Properties

Label 92.3.f.a.57.1
Level $92$
Weight $3$
Character 92.57
Analytic conductor $2.507$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [92,3,Mod(5,92)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("92.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(92, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 92.f (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.50681843211\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 57.1
Character \(\chi\) \(=\) 92.57
Dual form 92.3.f.a.21.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.591227 + 4.11207i) q^{3} +(0.143195 + 0.487679i) q^{5} +(-4.01704 + 3.48078i) q^{7} +(-7.92417 - 2.32675i) q^{9} +(-6.52142 + 10.1475i) q^{11} +(-0.185481 + 0.214056i) q^{13} +(-2.09003 + 0.300501i) q^{15} +(8.31682 - 3.79816i) q^{17} +(19.0197 + 8.68598i) q^{19} +(-11.9383 - 18.5763i) q^{21} +(22.9996 - 0.143656i) q^{23} +(20.8140 - 13.3764i) q^{25} +(-1.27932 + 2.80132i) q^{27} +(5.03736 + 11.0303i) q^{29} +(-4.95757 - 34.4806i) q^{31} +(-37.8717 - 32.8160i) q^{33} +(-2.27273 - 1.46059i) q^{35} +(6.10065 - 20.7769i) q^{37} +(-0.770554 - 0.889267i) q^{39} +(-66.2338 + 19.4480i) q^{41} +(74.8120 + 10.7563i) q^{43} -4.19763i q^{45} +14.5226 q^{47} +(-2.95269 + 20.5364i) q^{49} +(10.7012 + 36.4450i) q^{51} +(31.0669 - 26.9196i) q^{53} +(-5.88257 - 1.72728i) q^{55} +(-46.9623 + 73.0748i) q^{57} +(-68.4839 + 79.0346i) q^{59} +(55.9818 - 8.04896i) q^{61} +(39.9306 - 18.2357i) q^{63} +(-0.130951 - 0.0598032i) q^{65} +(-37.2684 - 57.9908i) q^{67} +(-13.0072 + 94.6608i) q^{69} +(-72.3535 + 46.4987i) q^{71} +(13.6043 - 29.7893i) q^{73} +(42.6988 + 93.4972i) q^{75} +(-9.12454 - 63.4626i) q^{77} +(-104.028 - 90.1406i) q^{79} +(-73.2918 - 47.1018i) q^{81} +(6.06438 - 20.6534i) q^{83} +(3.04321 + 3.51206i) q^{85} +(-48.3355 + 14.1926i) q^{87} +(83.0960 + 11.9474i) q^{89} -1.50549i q^{91} +144.718 q^{93} +(-1.51244 + 10.5193i) q^{95} +(8.18745 + 27.8839i) q^{97} +(75.2875 - 65.2370i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - 6 q^{9} - 2 q^{13} + 77 q^{15} + 55 q^{17} + 33 q^{19} + 33 q^{21} - 50 q^{23} - 54 q^{25} - 191 q^{27} + q^{29} - 53 q^{31} - 121 q^{33} - 156 q^{35} - 352 q^{37} - 306 q^{39} + 6 q^{41}+ \cdots + 1353 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{9}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.591227 + 4.11207i −0.197076 + 1.37069i 0.615638 + 0.788029i \(0.288898\pi\)
−0.812714 + 0.582663i \(0.802011\pi\)
\(4\) 0 0
\(5\) 0.143195 + 0.487679i 0.0286391 + 0.0975358i 0.972572 0.232601i \(-0.0747235\pi\)
−0.943933 + 0.330136i \(0.892905\pi\)
\(6\) 0 0
\(7\) −4.01704 + 3.48078i −0.573862 + 0.497255i −0.892759 0.450535i \(-0.851233\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(8\) 0 0
