0 0
\(645\) −6.12836 −0.241304
\(646\) 0 0
\(647\) −3.34998 −0.131701 −0.0658507 0.997829i \(-0.520976\pi\)
−0.0658507 + 0.997829i \(0.520976\pi\)
\(648\) 0 0
\(649\) 54.2435 2.12924
\(650\) 0 0
\(651\) −18.5386 −0.726584
\(652\) 0 0
\(653\) 32.4858 1.27127 0.635633 0.771991i \(-0.280739\pi\)
0.635633 + 0.771991i \(0.280739\pi\)
\(654\) 0 0
\(655\) −4.72369 −0.184570
\(656\) 0 0
\(657\) −37.4603 −1.46147
\(658\) 0 0
\(659\) 37.4201 1.45768 0.728841 0.684683i \(-0.240059\pi\)
0.728841 + 0.684683i \(0.240059\pi\)
\(660\) 0 0
\(661\) 3.68510 0.143334 0.0716668 0.997429i \(-0.477168\pi\)
0.0716668 + 0.997429i \(0.477168\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.90673 −0.345388
\(666\) 0 0
\(667\) −25.8871 −1.00235
\(668\) 0 0
\(669\) −54.4805 −2.10634
\(670\) 0 0
\(671\) −55.3073 −2.13511
\(672\) 0 0
\(673\) 16.3236 0.629228 0.314614 0.949220i \(-0.398125\pi\)
0.314614 + 0.949220i \(0.398125\pi\)
\(674\) 0 0
\(675\) −8.48528 −0.326599
\(676\) 0 0
\(677\) 19.7082 0.757449 0.378724 0.925510i \(-0.376363\pi\)
0.378724 + 0.925510i \(0.376363\pi\)
\(678\) 0 0
\(679\) 3.44387 0.132164
\(680\) 0 0
\(681\) −64.0601 −2.45479
\(682\) 0 0
\(683\) −8.78194 −0.336032 −0.168016 0.985784i \(-0.553736\pi\)
−0.168016 + 0.985784i \(0.553736\pi\)
\(684\) 0 0
\(685\) 11.2726 0.430702
\(686\) 0 0
\(687\) 79.6582 3.03915
\(688\) 0 0
\(689\) −41.8135 −1.59297
\(690\) 0 0
\(691\) −8.73319 −0.332226 −0.166113 0.986107i \(-0.553122\pi\)
−0.166113 + 0.986107i \(0.553122\pi\)
\(692\) 0 0
\(693\) 37.3601 1.41919
\(694\) 0 0
\(695\) 3.50206 0.132841
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 43.0506 1.62832
\(700\) 0 0
\(701\) 26.6709 1.00734 0.503672 0.863895i \(-0.331982\pi\)
0.503672 + 0.863895i \(0.331982\pi\)
\(702\) 0 0
\(703\) −12.7002 −0.478997
\(704\) 0 0
\(705\) −38.0702 −1.43381
\(706\) 0 0
\(707\) −18.5386 −0.697215
\(708\) 0 0
\(709\) 32.1665 1.20804 0.604019 0.796970i \(-0.293565\pi\)
0.604019 + 0.796970i \(0.293565\pi\)
\(710\) 0 0
\(711\) −19.6915 −0.738487
\(712\) 0 0
\(713\) 18.7493 0.702166
\(714\) 0 0
\(715\) 23.7743 0.889107
\(716\) 0 0
\(717\) 44.9356 1.67815
\(718\) 0 0
\(719\) 21.6561 0.807635 0.403817 0.914840i \(-0.367683\pi\)
0.403817 + 0.914840i \(0.367683\pi\)
\(720\) 0 0
\(721\) 11.3575 0.422975
\(722\) 0 0
\(723\) −26.7939 −0.996474
\(724\) 0 0
\(725\) 17.2428 0.640383
\(726\) 0 0
\(727\) −16.6500 −0.617515 −0.308757 0.951141i \(-0.599913\pi\)
−0.308757 + 0.951141i \(0.599913\pi\)
\(728\) 0 0
\(729\) −41.5526 −1.53899
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −2.20676 −0.0815084 −0.0407542 0.999169i \(-0.512976\pi\)
−0.0407542 + 0.999169i \(0.512976\pi\)
\(734\) 0 0
\(735\) −15.7588 −0.581271
\(736\) 0 0
\(737\) 21.9451 0.808359
\(738\) 0 0
\(739\) 35.5330 1.30710 0.653552 0.756882i \(-0.273278\pi\)
0.653552 + 0.756882i \(0.273278\pi\)
\(740\) 0 0
