Properties

Label 544.2.o.h.353.1
Level $544$
Weight $2$
Character 544.353
Analytic conductor $4.344$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(225,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,6,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.419904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 353.1
Root \(-1.87939i\) of defining polynomial
Character \(\chi\) \(=\) 544.353
Dual form 544.2.o.h.225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87939 - 1.87939i) q^{3} +(1.00000 + 1.00000i) q^{5} +(-1.18479 + 1.18479i) q^{7} +4.06418i q^{9} +(3.87939 - 3.87939i) q^{11} +3.06418 q^{13} -3.75877i q^{15} +(-1.69459 - 3.75877i) q^{17} -3.75877i q^{19} +4.45336 q^{21} +(-3.18479 + 3.18479i) q^{23} -3.00000i q^{25} +(2.00000 - 2.00000i) q^{27} +(-4.06418 - 4.06418i) q^{29} +(-2.94356 - 2.94356i) q^{31} -14.5817 q^{33} -2.36959 q^{35} +(2.38919 + 2.38919i) q^{37} +(-5.75877 - 5.75877i) q^{39} +(-0.389185 + 0.389185i) q^{41} -1.63041i q^{43} +(-4.06418 + 4.06418i) q^{45} +10.1284 q^{47} +4.19253i q^{49} +(-3.87939 + 10.2490i) q^{51} -13.6459i q^{53} +7.75877 q^{55} +(-7.06418 + 7.06418i) q^{57} -9.88713i q^{59} +(7.12836 - 7.12836i) q^{61} +(-4.81521 - 4.81521i) q^{63} +(3.06418 + 3.06418i) q^{65} -4.00000 q^{67} +11.9709 q^{69} +(2.57398 + 2.57398i) q^{71} +(-6.51754 - 6.51754i) q^{73} +(-5.63816 + 5.63816i) q^{75} +9.19253i q^{77} +(3.42602 - 3.42602i) q^{79} +4.67499 q^{81} +13.1480i q^{83} +(2.06418 - 5.45336i) q^{85} +15.2763i q^{87} +15.9709 q^{89} +(-3.63041 + 3.63041i) q^{91} +11.0642i q^{93} +(3.75877 - 3.75877i) q^{95} +(-1.45336 - 1.45336i) q^{97} +(15.7665 + 15.7665i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{5} + 12 q^{11} - 6 q^{17} - 12 q^{23} + 12 q^{27} - 6 q^{29} + 12 q^{31} - 24 q^{33} + 6 q^{37} - 12 q^{39} + 6 q^{41} - 6 q^{45} + 24 q^{47} - 12 q^{51} + 24 q^{55} - 24 q^{57} + 6 q^{61} - 36 q^{63}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.87939 1.87939i −1.08506 1.08506i −0.996028 0.0890351i \(-0.971622\pi\)
−0.0890351 0.996028i \(-0.528378\pi\)
\(4\) 0 0
\(5\) 1.00000 + 1.00000i 0.447214 + 0.447214i 0.894427 0.447214i \(-0.147584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.18479 + 1.18479i −0.447809 + 0.447809i −0.894626 0.446816i \(-0.852558\pi\)
0.446816 + 0.894626i \(0.352558\pi\)
\(8\) 0 0
\(9\) 4.06418i 1.35473i
\(10\) 0 0
\(11\) 3.87939 3.87939i 1.16968 1.16968i 0.187394 0.982285i \(-0.439996\pi\)
0.982285 0.187394i \(-0.0600040\pi\)
\(12\) 0 0
\(13\) 3.06418 0.849850 0.424925 0.905229i \(-0.360300\pi\)
0.424925 + 0.905229i \(0.360300\pi\)
\(14\) 0 0
\(15\) 3.75877i 0.970510i
\(16\) 0 0
\(17\) −1.69459 3.75877i −0.410999 0.911636i
\(18\) 0 0
\(19\) 3.75877i 0.862321i −0.902275 0.431161i \(-0.858104\pi\)
0.902275 0.431161i \(-0.141896\pi\)
\(20\) 0 0
\(21\) 4.45336 0.971804
\(22\) 0 0
\(23\) −3.18479 + 3.18479i −0.664075 + 0.664075i −0.956338 0.292263i \(-0.905592\pi\)
0.292263 + 0.956338i \(0.405592\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 2.00000 2.00000i 0.384900 0.384900i
\(28\) 0 0
\(29\) −4.06418 4.06418i −0.754699 0.754699i 0.220653 0.975352i \(-0.429181\pi\)
−0.975352 + 0.220653i \(0.929181\pi\)
\(30\) 0 0
\(31\) −2.94356 2.94356i −0.528680 0.528680i 0.391499 0.920179i \(-0.371957\pi\)
−0.920179 + 0.391499i \(0.871957\pi\)
\(32\) 0 0
\(33\) −14.5817 −2.53835
\(34\) 0 0
\(35\) −2.36959 −0.400533
\(36\) 0 0
\(37\) 2.38919 + 2.38919i 0.392780 + 0.392780i 0.875677 0.482897i \(-0.160416\pi\)
−0.482897 + 0.875677i \(0.660416\pi\)
\(38\) 0 0
\(39\) −5.75877 5.75877i −0.922141 0.922141i
\(40\) 0 0
\(41\) −0.389185 + 0.389185i −0.0607806 + 0.0607806i −0.736844 0.676063i \(-0.763685\pi\)
0.676063 + 0.736844i \(0.263685\pi\)
\(42\) 0 0
\(43\) 1.63041i 0.248636i −0.992242 0.124318i \(-0.960326\pi\)
0.992242 0.124318i \(-0.0396743\pi\)
\(44\) 0 0
\(45\) −4.06418 + 4.06418i −0.605852 + 0.605852i
\(46\) 0 0
\(47\) 10.1284 1.47737 0.738686 0.674049i \(-0.235447\pi\)
0.738686 + 0.674049i \(0.235447\pi\)
\(48\) 0 0
\(49\) 4.19253i 0.598933i
\(50\) 0 0
\(51\) −3.87939 + 10.2490i −0.543223 + 1.43514i
\(52\) 0 0
\(53\) 13.6459i 1.87441i −0.348782 0.937204i \(-0.613405\pi\)
0.348782 0.937204i \(-0.386595\pi\)
\(54\) 0 0
\(55\) 7.75877 1.04619
\(56\) 0 0
\(57\) −7.06418 + 7.06418i −0.935673 + 0.935673i
\(58\) 0 0
\(59\) 9.88713i 1.28719i −0.765364 0.643597i \(-0.777441\pi\)
0.765364 0.643597i \(-0.222559\pi\)
\(60\) 0 0
\(61\) 7.12836 7.12836i 0.912692 0.912692i −0.0837910 0.996483i \(-0.526703\pi\)
0.996483 + 0.0837910i \(0.0267028\pi\)
\(62\) 0 0
\(63\) −4.81521 4.81521i −0.606659 0.606659i
\(64\) 0 0
\(65\) 3.06418 + 3.06418i 0.380064 + 0.380064i
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 11.9709 1.44113
\(70\) 0 0
\(71\) 2.57398 + 2.57398i 0.305475 + 0.305475i 0.843151 0.537676i \(-0.180698\pi\)
−0.537676 + 0.843151i \(0.680698\pi\)
\(72\) 0 0
\(73\) −6.51754 6.51754i −0.762820 0.762820i 0.214011 0.976831i \(-0.431347\pi\)