\(9\) −7.92417 2.32675i −0.880463 0.258527i
\(10\) 0 0
\(11\) −6.52142 + 10.1475i −0.592856 + 0.922502i 0.407102 + 0.913383i \(0.366539\pi\)
−0.999958 + 0.00911941i \(0.997097\pi\)
\(12\) 0 0
\(13\) −0.185481 + 0.214056i −0.0142678 + 0.0164659i −0.762839 0.646589i \(-0.776195\pi\)
0.748571 + 0.663055i \(0.230740\pi\)
\(14\) 0 0
\(15\) −2.09003 + 0.300501i −0.139336 + 0.0200334i
\(16\) 0 0
\(17\) 8.31682 3.79816i 0.489225 0.223421i −0.155501 0.987836i \(-0.549699\pi\)
0.644725 + 0.764414i \(0.276972\pi\)
\(18\) 0 0
\(19\) 19.0197 + 8.68598i 1.00103 + 0.457157i 0.847391 0.530969i \(-0.178172\pi\)
0.153643 + 0.988126i \(0.450899\pi\)
\(20\) 0 0
\(21\) −11.9383 18.5763i −0.568488 0.884585i
\(22\) 0 0
\(23\) 22.9996 0.143656i 0.999980 0.00624591i
\(24\) 0 0
\(25\) 20.8140 13.3764i 0.832561 0.535054i
\(26\) 0 0
\(27\) −1.27932 + 2.80132i −0.0473822 + 0.103753i
\(28\) 0 0
\(29\) 5.03736 + 11.0303i 0.173702 + 0.380354i 0.976381 0.216058i \(-0.0693199\pi\)
−0.802679 + 0.596412i \(0.796593\pi\)
\(30\) 0 0
\(31\) −4.95757 34.4806i −0.159922 1.11228i −0.898774 0.438412i \(-0.855541\pi\)
0.738853 0.673867i \(-0.235368\pi\)
\(32\) 0 0
\(33\) −37.8717 32.8160i −1.14763 0.994425i
\(34\) 0 0
\(35\) −2.27273 1.46059i −0.0649350 0.0417312i
\(36\) 0 0
\(37\) 6.10065 20.7769i 0.164883 0.561538i −0.835053 0.550170i \(-0.814563\pi\)
0.999935 0.0113686i \(-0.00361882\pi\)
\(38\) 0 0
\(39\) −0.770554 0.889267i −0.0197578 0.0228017i
\(40\) 0 0
\(41\) −66.2338 + 19.4480i −1.61546 + 0.474341i −0.959793 0.280710i \(-0.909430\pi\)
−0.655666 + 0.755051i \(0.727612\pi\)
\(42\) 0 0
\(43\) 74.8120 + 10.7563i 1.73981 + 0.250147i 0.937804 0.347164i \(-0.112855\pi\)
0.802009 + 0.597312i \(0.203765\pi\)
\(44\) 0 0
\(45\) 4.19763i 0.0932806i
\(46\) 0 0
\(47\) 14.5226 0.308991 0.154496 0.987993i \(-0.450625\pi\)
0.154496 + 0.987993i \(0.450625\pi\)
\(48\) 0 0
\(49\) −2.95269 + 20.5364i −0.0602589 + 0.419110i
\(50\) 0 0
\(51\) 10.7012 + 36.4450i 0.209828 + 0.714607i
\(52\) 0 0
\(53\) 31.0669 26.9196i 0.586168 0.507917i −0.310528 0.950564i \(-0.600506\pi\)
0.896696 + 0.442647i \(0.145961\pi\)
\(54\) 0 0
\(55\) −5.88257 1.72728i −0.106956 0.0314051i
\(56\) 0 0
\(57\) −46.9623 + 73.0748i −0.823901 + 1.28201i
\(58\) 0 0
\(59\) −68.4839 + 79.0346i −1.16074 + 1.33957i −0.230307 + 0.973118i \(0.573973\pi\)
−0.930437 + 0.366452i \(0.880572\pi\)
\(60\) 0 0
\(61\) 55.9818 8.04896i 0.917734 0.131950i 0.332769 0.943009i \(-0.392017\pi\)
0.584965 + 0.811058i \(0.301108\pi\)
\(62\) 0 0
\(63\) 39.9306 18.2357i 0.633818 0.289455i
\(64\) 0 0
\(65\) −0.130951 0.0598032i −0.00201463 0.000920049i
\(66\) 0 0