\(741\) −30.6119 −1.12456
\(742\) 0 0
\(743\) −43.0785 −1.58040 −0.790199 0.612851i \(-0.790023\pi\)
−0.790199 + 0.612851i \(0.790023\pi\)
\(744\) 0 0
\(745\) 14.1421 0.518128
\(746\) 0 0
\(747\) −53.4356 −1.95511
\(748\) 0 0
\(749\) −16.6519 −0.608447
\(750\) 0 0
\(751\) 15.2950 0.558123 0.279061 0.960273i \(-0.409977\pi\)
0.279061 + 0.960273i \(0.409977\pi\)
\(752\) 0 0
\(753\) −47.3455 −1.72537
\(754\) 0 0
\(755\) −14.6648 −0.533707
\(756\) 0 0
\(757\) −19.8425 −0.721190 −0.360595 0.932723i \(-0.617426\pi\)
−0.360595 + 0.932723i \(0.617426\pi\)
\(758\) 0 0
\(759\) −65.6757 −2.38388
\(760\) 0 0
\(761\) −3.37908 −0.122492 −0.0612458 0.998123i \(-0.519507\pi\)
−0.0612458 + 0.998123i \(0.519507\pi\)
\(762\) 0 0
\(763\) 33.2573 1.20400
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.2959 1.09392
\(768\) 0 0
\(769\) 11.3209 0.408242 0.204121 0.978946i \(-0.434566\pi\)
0.204121 + 0.978946i \(0.434566\pi\)
\(770\) 0 0
\(771\) −16.7067 −0.601679
\(772\) 0 0
\(773\) 49.5776 1.78318 0.891591 0.452841i \(-0.149590\pi\)
0.891591 + 0.452841i \(0.149590\pi\)
\(774\) 0 0
\(775\) −12.4885 −0.448599
\(776\) 0 0
\(777\) 15.0471 0.539812
\(778\) 0 0
\(779\) −2.06879 −0.0741223
\(780\) 0 0
\(781\) 19.9709 0.714615
\(782\) 0 0
\(783\) −16.2567 −0.580967
\(784\) 0 0
\(785\) 3.51073 0.125303
\(786\) 0 0
\(787\) 18.1865 0.648278 0.324139 0.946009i \(-0.394925\pi\)
0.324139 + 0.946009i \(0.394925\pi\)
\(788\) 0 0
\(789\) 3.73340 0.132912
\(790\) 0 0
\(791\) −27.4439 −0.975792
\(792\) 0 0
\(793\) −30.8900 −1.09694
\(794\) 0 0
\(795\) 51.2918 1.81913
\(796\) 0 0
\(797\) 18.3851 0.651232 0.325616 0.945502i \(-0.394428\pi\)
0.325616 + 0.945502i \(0.394428\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −64.9086 −2.29343
\(802\) 0 0
\(803\) 50.5681 1.78451
\(804\) 0 0
\(805\) −10.6726 −0.376158
\(806\) 0 0
\(807\) 24.4979 0.862368
\(808\) 0 0
\(809\) −25.0458 −0.880564 −0.440282 0.897859i \(-0.645122\pi\)
−0.440282 + 0.897859i \(0.645122\pi\)
\(810\) 0 0
\(811\) −8.25927 −0.290022 −0.145011 0.989430i \(-0.546322\pi\)
−0.145011 + 0.989430i \(0.546322\pi\)
\(812\) 0 0
\(813\) −2.40994 −0.0845204
\(814\) 0 0
\(815\) −14.3114 −0.501306
\(816\) 0 0
\(817\) −6.12836 −0.214404
\(818\) 0 0
\(819\) 20.8662 0.729125
\(820\) 0 0
\(821\) 10.3037 0.359601 0.179801 0.983703i \(-0.442455\pi\)
0.179801 + 0.983703i \(0.442455\pi\)
\(822\) 0 0
\(823\) −23.1199 −0.805909 −0.402954 0.915220i \(-0.632017\pi\)
−0.402954 + 0.915220i \(0.632017\pi\)
\(824\) 0 0
\(825\) 43.7452 1.52301
\(826\) 0 0
\(827\) 0.715141 0.0248679 0.0124340 0.999923i \(-0.496042\pi\)
0.0124340 + 0.999923i \(0.496042\pi\)
\(828\) 0 0
\(829\) −20.5526 −0.713822 −0.356911 0.934138i \(-0.616170\pi\)
−0.356911 + 0.934138i \(0.616170\pi\)
\(830\) 0 0
\(831\) 45.8289 1.58979
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −6.11287 −0.211545