−0.976831 + 0.214011i \(0.931347\pi\)
\(74\) 0 0
\(75\) −5.63816 + 5.63816i −0.651038 + 0.651038i
\(76\) 0 0
\(77\) 9.19253i 1.04759i
\(78\) 0 0
\(79\) 3.42602 3.42602i 0.385458 0.385458i −0.487606 0.873064i \(-0.662130\pi\)
0.873064 + 0.487606i \(0.162130\pi\)
\(80\) 0 0
\(81\) 4.67499 0.519444
\(82\) 0 0
\(83\) 13.1480i 1.44318i 0.692323 + 0.721588i \(0.256587\pi\)
−0.692323 + 0.721588i \(0.743413\pi\)
\(84\) 0 0
\(85\) 2.06418 5.45336i 0.223892 0.591500i
\(86\) 0 0
\(87\) 15.2763i 1.63779i
\(88\) 0 0
\(89\) 15.9709 1.69291 0.846456 0.532458i \(-0.178732\pi\)
0.846456 + 0.532458i \(0.178732\pi\)
\(90\) 0 0
\(91\) −3.63041 + 3.63041i −0.380571 + 0.380571i
\(92\) 0 0
\(93\) 11.0642i 1.14730i
\(94\) 0 0
\(95\) 3.75877 3.75877i 0.385642 0.385642i
\(96\) 0 0
\(97\) −1.45336 1.45336i −0.147567 0.147567i 0.629463 0.777030i \(-0.283275\pi\)
−0.777030 + 0.629463i \(0.783275\pi\)
\(98\) 0 0
\(99\) 15.7665 + 15.7665i 1.58459 + 1.58459i
\(100\) 0 0
\(101\) 11.0642 1.10093 0.550463 0.834859i \(-0.314451\pi\)
0.550463 + 0.834859i \(0.314451\pi\)
\(102\) 0 0
\(103\) −6.77837 −0.667893 −0.333946 0.942592i \(-0.608380\pi\)
−0.333946 + 0.942592i \(0.608380\pi\)
\(104\) 0 0
\(105\) 4.45336 + 4.45336i 0.434604 + 0.434604i
\(106\) 0 0
\(107\) 7.02734 + 7.02734i 0.679359 + 0.679359i 0.959855 0.280496i \(-0.0904991\pi\)
−0.280496 + 0.959855i \(0.590499\pi\)
\(108\) 0 0
\(109\) −14.0351 + 14.0351i −1.34432 + 1.34432i −0.452607 + 0.891710i \(0.649506\pi\)
−0.891710 + 0.452607i \(0.850494\pi\)
\(110\) 0 0
\(111\) 8.98040i 0.852382i
\(112\) 0 0
\(113\) −11.5817 + 11.5817i −1.08952 + 1.08952i −0.0939384 + 0.995578i \(0.529946\pi\)
−0.995578 + 0.0939384i \(0.970054\pi\)
\(114\) 0 0
\(115\) −6.36959 −0.593967
\(116\) 0 0
\(117\) 12.4534i 1.15131i
\(118\) 0 0
\(119\) 6.46110 + 2.44562i 0.592288 + 0.224190i
\(120\) 0 0
\(121\) 19.0993i 1.73630i
\(122\) 0 0
\(123\) 1.46286 0.131902
\(124\) 0 0
\(125\) 8.00000 8.00000i 0.715542 0.715542i
\(126\) 0 0
\(127\) 21.4047i 1.89936i 0.313226 + 0.949679i \(0.398590\pi\)
−0.313226 + 0.949679i \(0.601410\pi\)
\(128\) 0 0
\(129\) −3.06418 + 3.06418i −0.269786 + 0.269786i
\(130\) 0 0
\(131\) −2.36184 2.36184i −0.206355 0.206355i 0.596361 0.802716i \(-0.296613\pi\)
−0.802716 + 0.596361i \(0.796613\pi\)
\(132\) 0 0
\(133\) 4.45336 + 4.45336i 0.386156 + 0.386156i
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 7.97090 0.681000 0.340500 0.940244i \(-0.389404\pi\)
0.340500 + 0.940244i \(0.389404\pi\)
\(138\) 0 0
\(139\) −1.75103 1.75103i −0.148520 0.148520i 0.628936 0.777457i \(-0.283491\pi\)
−0.777457 + 0.628936i \(0.783491\pi\)
\(140\) 0 0
\(141\) −19.0351 19.0351i −1.60304 1.60304i
\(142\) 0 0
\(143\) 11.8871 11.8871i 0.994051 0.994051i
\(144\) 0 0
\(145\) 8.12836i 0.675023i
\(146\) 0 0
\(147\) 7.87939 7.87939i 0.649881 0.649881i
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 10.3696i 0.843865i 0.906627 + 0.421932i \(0.138648\pi\)
−0.906627 + 0.421932i \(0.861352\pi\)
\(152\) 0 0
\(153\) 15.2763 6.88713i 1.23502 0.556791i
\(154\) 0 0
\(155\) 5.88713i 0.472865i
\(156\) 0 0
\(157\) −2.48246 −0.198122 −0.0990609 0.995081i \(-0.531584\pi\)
−0.0990609 + 0.995081i \(0.531584\pi\)
\(158\) 0 0
\(159\) −25.6459 + 25.6459i −2.03385 + 2.03385i
\(160\) 0 0
\(161\) 7.54664i 0.594758i
\(162\) 0 0
\(163\) −7.15570 + 7.15570i −0.560477 + 0.560477i −0.929443 0.368966i \(-0.879712\pi\)
0.368966 + 0.929443i \(0.379712\pi\)
\(164\) 0 0
\(165\) −14.5817 14.5817i −1.13519 1.13519i
\(166\) 0 0
\(167\) 3.05644 + 3.05644i 0.236514 + 0.236514i 0.815405 0.578891i \(-0.196514\pi\)
−0.578891 + 0.815405i \(0.696514\pi\)
\(168\) 0 0
\(169\) −3.61081 −0.277755
\(170\) 0 0
\(171\) 15.2763 1.16821
\(172\) 0 0
\(173\) −3.32501 3.32501i −0.252796 0.252796i 0.569320 0.822116i \(-0.307206\pi\)
−0.822116 + 0.569320i \(0.807206\pi\)
\(174\) 0 0
\(175\) 3.55438 + 3.55438i 0.268686 + 0.268686i
\(176\) 0 0
\(177\) −18.5817 + 18.5817i −1.39669 + 1.39669i
\(178\) 0 0
\(179\) 7.75877i 0.579918i −0.957039 0.289959i \(-0.906358\pi\)
0.957039 0.289959i \(-0.0936416\pi\)
\(180\) 0 0
\(181\) 3.61081 3.61081i 0.268390 0.268390i −0.560061 0.828451i \(-0.689222\pi\)
0.828451 + 0.560061i \(0.189222\pi\)
\(182\) 0 0
\(183\) −26.7939 −1.98066
\(184\) 0 0
\(185\) 4.77837i 0.351313i
\(186\) 0 0
\(187\) −21.1557 8.00774i −1.54706 0.585584i
\(188\) 0 0
\(189\) 4.73917i 0.344724i
\(190\) 0 0
\(191\) 19.6851 1.42436 0.712182 0.701995i \(-0.247707\pi\)
0.712182 + 0.701995i \(0.247707\pi\)
\(192\) 0 0
\(193\) 3.12836 3.12836i 0.225184 0.225184i −0.585493 0.810677i \(-0.699099\pi\)
0.810677 + 0.585493i \(0.199099\pi\)
\(194\) 0 0
\(195\) 11.5175i 0.824788i
\(196\) 0 0
\(197\) −6.67499 + 6.67499i −0.475574 + 0.475574i −0.903713 0.428139i \(-0.859169\pi\)
0.428139 + 0.903713i \(0.359169\pi\)
\(198\) 0 0
\(199\) −14.9436 14.9436i −1.05932 1.05932i −0.998126 0.0611953i \(-0.980509\pi\)
−0.0611953 0.998126i \(-0.519491\pi\)
\(200\) 0 0
\(201\) 7.51754 + 7.51754i 0.530246 + 0.530246i