\(67\) −37.2684 57.9908i −0.556245 0.865534i 0.443279 0.896384i \(-0.353815\pi\)
−0.999524 + 0.0308494i \(0.990179\pi\)
\(68\) 0 0
\(69\) −13.0072 + 94.6608i −0.188511 + 1.37190i
\(70\) 0 0
\(71\) −72.3535 + 46.4987i −1.01906 + 0.654912i −0.939723 0.341936i \(-0.888917\pi\)
−0.0793394 + 0.996848i \(0.525281\pi\)
\(72\) 0 0
\(73\) 13.6043 29.7893i 0.186361 0.408073i −0.793273 0.608866i \(-0.791625\pi\)
0.979634 + 0.200793i \(0.0643519\pi\)
\(74\) 0 0
\(75\) 42.6988 + 93.4972i 0.569317 + 1.24663i
\(76\) 0 0
\(77\) −9.12454 63.4626i −0.118501 0.824190i
\(78\) 0 0
\(79\) −104.028 90.1406i −1.31681 1.14102i −0.979901 0.199483i \(-0.936074\pi\)
−0.336907 0.941538i \(-0.609381\pi\)
\(80\) 0 0
\(81\) −73.2918 47.1018i −0.904837 0.581504i
\(82\) 0 0
\(83\) 6.06438 20.6534i 0.0730649 0.248836i −0.914860 0.403772i \(-0.867699\pi\)
0.987925 + 0.154936i \(0.0495171\pi\)
\(84\) 0 0
\(85\) 3.04321 + 3.51206i 0.0358025 + 0.0413183i
\(86\) 0 0
\(87\) −48.3355 + 14.1926i −0.555581 + 0.163133i
\(88\) 0 0
\(89\) 83.0960 + 11.9474i 0.933663 + 0.134240i 0.592324 0.805700i \(-0.298210\pi\)
0.341339 + 0.939940i \(0.389120\pi\)
\(90\) 0 0
\(91\) 1.50549i 0.0165438i
\(92\) 0 0
\(93\) 144.718 1.55611
\(94\) 0 0
\(95\) −1.51244 + 10.5193i −0.0159205 + 0.110729i
\(96\) 0 0
\(97\) 8.18745 + 27.8839i 0.0844067 + 0.287463i 0.990870 0.134822i \(-0.0430463\pi\)
−0.906463 + 0.422285i \(0.861228\pi\)
\(98\) 0 0
\(99\) 75.2875 65.2370i 0.760480 0.658959i
\(100\) 0 0
\(101\) 3.90433 + 1.14642i 0.0386567 + 0.0113506i 0.301004 0.953623i \(-0.402678\pi\)
−0.262347 + 0.964974i \(0.584497\pi\)
\(102\) 0 0
\(103\) 51.0998 79.5129i 0.496115 0.771970i −0.499420 0.866360i \(-0.666454\pi\)
0.995535 + 0.0943899i \(0.0300900\pi\)
\(104\) 0 0
\(105\) 7.34976 8.48207i 0.0699977 0.0807817i
\(106\) 0 0
\(107\) −41.1603 + 5.91796i −0.384676 + 0.0553080i −0.331940 0.943301i \(-0.607703\pi\)
−0.0527356 + 0.998609i \(0.516794\pi\)
\(108\) 0 0
\(109\) 162.686 74.2964i 1.49254 0.681618i 0.508742 0.860919i \(-0.330111\pi\)
0.983794 + 0.179301i \(0.0573836\pi\)
\(110\) 0 0
\(111\) 81.8294 + 37.3702i 0.737201 + 0.336669i
\(112\) 0 0
\(113\) −48.4135 75.3329i −0.428438 0.666663i 0.558178 0.829721i \(-0.311500\pi\)
−0.986616 + 0.163058i \(0.947864\pi\)
\(114\) 0 0
\(115\) 3.36349 + 11.1958i 0.0292477 + 0.0973550i
\(116\) 0 0
\(117\) 1.96784 1.26465i 0.0168191 0.0108090i
\(118\) 0 0
\(119\) −20.1884 + 44.2064i −0.169650 + 0.371482i
\(120\) 0 0
\(121\) −10.1781 22.2869i −0.0841166 0.184190i
\(122\) 0 0
\(123\) −40.8124 283.856i −0.331808 2.30778i
\(124\) 0 0
\(125\) 19.1069 + 16.5562i 0.152855 + 0.132450i
\(126\) 0 0
\(127\) 0.764352 + 0.491219i 0.00601852 + 0.00386787i 0.543647 0.839314i \(-0.317043\pi\)