\(836\) 0 0
\(837\) 11.7743 0.406978
\(838\) 0 0
\(839\) 0.393245 0.0135763 0.00678816 0.999977i \(-0.497839\pi\)
0.00678816 + 0.999977i \(0.497839\pi\)
\(840\) 0 0
\(841\) 4.03508 0.139141
\(842\) 0 0
\(843\) 49.9101 1.71900
\(844\) 0 0
\(845\) −5.10646 −0.175668
\(846\) 0 0
\(847\) −32.0018 −1.09959
\(848\) 0 0
\(849\) 31.4884 1.08068
\(850\) 0 0
\(851\) −15.2181 −0.521670
\(852\) 0 0
\(853\) −9.48101 −0.324624 −0.162312 0.986740i \(-0.551895\pi\)
−0.162312 + 0.986740i \(0.551895\pi\)
\(854\) 0 0
\(855\) 21.6040 0.738840
\(856\) 0 0
\(857\) 53.6520 1.83272 0.916359 0.400358i \(-0.131114\pi\)
0.916359 + 0.400358i \(0.131114\pi\)
\(858\) 0 0
\(859\) 18.8830 0.644280 0.322140 0.946692i \(-0.395598\pi\)
0.322140 + 0.946692i \(0.395598\pi\)
\(860\) 0 0
\(861\) 2.45109 0.0835330
\(862\) 0 0
\(863\) 5.81345 0.197892 0.0989461 0.995093i \(-0.468453\pi\)
0.0989461 + 0.995093i \(0.468453\pi\)
\(864\) 0 0
\(865\) 6.65002 0.226107
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.5817 0.901723
\(870\) 0 0
\(871\) 12.2567 0.415303
\(872\) 0 0
\(873\) −8.35337 −0.282719
\(874\) 0 0
\(875\) 18.9567 0.640853
\(876\) 0 0
\(877\) 20.1124 0.679148 0.339574 0.940579i \(-0.389717\pi\)
0.339574 + 0.940579i \(0.389717\pi\)
\(878\) 0 0
\(879\) −54.1805 −1.82746
\(880\) 0 0
\(881\) −50.9613 −1.71693 −0.858465 0.512872i \(-0.828581\pi\)
−0.858465 + 0.512872i \(0.828581\pi\)
\(882\) 0 0
\(883\) −12.7082 −0.427665 −0.213833 0.976870i \(-0.568595\pi\)
−0.213833 + 0.976870i \(0.568595\pi\)
\(884\) 0 0
\(885\) −37.1634 −1.24924
\(886\) 0 0
\(887\) 1.51592 0.0508997 0.0254498 0.999676i \(-0.491898\pi\)
0.0254498 + 0.999676i \(0.491898\pi\)
\(888\) 0 0
\(889\) −35.8646 −1.20286
\(890\) 0 0
\(891\) 25.6483 0.859251
\(892\) 0 0
\(893\) −38.0702 −1.27397
\(894\) 0 0
\(895\) −10.9726 −0.366772
\(896\) 0 0
\(897\) −36.6810 −1.22474
\(898\) 0 0
\(899\) −23.9263 −0.797988
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 7.26083 0.241625
\(904\) 0 0
\(905\) −7.22163 −0.240055
\(906\) 0 0
\(907\) −9.86083 −0.327423 −0.163712 0.986508i \(-0.552347\pi\)
−0.163712 + 0.986508i \(0.552347\pi\)
\(908\) 0 0
\(909\) 44.9668 1.49145
\(910\) 0 0
\(911\) −8.01470 −0.265539 −0.132769 0.991147i \(-0.542387\pi\)
−0.132769 + 0.991147i \(0.542387\pi\)
\(912\) 0 0
\(913\) 72.1334 2.38727
\(914\) 0 0
\(915\) 37.8922 1.25268
\(916\) 0 0
\(917\) 5.59659 0.184816
\(918\) 0 0
\(919\) −16.6500 −0.549233 −0.274617 0.961554i \(-0.588551\pi\)
−0.274617 + 0.961554i \(0.588551\pi\)
\(920\) 0 0
\(921\) −37.5511 −1.23735
\(922\) 0 0
\(923\) 11.1541 0.367141
\(924\) 0 0
\(925\) 10.1365 0.333285
\(926\) 0 0
\(927\) −27.5485 −0.904812
\(928\) 0 0
\(929\) −42.6575 −1.39955 −0.699774 0.714364i \(-0.746716\pi\)
−0.699774 + 0.714364i \(0.746716\pi\)
\(930\) 0 0
\(931\) −15.7588 −0.516473
\(932\) 0 0
\(933\) −26.5817 −0.870246