\(202\) 0 0
\(203\) 9.63041 0.675923
\(204\) 0 0
\(205\) −0.778371 −0.0543638
\(206\) 0 0
\(207\) −12.9436 12.9436i −0.899640 0.899640i
\(208\) 0 0
\(209\) −14.5817 14.5817i −1.00864 1.00864i
\(210\) 0 0
\(211\) 10.6186 10.6186i 0.731011 0.731011i −0.239809 0.970820i \(-0.577085\pi\)
0.970820 + 0.239809i \(0.0770847\pi\)
\(212\) 0 0
\(213\) 9.67499i 0.662920i
\(214\) 0 0
\(215\) 1.63041 1.63041i 0.111193 0.111193i
\(216\) 0 0
\(217\) 6.97502 0.473495
\(218\) 0 0
\(219\) 24.4979i 1.65542i
\(220\) 0 0
\(221\) −5.19253 11.5175i −0.349288 0.774754i
\(222\) 0 0
\(223\) 20.4979i 1.37264i 0.727298 + 0.686322i \(0.240776\pi\)
−0.727298 + 0.686322i \(0.759224\pi\)
\(224\) 0 0
\(225\) 12.1925 0.812836
\(226\) 0 0
\(227\) 17.0428 17.0428i 1.13117 1.13117i 0.141189 0.989983i \(-0.454907\pi\)
0.989983 0.141189i \(-0.0450926\pi\)
\(228\) 0 0
\(229\) 29.9709i 1.98053i 0.139184 + 0.990267i \(0.455552\pi\)
−0.139184 + 0.990267i \(0.544448\pi\)
\(230\) 0 0
\(231\) 17.2763 17.2763i 1.13670 1.13670i
\(232\) 0 0
\(233\) 11.4534 + 11.4534i 0.750335 + 0.750335i 0.974542 0.224207i \(-0.0719791\pi\)
−0.224207 + 0.974542i \(0.571979\pi\)
\(234\) 0 0
\(235\) 10.1284 + 10.1284i 0.660701 + 0.660701i
\(236\) 0 0
\(237\) −12.8776 −0.836492
\(238\) 0 0
\(239\) 16.9067 1.09361 0.546803 0.837262i \(-0.315845\pi\)
0.546803 + 0.837262i \(0.315845\pi\)
\(240\) 0 0
\(241\) 7.12836 + 7.12836i 0.459178 + 0.459178i 0.898386 0.439208i \(-0.144741\pi\)
−0.439208 + 0.898386i \(0.644741\pi\)
\(242\) 0 0
\(243\) −14.7861 14.7861i −0.948530 0.948530i
\(244\) 0 0
\(245\) −4.19253 + 4.19253i −0.267851 + 0.267851i
\(246\) 0 0
\(247\) 11.5175i 0.732844i
\(248\) 0 0
\(249\) 24.7101 24.7101i 1.56594 1.56594i
\(250\) 0 0
\(251\) 17.8135 1.12438 0.562188 0.827010i \(-0.309960\pi\)
0.562188 + 0.827010i \(0.309960\pi\)
\(252\) 0 0
\(253\) 24.7101i 1.55351i
\(254\) 0 0
\(255\) −14.1284 + 6.36959i −0.884752 + 0.398879i
\(256\) 0 0
\(257\) 6.28581i 0.392098i 0.980594 + 0.196049i \(0.0628111\pi\)
−0.980594 + 0.196049i \(0.937189\pi\)
\(258\) 0 0
\(259\) −5.66138 −0.351781
\(260\) 0 0
\(261\) 16.5175 16.5175i 1.02241 1.02241i
\(262\) 0 0
\(263\) 1.40467i 0.0866155i 0.999062 + 0.0433077i \(0.0137896\pi\)
−0.999062 + 0.0433077i \(0.986210\pi\)
\(264\) 0 0
\(265\) 13.6459 13.6459i 0.838261 0.838261i
\(266\) 0 0
\(267\) −30.0155 30.0155i −1.83692 1.83692i
\(268\) 0 0
\(269\) −6.51754 6.51754i −0.397381 0.397381i 0.479927 0.877308i \(-0.340663\pi\)
−0.877308 + 0.479927i \(0.840663\pi\)
\(270\) 0 0
\(271\) −0.906726 −0.0550797 −0.0275399 0.999621i \(-0.508767\pi\)
−0.0275399 + 0.999621i \(0.508767\pi\)
\(272\) 0 0
\(273\) 13.6459 0.825887
\(274\) 0 0
\(275\) −11.6382 11.6382i −0.701807 0.701807i
\(276\) 0 0
\(277\) 12.1925 + 12.1925i 0.732578 + 0.732578i 0.971130 0.238552i \(-0.0766726\pi\)
−0.238552 + 0.971130i \(0.576673\pi\)
\(278\) 0 0
\(279\) 11.9632 11.9632i 0.716216 0.716216i
\(280\) 0 0
\(281\) 18.7784i 1.12022i 0.828417 + 0.560112i \(0.189242\pi\)
−0.828417 + 0.560112i \(0.810758\pi\)
\(282\) 0 0
\(283\) −8.37733 + 8.37733i −0.497980 + 0.497980i −0.910809 0.412828i \(-0.864541\pi\)
0.412828 + 0.910809i \(0.364541\pi\)
\(284\) 0 0
\(285\) −14.1284 −0.836892
\(286\) 0 0
\(287\) 0.922208i 0.0544362i
\(288\) 0 0
\(289\) −11.2567 + 12.7392i −0.662159 + 0.749363i
\(290\) 0 0
\(291\) 5.46286i 0.320238i
\(292\) 0 0
\(293\) 20.3851 1.19091 0.595454 0.803389i \(-0.296972\pi\)
0.595454 + 0.803389i \(0.296972\pi\)
\(294\) 0 0
\(295\) 9.88713 9.88713i 0.575651 0.575651i
\(296\) 0 0
\(297\) 15.5175i 0.900419i
\(298\) 0 0
\(299\) −9.75877 + 9.75877i −0.564364 + 0.564364i
\(300\) 0 0
\(301\) 1.93170 + 1.93170i 0.111342 + 0.111342i
\(302\) 0 0
\(303\) −20.7939 20.7939i −1.19458 1.19458i
\(304\) 0 0
\(305\) 14.2567 0.816337
\(306\) 0 0
\(307\) −14.1284 −0.806348 −0.403174 0.915123i \(-0.632093\pi\)
−0.403174 + 0.915123i \(0.632093\pi\)
\(308\) 0 0
\(309\) 12.7392 + 12.7392i 0.724706 + 0.724706i
\(310\) 0 0
\(311\) −7.07192 7.07192i −0.401012 0.401012i 0.477578 0.878589i \(-0.341515\pi\)
−0.878589 + 0.477578i \(0.841515\pi\)
\(312\) 0 0
\(313\) −6.34998 + 6.34998i −0.358922 + 0.358922i −0.863416 0.504493i \(-0.831679\pi\)
0.504493 + 0.863416i \(0.331679\pi\)
\(314\) 0 0
\(315\) 9.63041i 0.542612i
\(316\) 0 0
\(317\) −21.4534 + 21.4534i −1.20494 + 1.20494i −0.232296 + 0.972645i \(0.574624\pi\)
−0.972645 + 0.232296i \(0.925376\pi\)
\(318\) 0 0
\(319\) −31.5330 −1.76551
\(320\) 0 0
\(321\) 26.4142i 1.47429i
\(322\) 0 0
\(323\) −14.1284 + 6.36959i −0.786123 + 0.354413i
\(324\) 0 0
\(325\) 9.19253i 0.509910i
\(326\) 0 0
\(327\) 52.7547 2.91734
\(328\) 0 0
\(329\) −12.0000 + 12.0000i −0.661581 + 0.661581i
\(330\) 0 0
\(331\) 19.4439i 1.06873i −0.845253 0.534366i \(-0.820550\pi\)
0.845253 0.534366i \(-0.179450\pi\)
\(332\) 0 0
\(333\) −9.71007 + 9.71007i −0.532109 + 0.532109i
\(334\) 0 0
\(335\) −4.00000 4.00000i −0.218543 0.218543i
\(336\) 0 0
\(337\) −15.2567 15.2567i −0.831086 0.831086i 0.156579 0.987665i \(-0.449953\pi\)