−0.537628 + 0.843182i \(0.680680\pi\)
\(128\) 0 0
\(129\) −88.4617 + 301.273i −0.685750 + 2.33545i
\(130\) 0 0
\(131\) −126.261 145.713i −0.963822 1.11231i −0.993623 0.112755i \(-0.964033\pi\)
0.0298005 0.999556i \(-0.490513\pi\)
\(132\) 0 0
\(133\) −106.637 + 31.3114i −0.801779 + 0.235424i
\(134\) 0 0
\(135\) −1.54934 0.222761i −0.0114766 0.00165008i
\(136\) 0 0
\(137\) 34.0085i 0.248237i 0.992267 + 0.124119i \(0.0396103\pi\)
−0.992267 + 0.124119i \(0.960390\pi\)
\(138\) 0 0
\(139\) 3.78150 0.0272050 0.0136025 0.999907i \(-0.495670\pi\)
0.0136025 + 0.999907i \(0.495670\pi\)
\(140\) 0 0
\(141\) −8.58614 + 59.7179i −0.0608946 + 0.423531i
\(142\) 0 0
\(143\) −0.962543 3.27812i −0.00673107 0.0229239i
\(144\) 0 0
\(145\) −4.65790 + 4.03610i −0.0321235 + 0.0278351i
\(146\) 0 0
\(147\) −82.7014 24.2833i −0.562595 0.165193i
\(148\) 0 0
\(149\) −46.0470 + 71.6505i −0.309040 + 0.480876i −0.960682 0.277651i \(-0.910444\pi\)
0.651642 + 0.758527i \(0.274081\pi\)
\(150\) 0 0
\(151\) 126.433 145.912i 0.837307 0.966304i −0.162484 0.986711i \(-0.551951\pi\)
0.999792 + 0.0204068i \(0.00649615\pi\)
\(152\) 0 0
\(153\) −74.7412 + 10.7462i −0.488505 + 0.0702364i
\(154\) 0 0
\(155\) 16.1056 7.35517i 0.103907 0.0474527i
\(156\) 0 0
\(157\) 237.262 + 108.354i 1.51123 + 0.690153i 0.986895 0.161362i \(-0.0515886\pi\)
0.524330 + 0.851515i \(0.324316\pi\)
\(158\) 0 0
\(159\) 92.3278 + 143.665i 0.580678 + 0.903553i
\(160\) 0 0
\(161\) −91.8900 + 80.6335i −0.570745 + 0.500829i
\(162\) 0 0
\(163\) −152.263 + 97.8536i −0.934130 + 0.600329i −0.916725 0.399520i \(-0.869177\pi\)
−0.0174050 + 0.999849i \(0.505540\pi\)
\(164\) 0 0
\(165\) 10.5806 23.1683i 0.0641250 0.140414i
\(166\) 0 0
\(167\) 116.311 + 254.686i 0.696475 + 1.52507i 0.844194 + 0.536039i \(0.180080\pi\)
−0.147718 + 0.989029i \(0.547193\pi\)
\(168\) 0 0
\(169\) 24.0398 + 167.200i 0.142247 + 0.989352i
\(170\) 0 0
\(171\) −130.505 113.083i −0.763186 0.661305i
\(172\) 0 0
\(173\) 117.055 + 75.2267i 0.676619 + 0.434836i 0.833306 0.552812i \(-0.186445\pi\)
−0.156687 + 0.987648i \(0.550082\pi\)
\(174\) 0 0
\(175\) −37.0505 + 126.182i −0.211717 + 0.721042i
\(176\) 0 0
\(177\) −284.507 328.338i −1.60738 1.85502i
\(178\) 0 0
\(179\) 199.070 58.4522i 1.11212 0.326548i 0.326464 0.945210i \(-0.394143\pi\)
0.785658 + 0.618661i \(0.212325\pi\)
\(180\) 0 0
\(181\) −69.8790 10.0471i −0.386072 0.0555088i −0.0534537 0.998570i \(-0.517023\pi\)
−0.332618 + 0.943062i \(0.607932\pi\)
\(182\) 0 0
\(183\) 234.960i 1.28393i
\(184\) 0 0
\(185\) 11.0061 0.0594922
\(186\) 0 0
\(187\) −15.6955 + 109.164i −0.0839331 + 0.583767i
\(188\) 0 0
\(189\) −4.61171 15.7060i −0.0244006 0.0831007i
\(190\) 0 0