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 41.3310 1.35022 0.675112 0.737715i \(-0.264095\pi\)
0.675112 + 0.737715i \(0.264095\pi\)
\(938\) 0 0
\(939\) −23.8681 −0.778907
\(940\) 0 0
\(941\) −13.1876 −0.429902 −0.214951 0.976625i \(-0.568959\pi\)
−0.214951 + 0.976625i \(0.568959\pi\)
\(942\) 0 0
\(943\) −2.47895 −0.0807257
\(944\) 0 0
\(945\) −6.70220 −0.218023
\(946\) 0 0
\(947\) −10.4608 −0.339931 −0.169966 0.985450i \(-0.554366\pi\)
−0.169966 + 0.985450i \(0.554366\pi\)
\(948\) 0 0
\(949\) 28.2431 0.916811
\(950\) 0 0
\(951\) 80.6383 2.61488
\(952\) 0 0
\(953\) −20.6209 −0.667977 −0.333989 0.942577i \(-0.608395\pi\)
−0.333989 + 0.942577i \(0.608395\pi\)
\(954\) 0 0
\(955\) −27.8389 −0.900847
\(956\) 0 0
\(957\) 83.8101 2.70920
\(958\) 0 0
\(959\) −13.3556 −0.431276
\(960\) 0 0
\(961\) −13.6709 −0.440996
\(962\) 0 0
\(963\) 40.3905 1.30156
\(964\) 0 0
\(965\) −6.25671 −0.201411
\(966\) 0 0
\(967\) −52.1248 −1.67622 −0.838111 0.545500i \(-0.816340\pi\)
−0.838111 + 0.545500i \(0.816340\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.43975 −0.142478 −0.0712392 0.997459i \(-0.522695\pi\)
−0.0712392 + 0.997459i \(0.522695\pi\)
\(972\) 0 0
\(973\) −4.14921 −0.133018
\(974\) 0 0
\(975\) 24.4324 0.782463
\(976\) 0 0
\(977\) −19.7743 −0.632634 −0.316317 0.948653i \(-0.602446\pi\)
−0.316317 + 0.948653i \(0.602446\pi\)
\(978\) 0 0
\(979\) 87.6208 2.80037
\(980\) 0 0
\(981\) −80.6683 −2.57554
\(982\) 0 0
\(983\) 2.01670 0.0643227 0.0321614 0.999483i \(-0.489761\pi\)
0.0321614 + 0.999483i \(0.489761\pi\)
\(984\) 0 0
\(985\) −13.3500 −0.425366
\(986\) 0 0
\(987\) 45.1052 1.43572
\(988\) 0 0
\(989\) −7.34335 −0.233505
\(990\) 0 0
\(991\) 14.6346 0.464884 0.232442 0.972610i \(-0.425328\pi\)
0.232442 + 0.972610i \(0.425328\pi\)
\(992\) 0 0
\(993\) −51.6789 −1.63998
\(994\) 0 0
\(995\) −29.8871 −0.947486
\(996\) 0 0
\(997\) 5.30228 0.167925 0.0839624 0.996469i \(-0.473242\pi\)
0.0839624 + 0.996469i \(0.473242\pi\)
\(998\) 0 0
\(999\) −9.55674 −0.302362
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bl.1.6 6
4.3 odd 2 9248.2.a.bm.1.1 6
17.8 even 8 544.2.o.h.353.1 yes 6
17.15 even 8 544.2.o.h.225.1 yes 6
17.16 even 2 inner 9248.2.a.bl.1.1 6
68.15 odd 8 544.2.o.g.225.3 6
68.59 odd 8 544.2.o.g.353.3 yes 6
68.67 odd 2 9248.2.a.bm.1.6 6
136.59 odd 8 1088.2.o.v.897.1 6
136.83 odd 8 1088.2.o.v.769.1 6
136.93 even 8 1088.2.o.u.897.3 6
136.117 even 8 1088.2.o.u.769.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.o.g.225.3 6 68.15 odd 8
544.2.o.g.353.3 yes 6 68.59 odd 8
544.2.o.h.225.1 yes 6 17.15 even 8
544.2.o.h.353.1 yes 6 17.8 even 8
1088.2.o.u.769.3 6 136.117 even 8
1088.2.o.u.897.3 6 136.93 even 8
1088.2.o.v.769.1 6 136.83 odd 8
1088.2.o.v.897.1 6 136.59 odd 8
9248.2.a.bl.1.1 6 17.16 even 2 inner
9248.2.a.bl.1.6 6 1.1 even 1 trivial
9248.2.a.bm.1.1 6 4.3 odd 2
9248.2.a.bm.1.6 6 68.67 odd 2