−0.987665 + 0.156579i \(0.949953\pi\)
\(338\) 0 0
\(339\) 43.5330 2.36439
\(340\) 0 0
\(341\) −22.8384 −1.23677
\(342\) 0 0
\(343\) −13.2608 13.2608i −0.716018 0.716018i
\(344\) 0 0
\(345\) 11.9709 + 11.9709i 0.644492 + 0.644492i
\(346\) 0 0
\(347\) −6.98814 + 6.98814i −0.375143 + 0.375143i −0.869346 0.494203i \(-0.835460\pi\)
0.494203 + 0.869346i \(0.335460\pi\)
\(348\) 0 0
\(349\) 18.8675i 1.00996i −0.863132 0.504978i \(-0.831501\pi\)
0.863132 0.504978i \(-0.168499\pi\)
\(350\) 0 0
\(351\) 6.12836 6.12836i 0.327107 0.327107i
\(352\) 0 0
\(353\) 12.1284 0.645527 0.322764 0.946480i \(-0.395388\pi\)
0.322764 + 0.946480i \(0.395388\pi\)
\(354\) 0 0
\(355\) 5.14796i 0.273225i
\(356\) 0 0
\(357\) −7.54664 16.7392i −0.399410 0.885931i
\(358\) 0 0
\(359\) 17.2371i 0.909740i −0.890558 0.454870i \(-0.849686\pi\)
0.890558 0.454870i \(-0.150314\pi\)
\(360\) 0 0
\(361\) 4.87164 0.256402
\(362\) 0 0
\(363\) −35.8949 + 35.8949i −1.88399 + 1.88399i
\(364\) 0 0
\(365\) 13.0351i 0.682287i
\(366\) 0 0
\(367\) 21.8503 21.8503i 1.14058 1.14058i 0.152231 0.988345i \(-0.451354\pi\)
0.988345 0.152231i \(-0.0486457\pi\)
\(368\) 0 0
\(369\) −1.58172 1.58172i −0.0823410 0.0823410i
\(370\) 0 0
\(371\) 16.1676 + 16.1676i 0.839378 + 0.839378i
\(372\) 0 0
\(373\) −14.4142 −0.746337 −0.373169 0.927764i \(-0.621729\pi\)
−0.373169 + 0.927764i \(0.621729\pi\)
\(374\) 0 0
\(375\) −30.0702 −1.55282
\(376\) 0 0
\(377\) −12.4534 12.4534i −0.641381 0.641381i
\(378\) 0 0
\(379\) 24.6732 + 24.6732i 1.26738 + 1.26738i 0.947437 + 0.319942i \(0.103663\pi\)
0.319942 + 0.947437i \(0.396337\pi\)
\(380\) 0 0
\(381\) 40.2276 40.2276i 2.06092 2.06092i
\(382\) 0 0
\(383\) 6.62630i 0.338588i 0.985566 + 0.169294i \(0.0541487\pi\)
−0.985566 + 0.169294i \(0.945851\pi\)
\(384\) 0 0
\(385\) −9.19253 + 9.19253i −0.468495 + 0.468495i
\(386\) 0 0
\(387\) 6.62630 0.336834
\(388\) 0 0
\(389\) 13.3209i 0.675396i −0.941255 0.337698i \(-0.890352\pi\)
0.941255 0.337698i \(-0.109648\pi\)
\(390\) 0 0
\(391\) 17.3678 + 6.57398i 0.878329 + 0.332460i
\(392\) 0 0
\(393\) 8.87763i 0.447817i
\(394\) 0 0
\(395\) 6.85204 0.344764
\(396\) 0 0
\(397\) −19.4243 + 19.4243i −0.974876 + 0.974876i −0.999692 0.0248160i \(-0.992100\pi\)
0.0248160 + 0.999692i \(0.492100\pi\)
\(398\) 0 0
\(399\) 16.7392i 0.838007i
\(400\) 0 0
\(401\) −5.12836 + 5.12836i −0.256098 + 0.256098i −0.823465 0.567367i \(-0.807962\pi\)
0.567367 + 0.823465i \(0.307962\pi\)
\(402\) 0 0
\(403\) −9.01960 9.01960i −0.449298 0.449298i
\(404\) 0 0
\(405\) 4.67499 + 4.67499i 0.232302 + 0.232302i
\(406\) 0 0
\(407\) 18.5371 0.918852
\(408\) 0 0
\(409\) −26.4243 −1.30660 −0.653298 0.757101i \(-0.726615\pi\)
−0.653298 + 0.757101i \(0.726615\pi\)
\(410\) 0 0
\(411\) −14.9804 14.9804i −0.738929 0.738929i
\(412\) 0 0
\(413\) 11.7142 + 11.7142i 0.576418 + 0.576418i
\(414\) 0 0
\(415\) −13.1480 + 13.1480i −0.645408 + 0.645408i
\(416\) 0 0
\(417\) 6.58172i 0.322308i
\(418\) 0 0
\(419\) 24.2645 24.2645i 1.18540 1.18540i 0.207070 0.978326i \(-0.433607\pi\)
0.978326 0.207070i \(-0.0663928\pi\)
\(420\) 0 0
\(421\) −22.4142 −1.09240 −0.546200 0.837655i \(-0.683926\pi\)
−0.546200 + 0.837655i \(0.683926\pi\)
\(422\) 0 0
\(423\) 41.1634i 2.00143i
\(424\) 0 0
\(425\) −11.2763 + 5.08378i −0.546981 + 0.246599i
\(426\) 0 0
\(427\) 16.8912i 0.817425i
\(428\) 0 0
\(429\) −44.6810 −2.15722
\(430\) 0 0
\(431\) −25.4807 + 25.4807i −1.22736 + 1.22736i −0.262404 + 0.964958i \(0.584515\pi\)
−0.964958 + 0.262404i \(0.915485\pi\)
\(432\) 0 0
\(433\) 14.9358i 0.717770i −0.933382 0.358885i \(-0.883157\pi\)
0.933382 0.358885i \(-0.116843\pi\)
\(434\) 0 0
\(435\) −15.2763 + 15.2763i −0.732443 + 0.732443i
\(436\) 0 0
\(437\) 11.9709 + 11.9709i 0.572646 + 0.572646i
\(438\) 0 0
\(439\) 3.79561 + 3.79561i 0.181154 + 0.181154i 0.791859 0.610704i \(-0.209114\pi\)
−0.610704 + 0.791859i \(0.709114\pi\)
\(440\) 0 0
\(441\) −17.0392 −0.811391
\(442\) 0 0
\(443\) 13.4783 0.640375 0.320188 0.947354i \(-0.396254\pi\)
0.320188 + 0.947354i \(0.396254\pi\)
\(444\) 0 0
\(445\) 15.9709 + 15.9709i 0.757093 + 0.757093i
\(446\) 0 0
\(447\) 18.7939 + 18.7939i 0.888919 + 0.888919i
\(448\) 0 0
\(449\) −6.41828 + 6.41828i −0.302897 + 0.302897i −0.842146 0.539249i \(-0.818708\pi\)
0.539249 + 0.842146i \(0.318708\pi\)
\(450\) 0 0
\(451\) 3.01960i 0.142187i
\(452\) 0 0
\(453\) 19.4884 19.4884i 0.915647 0.915647i
\(454\) 0 0
\(455\) −7.26083 −0.340393
\(456\) 0 0
\(457\) 31.7844i 1.48681i −0.668842 0.743405i \(-0.733210\pi\)
0.668842 0.743405i \(-0.266790\pi\)
\(458\) 0 0
\(459\) −10.9067 4.12836i −0.509082 0.192695i
\(460\) 0 0
\(461\) 10.8675i 0.506151i 0.967447 + 0.253076i \(0.0814421\pi\)
−0.967447 + 0.253076i \(0.918558\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) −11.0642 + 11.0642i −0.513089 + 0.513089i
\(466\) 0 0
\(467\) 20.9804i 0.970857i −0.874276 0.485429i \(-0.838664\pi\)
0.874276 0.485429i \(-0.161336\pi\)
\(468\) 0 0
\(469\) 4.73917 4.73917i 0.218835 0.218835i