\(191\) 123.958 107.410i 0.648994 0.562357i −0.266926 0.963717i \(-0.586008\pi\)
0.915920 + 0.401360i \(0.131463\pi\)
\(192\) 0 0
\(193\) −91.2762 26.8011i −0.472933 0.138866i 0.0365759 0.999331i \(-0.488355\pi\)
−0.509509 + 0.860465i \(0.670173\pi\)
\(194\) 0 0
\(195\) 0.323337 0.503122i 0.00165814 0.00258011i
\(196\) 0 0
\(197\) 233.300 269.243i 1.18426 1.36671i 0.269362 0.963039i \(-0.413187\pi\)
0.914902 0.403675i \(-0.132267\pi\)
\(198\) 0 0
\(199\) −281.059 + 40.4102i −1.41236 + 0.203067i −0.805901 0.592050i \(-0.798319\pi\)
−0.606457 + 0.795116i \(0.707410\pi\)
\(200\) 0 0
\(201\) 260.497 118.965i 1.29600 0.591865i
\(202\) 0 0
\(203\) −58.6292 26.7751i −0.288814 0.131897i
\(204\) 0 0
\(205\) −18.9688 29.5160i −0.0925305 0.143980i
\(206\) 0 0
\(207\) −182.587 52.3757i −0.882061 0.253023i
\(208\) 0 0
\(209\) −212.176 + 136.357i −1.01520 + 0.652428i
\(210\) 0 0
\(211\) 31.5788 69.1478i 0.149662 0.327715i −0.819921 0.572477i \(-0.805983\pi\)
0.969583 + 0.244762i \(0.0787099\pi\)
\(212\) 0 0
\(213\) −148.429 325.014i −0.696850 1.52589i
\(214\) 0 0
\(215\) 5.46709 + 38.0245i 0.0254283 + 0.176858i
\(216\) 0 0
\(217\) 139.934 + 121.254i 0.644859 + 0.558773i
\(218\) 0 0
\(219\) 114.453 + 73.5543i 0.522615 + 0.335864i
\(220\) 0 0
\(221\) −0.729590 + 2.48475i −0.00330131 + 0.0112432i
\(222\) 0 0
\(223\) −171.555 197.985i −0.769305 0.887825i 0.226984 0.973899i \(-0.427114\pi\)
−0.996289 + 0.0860733i \(0.972568\pi\)
\(224\) 0 0
\(225\) −196.057 + 57.5676i −0.871365 + 0.255856i
\(226\) 0 0
\(227\) 90.9603 + 13.0781i 0.400706 + 0.0576128i 0.339722 0.940526i \(-0.389667\pi\)
0.0609841 + 0.998139i \(0.480576\pi\)
\(228\) 0 0
\(229\) 260.193i 1.13621i 0.822954 + 0.568107i \(0.192324\pi\)
−0.822954 + 0.568107i \(0.807676\pi\)
\(230\) 0 0
\(231\) 266.358 1.15306
\(232\) 0 0
\(233\) 55.5470 386.338i 0.238399 1.65810i −0.421559 0.906801i \(-0.638517\pi\)
0.659958 0.751302i \(-0.270574\pi\)
\(234\) 0 0
\(235\) 2.07957 + 7.08236i 0.00884922 + 0.0301377i
\(236\) 0 0
\(237\) 432.169 374.477i 1.82350 1.58007i
\(238\) 0 0
\(239\) 92.8639 + 27.2673i 0.388552 + 0.114089i 0.470173 0.882574i \(-0.344192\pi\)
−0.0816212 + 0.996663i \(0.526010\pi\)
\(240\) 0 0
\(241\) 83.5909 130.070i 0.346850 0.539709i −0.623372 0.781925i \(-0.714238\pi\)
0.970222 + 0.242216i \(0.0778742\pi\)
\(242\) 0 0
\(243\) 218.868 252.587i 0.900690 1.03945i
\(244\) 0 0
\(245\) −10.4380 + 1.50075i −0.0426040 + 0.00612553i
\(246\) 0 0
\(247\) −5.38707 + 2.46019i −0.0218100 + 0.00996029i
\(248\) 0 0
\(249\) 81.3429 + 37.1480i 0.326678 + 0.149189i
\(250\) 0 0
\(251\) 252.052 + 392.201i 1.00419 + 1.56255i 0.814050 + 0.580795i \(0.197258\pi\)
0.190142 + 0.981757i \(0.439105\pi\)
