Defining parameters
| Level: | \( N \) | \(=\) | \( 9248 = 2^{5} \cdot 17^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9248.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 52 \) | ||
| Sturm bound: | \(2448\) | ||
| Trace bound: | \(145\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(19\), \(43\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9248))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1296 | 271 | 1025 |
| Cusp forms | 1153 | 271 | 882 |
| Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(315\) | \(64\) | \(251\) | \(280\) | \(64\) | \(216\) | \(35\) | \(0\) | \(35\) | |||
| \(+\) | \(-\) | \(-\) | \(331\) | \(72\) | \(259\) | \(295\) | \(72\) | \(223\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(+\) | \(-\) | \(333\) | \(71\) | \(262\) | \(297\) | \(71\) | \(226\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(-\) | \(+\) | \(317\) | \(64\) | \(253\) | \(281\) | \(64\) | \(217\) | \(36\) | \(0\) | \(36\) | |||
| Plus space | \(+\) | \(632\) | \(128\) | \(504\) | \(561\) | \(128\) | \(433\) | \(71\) | \(0\) | \(71\) | ||||
| Minus space | \(-\) | \(664\) | \(143\) | \(521\) | \(592\) | \(143\) | \(449\) | \(72\) | \(0\) | \(72\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9248))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9248))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9248)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4624))\)\(^{\oplus 2}\)