\(470\) 0 0
\(471\) 4.66550 + 4.66550i 0.214975 + 0.214975i
\(472\) 0 0
\(473\) −6.32501 6.32501i −0.290824 0.290824i
\(474\) 0 0
\(475\) −11.2763 −0.517393
\(476\) 0 0
\(477\) 55.4593 2.53931
\(478\) 0 0
\(479\) 1.48070 + 1.48070i 0.0676551 + 0.0676551i 0.740125 0.672470i \(-0.234766\pi\)
−0.672470 + 0.740125i \(0.734766\pi\)
\(480\) 0 0
\(481\) 7.32089 + 7.32089i 0.333804 + 0.333804i
\(482\) 0 0
\(483\) −14.1830 + 14.1830i −0.645351 + 0.645351i
\(484\) 0 0
\(485\) 2.90673i 0.131988i
\(486\) 0 0
\(487\) −4.70233 + 4.70233i −0.213083 + 0.213083i −0.805576 0.592493i \(-0.798144\pi\)
0.592493 + 0.805576i \(0.298144\pi\)
\(488\) 0 0
\(489\) 26.8966 1.21631
\(490\) 0 0
\(491\) 0.0154816i 0.000698674i −1.00000 0.000349337i \(-0.999889\pi\)
1.00000 0.000349337i \(-0.000111197\pi\)
\(492\) 0 0
\(493\) −8.38919 + 22.1634i −0.377830 + 0.998191i
\(494\) 0 0
\(495\) 31.5330i 1.41730i
\(496\) 0 0
\(497\) −6.09926 −0.273589
\(498\) 0 0
\(499\) −10.8598 + 10.8598i −0.486151 + 0.486151i −0.907089 0.420938i \(-0.861701\pi\)
0.420938 + 0.907089i \(0.361701\pi\)
\(500\) 0 0
\(501\) 11.4884i 0.513266i
\(502\) 0 0
\(503\) −0.445622 + 0.445622i −0.0198693 + 0.0198693i −0.716972 0.697102i \(-0.754472\pi\)
0.697102 + 0.716972i \(0.254472\pi\)
\(504\) 0 0
\(505\) 11.0642 + 11.0642i 0.492349 + 0.492349i
\(506\) 0 0
\(507\) 6.78611 + 6.78611i 0.301382 + 0.301382i
\(508\) 0 0
\(509\) 40.9769 1.81627 0.908134 0.418679i \(-0.137507\pi\)
0.908134 + 0.418679i \(0.137507\pi\)
\(510\) 0 0
\(511\) 15.4439 0.683196
\(512\) 0 0
\(513\) −7.51754 7.51754i −0.331908 0.331908i
\(514\) 0 0
\(515\) −6.77837 6.77837i −0.298691 0.298691i
\(516\) 0 0
\(517\) 39.2918 39.2918i 1.72805 1.72805i
\(518\) 0 0
\(519\) 12.4979i 0.548599i
\(520\) 0 0
\(521\) 0.0932736 0.0932736i 0.00408639 0.00408639i −0.705061 0.709147i \(-0.749080\pi\)
0.709147 + 0.705061i \(0.249080\pi\)
\(522\) 0 0
\(523\) 29.7351 1.30022 0.650112 0.759839i \(-0.274722\pi\)
0.650112 + 0.759839i \(0.274722\pi\)
\(524\) 0 0
\(525\) 13.3601i 0.583082i
\(526\) 0 0
\(527\) −6.07604 + 16.0523i −0.264676 + 0.699250i
\(528\) 0 0
\(529\) 2.71419i 0.118008i
\(530\) 0 0
\(531\) 40.1830 1.74380
\(532\) 0 0
\(533\) −1.19253 + 1.19253i −0.0516544 + 0.0516544i
\(534\) 0 0
\(535\) 14.0547i 0.607637i
\(536\) 0 0
\(537\) −14.5817 + 14.5817i −0.629248 + 0.629248i
\(538\) 0 0
\(539\) 16.2645 + 16.2645i 0.700560 + 0.700560i
\(540\) 0 0
\(541\) 25.9067 + 25.9067i 1.11382 + 1.11382i 0.992630 + 0.121188i \(0.0386702\pi\)
0.121188 + 0.992630i \(0.461330\pi\)
\(542\) 0 0
\(543\) −13.5722 −0.582440
\(544\) 0 0
\(545\) −28.0702 −1.20239
\(546\) 0 0
\(547\) −18.6186 18.6186i −0.796072 0.796072i 0.186402 0.982474i \(-0.440317\pi\)
−0.982474 + 0.186402i \(0.940317\pi\)
\(548\) 0 0
\(549\) 28.9709 + 28.9709i 1.23645 + 1.23645i
\(550\) 0 0
\(551\) −15.2763 + 15.2763i −0.650793 + 0.650793i
\(552\) 0 0
\(553\) 8.11825i 0.345223i
\(554\) 0 0
\(555\) 8.98040 8.98040i 0.381197 0.381197i
\(556\) 0 0
\(557\) 4.54252 0.192473 0.0962363 0.995359i \(-0.469320\pi\)
0.0962363 + 0.995359i \(0.469320\pi\)
\(558\) 0 0
\(559\) 4.99588i 0.211303i
\(560\) 0 0
\(561\) 24.7101 + 54.8093i 1.04326 + 2.31405i
\(562\) 0 0
\(563\) 22.8830i 0.964404i 0.876060 + 0.482202i \(0.160163\pi\)
−0.876060 + 0.482202i \(0.839837\pi\)
\(564\) 0 0
\(565\) −23.1634 −0.974493
\(566\) 0 0
\(567\) −5.53890 + 5.53890i −0.232612 + 0.232612i
\(568\) 0 0
\(569\) 3.77425i 0.158225i 0.996866 + 0.0791124i \(0.0252086\pi\)
−0.996866 + 0.0791124i \(0.974791\pi\)
\(570\) 0 0
\(571\) 16.4902 16.4902i 0.690093 0.690093i −0.272159 0.962252i \(-0.587738\pi\)
0.962252 + 0.272159i \(0.0877376\pi\)
\(572\) 0 0
\(573\) −36.9959 36.9959i −1.54553 1.54553i
\(574\) 0 0
\(575\) 9.55438 + 9.55438i 0.398445 + 0.398445i
\(576\) 0 0
\(577\) 11.7142 0.487668 0.243834 0.969817i \(-0.421595\pi\)
0.243834 + 0.969817i \(0.421595\pi\)
\(578\) 0 0
\(579\) −11.7588 −0.488678
\(580\) 0 0
\(581\) −15.5776 15.5776i −0.646268 0.646268i
\(582\) 0 0
\(583\) −52.9377 52.9377i −2.19246 2.19246i
\(584\) 0 0
\(585\) −12.4534 + 12.4534i −0.514883 + 0.514883i
\(586\) 0 0
\(587\) 14.4587i 0.596776i −0.954445 0.298388i \(-0.903551\pi\)
0.954445 0.298388i \(-0.0964489\pi\)
\(588\) 0 0
\(589\) −11.0642 + 11.0642i −0.455892 + 0.455892i
\(590\) 0 0
\(591\) 25.0898 1.03205
\(592\) 0 0
\(593\) 6.03920i 0.248000i −0.992282 0.124000i \(-0.960428\pi\)
0.992282 0.124000i \(-0.0395723\pi\)
\(594\) 0 0
\(595\) 4.01548 + 8.90673i 0.164619 + 0.365140i
\(596\) 0 0
\(597\) 56.1694i 2.29886i
\(598\) 0 0
\(599\) −6.77837 −0.276957 −0.138478 0.990365i \(-0.544221\pi\)
−0.138478 + 0.990365i \(0.544221\pi\)
\(600\) 0 0
\(601\) 5.00000 5.00000i 0.203954 0.203954i −0.597738 0.801692i \(-0.703934\pi\)
0.801692 + 0.597738i \(0.203934\pi\)
\(602\) 0 0
\(603\) 16.2567i 0.662024i
\(604\) 0 0
\(605\) 19.0993 19.0993i 0.776495 0.776495i
\(606\) 0 0
\(607\) 5.31315 + 5.31315i 0.215654 + 0.215654i 0.806664 0.591010i \(-0.201271\pi\)