\(252\) 0 0
\(253\) −148.532 + 234.325i −0.587083 + 0.926187i
\(254\) 0 0
\(255\) −16.2411 + 10.4375i −0.0636905 + 0.0409314i
\(256\) 0 0
\(257\) 36.2115 79.2922i 0.140901 0.308530i −0.826005 0.563662i \(-0.809392\pi\)
0.966906 + 0.255133i \(0.0821191\pi\)
\(258\) 0 0
\(259\) 47.8134 + 104.697i 0.184608 + 0.404234i
\(260\) 0 0
\(261\) −14.2522 99.1263i −0.0546062 0.379794i
\(262\) 0 0
\(263\) −282.310 244.623i −1.07342 0.930126i −0.0756704 0.997133i \(-0.524110\pi\)
−0.997753 + 0.0670066i \(0.978655\pi\)
\(264\) 0 0
\(265\) 17.5768 + 11.2959i 0.0663274 + 0.0426260i
\(266\) 0 0
\(267\) −98.2572 + 334.633i −0.368005 + 1.25331i
\(268\) 0 0
\(269\) −155.218 179.131i −0.577017 0.665913i 0.389944 0.920839i \(-0.372494\pi\)
−0.966961 + 0.254926i \(0.917949\pi\)
\(270\) 0 0
\(271\) 332.647 97.6739i 1.22748 0.360420i 0.397181 0.917740i \(-0.369989\pi\)
0.830298 + 0.557320i \(0.188170\pi\)
\(272\) 0 0
\(273\) 6.19069 + 0.890086i 0.0226765 + 0.00326039i
\(274\) 0 0
\(275\) 298.443i 1.08525i
\(276\) 0 0
\(277\) −400.755 −1.44677 −0.723385 0.690445i \(-0.757415\pi\)
−0.723385 + 0.690445i \(0.757415\pi\)
\(278\) 0 0
\(279\) −40.9431 + 284.765i −0.146749 + 1.02066i
\(280\) 0 0
\(281\) −74.4668 253.611i −0.265007 0.902529i −0.979254 0.202636i \(-0.935049\pi\)
0.714248 0.699893i \(-0.246769\pi\)
\(282\) 0 0
\(283\) −112.371 + 97.3702i −0.397071 + 0.344064i −0.830396 0.557174i \(-0.811886\pi\)
0.433325 + 0.901238i \(0.357340\pi\)
\(284\) 0 0
\(285\) −42.3618 12.4386i −0.148638 0.0436441i
\(286\) 0 0
\(287\) 198.369 308.669i 0.691182 1.07550i
\(288\) 0 0
\(289\) −134.511 + 155.234i −0.465437 + 0.537143i
\(290\) 0 0
\(291\) −119.501 + 17.1817i −0.410657 + 0.0590436i
\(292\) 0 0
\(293\) −176.752 + 80.7199i −0.603249 + 0.275494i −0.693537 0.720421i \(-0.743949\pi\)
0.0902880 + 0.995916i \(0.471221\pi\)
\(294\) 0 0
\(295\) −48.3501 22.0808i −0.163899 0.0748500i
\(296\) 0 0
\(297\) −20.0835 31.2505i −0.0676211 0.105220i
\(298\) 0 0
\(299\) −4.23523 + 4.94984i −0.0141646 + 0.0165547i
\(300\) 0 0
\(301\) −337.963 + 217.196i −1.12280 + 0.721580i
\(302\) 0 0
\(303\) −7.02249 + 15.3771i −0.0231765 + 0.0507495i
\(304\) 0 0
\(305\) 11.9416 + 26.1485i 0.0391529 + 0.0857329i
\(306\) 0 0
\(307\) −36.3487 252.811i −0.118400 0.823487i −0.959318 0.282326i \(-0.908894\pi\)
0.840919 0.541161i \(-0.182015\pi\)
\(308\) 0 0
\(309\) 296.751 + 257.137i 0.960360 + 0.832157i
\(310\) 0 0
\(311\) −185.020 118.905i −0.594919 0.382331i 0.208256 0.978074i \(-0.433221\pi\)
−0.803175 + 0.595743i \(0.796858\pi\)
\(312\) 0 0
\(313\) −144.555 + 492.309i −0.461837 + 1.57287i 0.318759 + 0.947836i \(0.396734\pi\)
−0.780596 + 0.625036i \(0.785084\pi\)
\(314\) 0 0
\(315\) 14.6110 + 16.8620i 0.0463842 + 0.0535302i
\(316\) 0 0
\(317\) −163.485 + 48.0035i −0.515726 + 0.151431i −0.529231 0.848478i \(-0.677519\pi\)
0.0135048 + 0.999909i \(0.495701\pi\)
\(318\) 0 0
\(319\) −144.781 20.8163i −0.453858 0.0652549i
\(320\) 0 0
\(321\) 172.753i 0.538171i
\(322\) 0 0
\(323\) 191.174 0.591869
\(324\) 0 0
\(325\) −0.997308 + 6.93643i −0.00306864 + 0.0213429i
\(326\) 0 0
\(327\) 209.328 + 712.905i 0.640146 + 2.18014i
\(328\) 0 0
\(329\) −58.3378 + 50.5500i −0.177318 + 0.153647i
\(330\) 0 0
\(331\) 13.0725 + 3.83843i 0.0394939 + 0.0115965i 0.301420 0.953492i \(-0.402539\pi\)
−0.261926 + 0.965088i \(0.584358\pi\)
\(332\) 0 0
\(333\) −96.6852 + 150.445i −0.290346 + 0.451787i
\(334\) 0 0
\(335\) 22.9442 26.4790i 0.0684902 0.0790419i
\(336\) 0 0
\(337\) 361.214 51.9347i 1.07185 0.154109i 0.416275 0.909239i \(-0.363335\pi\)
0.655575 + 0.755130i \(0.272426\pi\)
\(338\) 0 0
\(339\) 338.398 154.541i 0.998223 0.455873i
\(340\) 0 0
\(341\) 382.223 + 174.556i 1.12089 + 0.511893i
\(342\) 0 0
\(343\) −200.431 311.877i −0.584348 0.909264i
\(344\) 0 0
\(345\) −48.0266 + 7.21164i −0.139208 + 0.0209033i
\(346\) 0 0
\(347\) −124.998 + 80.3311i −0.360224 + 0.231502i −0.708216 0.705996i \(-0.750500\pi\)
0.347993 + 0.937497i \(0.386863\pi\)
\(348\) 0 0
\(349\) −68.9481 + 150.975i −0.197559 + 0.432594i −0.982321 0.187203i \(-0.940058\pi\)
0.784762 + 0.619797i \(0.212785\pi\)
\(350\) 0 0
\(351\) −0.362351 0.793437i −0.00103234 0.00226050i
\(352\) 0 0
\(353\) 23.0494 + 160.312i 0.0652957 + 0.454141i 0.996072 + 0.0885513i \(0.0282237\pi\)
−0.930776 + 0.365590i \(0.880867\pi\)
\(354\) 0 0
\(355\) −33.0371 28.6268i −0.0930624 0.0806390i
\(356\) 0 0
\(357\) −169.844 109.152i −0.475754 0.305748i
\(358\) 0 0
\(359\) 122.042 415.637i 0.339950 1.15776i −0.595220 0.803563i \(-0.702935\pi\)
0.935170 0.354200i \(-0.115247\pi\)
\(360\) 0 0
\(361\) 49.8962 + 57.5833i 0.138217 + 0.159510i
\(362\) 0 0
\(363\) 97.6631 28.6765i 0.269044 0.0789986i
\(364\) 0 0
\(365\) 16.4757 + 2.36885i 0.0451389 + 0.00649000i
\(366\) 0 0
\(367\) 293.723i 0.800334i −0.916442 0.400167i \(-0.868952\pi\)
0.916442 0.400167i \(-0.131048\pi\)
\(368\) 0 0
\(369\) 570.098 1.54498
\(370\) 0 0
\(371\) −31.0955 + 216.274i −0.0838154 + 0.582949i
\(372\) 0 0
\(373\) −104.067 354.420i −0.279000 0.950187i −0.973114 0.230322i \(-0.926022\pi\)
0.694114 0.719865i \(-0.255796\pi\)
\(374\) 0 0
\(375\) −79.3770 + 68.7805i −0.211672 + 0.183415i
\(376\) 0 0
\(377\) −3.29543 0.967626i −0.00874120 0.00256665i
\(378\) 0 0
\(379\) −126.682 + 197.122i −0.334255 + 0.520110i −0.967177 0.254105i \(-0.918219\pi\)
0.632922 + 0.774216i \(0.281855\pi\)
\(380\) 0 0
\(381\) −2.47184 + 2.85265i −0.00648776 + 0.00748727i