−0.591010 + 0.806664i \(0.701271\pi\)
\(608\) 0 0
\(609\) −18.0993 18.0993i −0.733419 0.733419i
\(610\) 0 0
\(611\) 31.0351 1.25555
\(612\) 0 0
\(613\) 0.443258 0.0179030 0.00895152 0.999960i \(-0.497151\pi\)
0.00895152 + 0.999960i \(0.497151\pi\)
\(614\) 0 0
\(615\) 1.46286 + 1.46286i 0.0589882 + 0.0589882i
\(616\) 0 0
\(617\) 15.2276 + 15.2276i 0.613041 + 0.613041i 0.943737 0.330696i \(-0.107284\pi\)
−0.330696 + 0.943737i \(0.607284\pi\)
\(618\) 0 0
\(619\) 10.1753 10.1753i 0.408980 0.408980i −0.472403 0.881383i \(-0.656613\pi\)
0.881383 + 0.472403i \(0.156613\pi\)
\(620\) 0 0
\(621\) 12.7392i 0.511205i
\(622\) 0 0
\(623\) −18.9222 + 18.9222i −0.758102 + 0.758102i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 54.8093i 2.18887i
\(628\) 0 0
\(629\) 4.93170 13.0291i 0.196640 0.519504i
\(630\) 0 0
\(631\) 31.0196i 1.23487i 0.786622 + 0.617435i \(0.211828\pi\)
−0.786622 + 0.617435i \(0.788172\pi\)
\(632\) 0 0
\(633\) −39.9127 −1.58639
\(634\) 0 0
\(635\) −21.4047 + 21.4047i −0.849418 + 0.849418i
\(636\) 0 0
\(637\) 12.8467i 0.509003i
\(638\) 0 0
\(639\) −10.4611 + 10.4611i −0.413835 + 0.413835i
\(640\) 0 0
\(641\) 23.8776 + 23.8776i 0.943110 + 0.943110i 0.998467 0.0553569i \(-0.0176297\pi\)
−0.0553569 + 0.998467i \(0.517630\pi\)
\(642\) 0 0
\(643\) −4.00774 4.00774i −0.158050 0.158050i 0.623652 0.781702i \(-0.285648\pi\)
−0.781702 + 0.623652i \(0.785648\pi\)
\(644\) 0 0
\(645\) −6.12836 −0.241304
\(646\) 0 0
\(647\) −3.34998 −0.131701 −0.0658507 0.997829i \(-0.520976\pi\)
−0.0658507 + 0.997829i \(0.520976\pi\)
\(648\) 0 0
\(649\) −38.3560 38.3560i −1.50560 1.50560i
\(650\) 0 0
\(651\) −13.1088 13.1088i −0.513773 0.513773i
\(652\) 0 0
\(653\) 22.9709 22.9709i 0.898921 0.898921i −0.0964198 0.995341i \(-0.530739\pi\)
0.995341 + 0.0964198i \(0.0307391\pi\)
\(654\) 0 0
\(655\) 4.72369i 0.184570i
\(656\) 0 0
\(657\) 26.4884 26.4884i 1.03341 1.03341i
\(658\) 0 0
\(659\) −37.4201 −1.45768 −0.728841 0.684683i \(-0.759941\pi\)
−0.728841 + 0.684683i \(0.759941\pi\)
\(660\) 0 0
\(661\) 3.68510i 0.143334i −0.997429 0.0716668i \(-0.977168\pi\)
0.997429 0.0716668i \(-0.0228318\pi\)
\(662\) 0 0
\(663\) −11.8871 + 31.4047i −0.461658 + 1.21966i
\(664\) 0 0
\(665\) 8.90673i 0.345388i
\(666\) 0 0
\(667\) 25.8871 1.00235
\(668\) 0 0
\(669\) 38.5235 38.5235i 1.48941 1.48941i
\(670\) 0 0
\(671\) 55.3073i 2.13511i
\(672\) 0 0
\(673\) 11.5425 11.5425i 0.444931 0.444931i −0.448734 0.893665i \(-0.648125\pi\)
0.893665 + 0.448734i \(0.148125\pi\)
\(674\) 0 0
\(675\) −6.00000 6.00000i −0.230940 0.230940i
\(676\) 0 0
\(677\) −13.9358 13.9358i −0.535597 0.535597i 0.386635 0.922233i \(-0.373637\pi\)
−0.922233 + 0.386635i \(0.873637\pi\)
\(678\) 0 0
\(679\) 3.44387 0.132164
\(680\) 0 0
\(681\) −64.0601 −2.45479
\(682\) 0 0
\(683\) 6.20977 + 6.20977i 0.237610 + 0.237610i 0.815860 0.578250i \(-0.196264\pi\)
−0.578250 + 0.815860i \(0.696264\pi\)
\(684\) 0 0
\(685\) 7.97090 + 7.97090i 0.304553 + 0.304553i
\(686\) 0 0
\(687\) 56.3269 56.3269i 2.14900 2.14900i
\(688\) 0 0
\(689\) 41.8135i 1.59297i
\(690\) 0 0
\(691\) 6.17530 6.17530i 0.234919 0.234919i −0.579823 0.814742i \(-0.696878\pi\)
0.814742 + 0.579823i \(0.196878\pi\)
\(692\) 0 0
\(693\) −37.3601 −1.41919
\(694\) 0 0
\(695\) 3.50206i 0.132841i
\(696\) 0 0
\(697\) 2.12237 + 0.803348i 0.0803905 + 0.0304290i
\(698\) 0 0
\(699\) 43.0506i 1.62832i
\(700\) 0 0
\(701\) −26.6709 −1.00734 −0.503672 0.863895i \(-0.668018\pi\)
−0.503672 + 0.863895i \(0.668018\pi\)
\(702\) 0 0
\(703\) 8.98040 8.98040i 0.338702 0.338702i
\(704\) 0 0
\(705\) 38.0702i 1.43381i
\(706\) 0 0
\(707\) −13.1088 + 13.1088i −0.493005 + 0.493005i
\(708\) 0 0
\(709\) 22.7452 + 22.7452i 0.854212 + 0.854212i 0.990649 0.136437i \(-0.0435650\pi\)
−0.136437 + 0.990649i \(0.543565\pi\)
\(710\) 0 0
\(711\) 13.9240 + 13.9240i 0.522189 + 0.522189i
\(712\) 0 0
\(713\) 18.7493 0.702166
\(714\) 0 0
\(715\) 23.7743 0.889107
\(716\) 0 0
\(717\) −31.7743 31.7743i −1.18663 1.18663i
\(718\) 0 0
\(719\) 15.3131 + 15.3131i 0.571084 + 0.571084i 0.932431 0.361347i \(-0.117683\pi\)
−0.361347 + 0.932431i \(0.617683\pi\)
\(720\) 0 0
\(721\) 8.03096 8.03096i 0.299089 0.299089i
\(722\) 0 0
\(723\) 26.7939i 0.996474i
\(724\) 0 0
\(725\) −12.1925 + 12.1925i −0.452819 + 0.452819i
\(726\) 0 0
\(727\) 16.6500 0.617515 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(728\) 0 0
\(729\) 41.5526i 1.53899i
\(730\) 0 0
\(731\) −6.12836 + 2.76289i −0.226665 + 0.102189i
\(732\) 0 0
\(733\) 2.20676i 0.0815084i 0.999169 + 0.0407542i \(0.0129761\pi\)
−0.999169 + 0.0407542i \(0.987024\pi\)
\(734\) 0 0
\(735\) 15.7588 0.581271
\(736\) 0 0
\(737\) −15.5175 + 15.5175i −0.571596 + 0.571596i
\(738\) 0 0
\(739\) 35.5330i 1.30710i 0.756882 + 0.653552i \(0.226722\pi\)
−0.756882 + 0.653552i \(0.773278\pi\)
\(740\) 0 0
\(741\) −21.6459 + 21.6459i −0.795182 + 0.795182i
\(742\) 0 0
\(743\) −30.4611 30.4611i −1.11751 1.11751i −0.992106 0.125404i \(-0.959977\pi\)
−0.125404 0.992106i \(-0.540023\pi\)
\(744\) 0 0
\(745\) −10.0000 10.0000i −0.366372 0.366372i
\(746\) 0 0
\(747\) −53.4356 −1.95511
\(748\) 0 0
\(749\) −16.6519 −0.608447
\(750\) 0 0
\(751\) −10.8152 10.8152i −0.394653 0.394653i 0.481689 0.876342i \(-0.340023\pi\)
−0.876342 + 0.481689i \(0.840023\pi\)
\(752\) 0 0
\(753\) −33.4783 33.4783i −1.22002 1.22002i
\(754\) 0 0
\(755\) −10.3696 + 10.3696i −0.377388 + 0.377388i
\(756\) 0 0
\(757\) 19.8425i 0.721190i −0.932723 0.360595i \(-0.882574\pi\)
0.932723 0.360595i \(-0.117426\pi\)
\(758\) 0 0
\(759\) 46.4397 46.4397i 1.68566 1.68566i
\(760\) 0 0
\(761\) 3.37908 0.122492 0.0612458 0.998123i \(-0.480493\pi\)
0.0612458 + 0.998123i \(0.480493\pi\)
\(762\) 0 0
\(763\) 33.2573i 1.20400i
\(764\) 0 0
\(765\) 22.1634 + 8.38919i 0.801321 + 0.303312i
\(766\) 0 0
\(767\) 30.2959i 1.09392i
\(768\) 0 0
\(769\) −11.3209 −0.408242 −0.204121 0.978946i \(-0.565434\pi\)
−0.204121 + 0.978946i \(0.565434\pi\)
\(770\) 0 0
\(771\) 11.8135 11.8135i 0.425451 0.425451i
\(772\) 0 0
\(773\) 49.5776i 1.78318i 0.452841 + 0.891591i \(0.350410\pi\)
−0.452841 + 0.891591i \(0.649590\pi\)
\(774\) 0 0
\(775\) −8.83069 + 8.83069i −0.317208 + 0.317208i
\(776\) 0 0
\(777\) 10.6399 + 10.6399i 0.381705 + 0.381705i
\(778\) 0 0
\(779\) 1.46286 + 1.46286i 0.0524124 + 0.0524124i
\(780\) 0 0
\(781\) 19.9709 0.714615
\(782\) 0 0
\(783\) −16.2567 −0.580967
\(784\) 0 0
\(785\) −2.48246 2.48246i −0.0886028 0.0886028i
\(786\) 0 0
\(787\) 12.8598 + 12.8598i 0.458402 + 0.458402i 0.898131 0.439729i \(-0.144925\pi\)
−0.439729 + 0.898131i \(0.644925\pi\)
\(788\) 0 0
\(789\) 2.63991 2.63991i 0.0939833 0.0939833i
\(790\) 0 0
\(791\) 27.4439i 0.975792i
\(792\) 0 0
\(793\) 21.8425 21.8425i 0.775652 0.775652i
\(794\) 0 0
\(795\) −51.2918 −1.81913
\(796\) 0 0
\(797\) 18.3851i 0.651232i −0.945502 0.325616i \(-0.894428\pi\)
0.945502 0.325616i \(-0.105572\pi\)
\(798\) 0 0
\(799\) −17.1634 38.0702i −0.607199 1.34683i
\(800\) 0 0
\(801\) 64.9086i 2.29343i
\(802\) 0 0
\(803\) −50.5681 −1.78451
\(804\) 0 0
\(805\) 7.54664 7.54664i 0.265984 0.265984i
\(806\) 0 0
\(807\) 24.4979i 0.862368i
\(808\) 0 0
\(809\) −17.7101 + 17.7101i −0.622653 + 0.622653i −0.946209 0.323556i \(-0.895122\pi\)
0.323556 + 0.946209i \(0.395122\pi\)
\(810\) 0 0
\(811\) −5.84018 5.84018i −0.205077 0.205077i 0.597094 0.802171i \(-0.296322\pi\)
−0.802171 + 0.597094i \(0.796322\pi\)
\(812\) 0 0
\(813\) 1.70409 + 1.70409i 0.0597650 + 0.0597650i
\(814\) 0 0
\(815\) −14.3114 −0.501306
\(816\) 0 0
\(817\) −6.12836 −0.214404
\(818\) 0 0
\(819\) −14.7547 14.7547i −0.515569 0.515569i
\(820\) 0 0
\(821\) 7.28581 + 7.28581i 0.254276 + 0.254276i 0.822721 0.568445i \(-0.192455\pi\)
−0.568445 + 0.822721i \(0.692455\pi\)
\(822\) 0 0
\(823\) −16.3482 + 16.3482i −0.569863 + 0.569863i −0.932090 0.362227i \(-0.882017\pi\)
0.362227 + 0.932090i \(0.382017\pi\)
\(824\) 0 0
\(825\) 43.7452i 1.52301i
\(826\) 0 0
\(827\) −0.505681 + 0.505681i −0.0175843 + 0.0175843i −0.715844 0.698260i \(-0.753958\pi\)
0.698260 + 0.715844i \(0.253958\pi\)
\(828\) 0 0
\(829\) 20.5526 0.713822 0.356911 0.934138i \(-0.383830\pi\)
0.356911 + 0.934138i \(0.383830\pi\)
\(830\) 0 0
\(831\) 45.8289i 1.58979i
\(832\) 0 0
\(833\) 15.7588 7.10464i 0.546009 0.246161i
\(834\) 0 0
\(835\) 6.11287i 0.211545i
\(836\) 0 0
\(837\) −11.7743 −0.406978
\(838\) 0 0
\(839\) −0.278066 + 0.278066i −0.00959991 + 0.00959991i −0.711890 0.702291i \(-0.752161\pi\)
0.702291 + 0.711890i \(0.252161\pi\)
\(840\) 0 0
\(841\) 4.03508i 0.139141i
\(842\) 0 0
\(843\) 35.2918 35.2918i 1.21551 1.21551i
\(844\) 0 0
\(845\) −3.61081 3.61081i −0.124216 0.124216i
\(846\) 0 0
\(847\) 22.6287 + 22.6287i 0.777530 + 0.777530i
\(848\) 0 0
\(849\) 31.4884 1.08068
\(850\) 0 0
\(851\) −15.2181 −0.521670
\(852\) 0 0
\(853\) 6.70409 + 6.70409i 0.229544 + 0.229544i 0.812502 0.582958i \(-0.198105\pi\)
−0.582958 + 0.812502i \(0.698105\pi\)
\(854\) 0 0
\(855\) 15.2763 + 15.2763i 0.522439 + 0.522439i
\(856\) 0 0
\(857\) 37.9377 37.9377i 1.29593 1.29593i 0.364867 0.931060i \(-0.381114\pi\)
0.931060 0.364867i \(-0.118886\pi\)
\(858\) 0 0
\(859\) 18.8830i 0.644280i 0.946692 + 0.322140i \(0.104402\pi\)
−0.946692 + 0.322140i \(0.895598\pi\)
\(860\) 0 0
\(861\) −1.73318 + 1.73318i −0.0590668 + 0.0590668i
\(862\) 0 0
\(863\) −5.81345 −0.197892 −0.0989461 0.995093i \(-0.531547\pi\)
−0.0989461 + 0.995093i \(0.531547\pi\)
\(864\) 0 0
\(865\) 6.65002i 0.226107i
\(866\) 0 0
\(867\) 45.0975 2.78611i 1.53159 0.0946213i
\(868\) 0 0
\(869\) 26.5817i 0.901723i
\(870\) 0 0
\(871\) −12.2567 −0.415303
\(872\) 0 0
\(873\) 5.90673 5.90673i 0.199912 0.199912i
\(874\) 0 0
\(875\) 18.9567i 0.640853i
\(876\) 0 0
\(877\) 14.2216 14.2216i 0.480230 0.480230i −0.424975 0.905205i \(-0.639717\pi\)
0.905205 + 0.424975i \(0.139717\pi\)
\(878\) 0 0
\(879\) −38.3114 38.3114i −1.29221 1.29221i
\(880\) 0 0
\(881\) 36.0351 + 36.0351i 1.21405 + 1.21405i 0.969682 + 0.244371i \(0.0785814\pi\)
0.244371 + 0.969682i \(0.421419\pi\)
\(882\) 0 0
\(883\) −12.7082 −0.427665 −0.213833 0.976870i \(-0.568595\pi\)
−0.213833 + 0.976870i \(0.568595\pi\)
\(884\) 0 0
\(885\) −37.1634 −1.24924
\(886\) 0 0
\(887\) −1.07192 1.07192i −0.0359915 0.0359915i 0.688882 0.724874i \(-0.258102\pi\)
−0.724874 + 0.688882i \(0.758102\pi\)
\(888\) 0 0
\(889\) −25.3601 25.3601i −0.850550 0.850550i
\(890\) 0 0
\(891\) 18.1361 18.1361i 0.607582 0.607582i
\(892\) 0 0
\(893\) 38.0702i 1.27397i
\(894\) 0 0
\(895\) 7.75877 7.75877i 0.259347 0.259347i
\(896\) 0 0
\(897\) 36.6810 1.22474
\(898\) 0 0
\(899\) 23.9263i 0.797988i
\(900\) 0 0
\(901\) −51.2918 + 23.1242i −1.70878 + 0.770380i
\(902\) 0 0
\(903\) 7.26083i 0.241625i
\(904\) 0 0
\(905\) 7.22163 0.240055
\(906\) 0 0
\(907\) 6.97266 6.97266i 0.231523 0.231523i −0.581805 0.813328i \(-0.697653\pi\)
0.813328 + 0.581805i \(0.197653\pi\)
\(908\) 0 0
\(909\) 44.9668i 1.49145i
\(910\) 0 0
\(911\) −5.66725 + 5.66725i −0.187764 + 0.187764i −0.794729 0.606965i \(-0.792387\pi\)
0.606965 + 0.794729i \(0.292387\pi\)
\(912\) 0 0
\(913\) 51.0060 + 51.0060i 1.68805 + 1.68805i
\(914\) 0 0
\(915\) −26.7939 26.7939i −0.885777 0.885777i
\(916\) 0 0
\(917\) 5.59659 0.184816
\(918\) 0 0
\(919\) −16.6500 −0.549233 −0.274617 0.961554i \(-0.588551\pi\)
−0.274617 + 0.961554i \(0.588551\pi\)
\(920\) 0 0
\(921\) 26.5526 + 26.5526i 0.874939 + 0.874939i
\(922\) 0 0
\(923\) 7.88713 + 7.88713i 0.259608 + 0.259608i
\(924\) 0 0
\(925\) 7.16756 7.16756i 0.235668 0.235668i
\(926\) 0 0
\(927\) 27.5485i 0.904812i
\(928\) 0 0
\(929\) 30.1634 30.1634i 0.989630 0.989630i −0.0103165 0.999947i \(-0.503284\pi\)
0.999947 + 0.0103165i \(0.00328390\pi\)
\(930\) 0 0
\(931\) 15.7588 0.516473
\(932\) 0 0
\(933\) 26.5817i 0.870246i
\(934\) 0 0
\(935\) −13.1480 29.1634i −0.429984 0.953746i
\(936\) 0 0
\(937\) 41.3310i 1.35022i −0.737715 0.675112i \(-0.764095\pi\)
0.737715 0.675112i \(-0.235905\pi\)
\(938\) 0 0
\(939\) 23.8681 0.778907
\(940\) 0 0
\(941\) 9.32501 9.32501i 0.303987 0.303987i −0.538585 0.842571i \(-0.681041\pi\)
0.842571 + 0.538585i \(0.181041\pi\)
\(942\) 0 0
\(943\) 2.47895i 0.0807257i
\(944\) 0 0
\(945\) −4.73917 + 4.73917i −0.154165 + 0.154165i
\(946\) 0 0
\(947\) −7.39693 7.39693i −0.240368 0.240368i 0.576634 0.817002i \(-0.304366\pi\)
−0.817002 + 0.576634i \(0.804366\pi\)
\(948\) 0 0
\(949\) −19.9709 19.9709i −0.648283 0.648283i
\(950\) 0 0
\(951\) 80.6383 2.61488
\(952\) 0 0
\(953\) −20.6209 −0.667977 −0.333989 0.942577i \(-0.608395\pi\)
−0.333989 + 0.942577i \(0.608395\pi\)
\(954\) 0 0
\(955\) 19.6851 + 19.6851i 0.636995 + 0.636995i
\(956\) 0 0
\(957\) 59.2627 + 59.2627i 1.91569 + 1.91569i
\(958\) 0 0
\(959\) −9.44387 + 9.44387i −0.304958 + 0.304958i
\(960\) 0 0
\(961\) 13.6709i 0.440996i
\(962\) 0 0
\(963\) −28.5604 + 28.5604i −0.920345 + 0.920345i
\(964\) 0 0
\(965\) 6.25671 0.201411
\(966\) 0 0
\(967\) 52.1248i 1.67622i 0.545500 + 0.838111i \(0.316340\pi\)
−0.545500 + 0.838111i \(0.683660\pi\)
\(968\) 0 0
\(969\) 38.5235 + 14.5817i 1.23755 + 0.468432i
\(970\) 0 0
\(971\) 4.43975i 0.142478i 0.997459 + 0.0712392i \(0.0226954\pi\)
−0.997459 + 0.0712392i \(0.977305\pi\)
\(972\) 0 0
\(973\) 4.14921 0.133018
\(974\) 0 0
\(975\) −17.2763 + 17.2763i −0.553285 + 0.553285i
\(976\) 0 0
\(977\) 19.7743i 0.632634i −0.948653 0.316317i \(-0.897554\pi\)
0.948653 0.316317i \(-0.102446\pi\)
\(978\) 0 0
\(979\) 61.9573 61.9573i 1.98016 1.98016i
\(980\) 0 0
\(981\) −57.0411 57.0411i −1.82118 1.82118i
\(982\) 0 0
\(983\) −1.42602 1.42602i −0.0454830 0.0454830i 0.683999 0.729483i \(-0.260239\pi\)
−0.729483 + 0.683999i \(0.760239\pi\)
\(984\) 0 0
\(985\) −13.3500 −0.425366
\(986\) 0 0
\(987\) 45.1052 1.43572
\(988\) 0 0
\(989\) 5.19253 + 5.19253i 0.165113 + 0.165113i
\(990\) 0 0
\(991\) 10.3482 + 10.3482i 0.328722 + 0.328722i 0.852101 0.523378i \(-0.175328\pi\)
−0.523378 + 0.852101i \(0.675328\pi\)
\(992\) 0 0
\(993\) −36.5425 + 36.5425i −1.15964 + 1.15964i
\(994\) 0 0
\(995\) 29.8871i 0.947486i
\(996\) 0 0
\(997\) −3.74928 + 3.74928i −0.118741 + 0.118741i −0.763980 0.645240i \(-0.776758\pi\)
0.645240 + 0.763980i \(0.276758\pi\)
\(998\) 0 0
\(999\) 9.55674 0.302362
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.o.h.353.1 yes 6
4.3 odd 2 544.2.o.g.353.3 yes 6
8.3 odd 2 1088.2.o.v.897.1 6
8.5 even 2 1088.2.o.u.897.3 6
17.2 even 8 9248.2.a.bl.1.1 6
17.4 even 4 inner 544.2.o.h.225.1 yes 6
17.15 even 8 9248.2.a.bl.1.6 6
68.15 odd 8 9248.2.a.bm.1.1 6
68.19 odd 8 9248.2.a.bm.1.6 6
68.55 odd 4 544.2.o.g.225.3 6
136.21 even 4 1088.2.o.u.769.3 6
136.123 odd 4 1088.2.o.v.769.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.o.g.225.3 6 68.55 odd 4
544.2.o.g.353.3 yes 6 4.3 odd 2
544.2.o.h.225.1 yes 6 17.4 even 4 inner
544.2.o.h.353.1 yes 6 1.1 even 1 trivial
1088.2.o.u.769.3 6 136.21 even 4
1088.2.o.u.897.3 6 8.5 even 2
1088.2.o.v.769.1 6 136.123 odd 4
1088.2.o.v.897.1 6 8.3 odd 2
9248.2.a.bl.1.1 6 17.2 even 8
9248.2.a.bl.1.6 6 17.15 even 8
9248.2.a.bm.1.1 6 68.15 odd 8
9248.2.a.bm.1.6 6 68.19 odd 8