\(382\) 0 0
\(383\) −198.243 + 28.5031i −0.517607 + 0.0744206i −0.396168 0.918178i \(-0.629660\pi\)
−0.121439 + 0.992599i \(0.538751\pi\)
\(384\) 0 0
\(385\) 29.6428 13.5374i 0.0769942 0.0351621i
\(386\) 0 0
\(387\) −567.795 259.303i −1.46717 0.670035i
\(388\) 0 0
\(389\) −193.489 301.075i −0.497401 0.773971i 0.498260 0.867028i \(-0.333973\pi\)
−0.995661 + 0.0930564i \(0.970336\pi\)
\(390\) 0 0
\(391\) 190.737 88.5508i 0.487820 0.226473i
\(392\) 0 0
\(393\) 673.830 433.044i 1.71458 1.10189i
\(394\) 0 0
\(395\) 29.0634 63.6399i 0.0735782 0.161114i
\(396\) 0 0
\(397\) 48.0793 + 105.279i 0.121107 + 0.265186i 0.960470 0.278385i \(-0.0897991\pi\)
−0.839363 + 0.543571i \(0.817072\pi\)
\(398\) 0 0
\(399\) −65.7081 457.010i −0.164682 1.14539i
\(400\) 0 0
\(401\) −135.822 117.690i −0.338708 0.293492i 0.468853 0.883276i \(-0.344667\pi\)
−0.807561 + 0.589784i \(0.799213\pi\)
\(402\) 0 0
\(403\) 8.30033 + 5.33430i 0.0205964 + 0.0132365i
\(404\) 0 0
\(405\) 12.4755 42.4876i 0.0308037 0.104908i
\(406\) 0 0
\(407\) 171.049 + 197.401i 0.420269 + 0.485016i
\(408\) 0 0
\(409\) −363.170 + 106.636i −0.887947 + 0.260725i −0.693731 0.720234i \(-0.744034\pi\)
−0.194216 + 0.980959i \(0.562216\pi\)
\(410\) 0 0
\(411\) −139.845 20.1067i −0.340257 0.0489215i
\(412\) 0 0
\(413\) 555.863i 1.34591i
\(414\) 0 0
\(415\) 10.9406 0.0263629
\(416\) 0 0
\(417\) −2.23573 + 15.5498i −0.00536145 + 0.0372897i
\(418\) 0 0
\(419\) −82.6386 281.441i −0.197228 0.671697i −0.997409 0.0719387i \(-0.977081\pi\)
0.800181 0.599759i \(-0.204737\pi\)
\(420\) 0 0
\(421\) −109.598 + 94.9676i −0.260329 + 0.225576i −0.775239 0.631668i \(-0.782371\pi\)
0.514910 + 0.857244i \(0.327825\pi\)
\(422\) 0 0
\(423\) −115.079 33.7904i −0.272055 0.0798826i
\(424\) 0 0
\(425\) 122.301 190.304i 0.287767 0.447774i
\(426\) 0 0
\(427\) −196.864 + 227.193i −0.461040 + 0.532069i
\(428\) 0 0
\(429\) 14.0490 2.01993i 0.0327481 0.00470847i
\(430\) 0 0
\(431\) −30.0663 + 13.7308i −0.0697593 + 0.0318580i −0.449989 0.893034i \(-0.648572\pi\)
0.380230 + 0.924892i \(0.375845\pi\)
\(432\) 0 0
\(433\) 497.978 + 227.419i 1.15006 + 0.525217i 0.896912 0.442209i \(-0.145805\pi\)
0.253153 + 0.967426i \(0.418532\pi\)
\(434\) 0 0
\(435\) −13.8428 21.5399i −0.0318226 0.0495170i
\(436\) 0 0
\(437\) 438.691 + 197.041i 1.00387 + 0.450896i
\(438\) 0 0
\(439\) 51.8019 33.2911i 0.118000 0.0758339i −0.480310 0.877099i \(-0.659476\pi\)
0.598309 + 0.801265i \(0.295839\pi\)
\(440\) 0 0
\(441\) 71.1805 155.864i 0.161407 0.353432i
\(442\) 0 0
\(443\) 321.694 + 704.412i 0.726172 + 1.59010i 0.805047 + 0.593211i \(0.202140\pi\)
−0.0788751 + 0.996885i \(0.525133\pi\)
\(444\) 0 0
\(445\) 6.07247 + 42.2350i 0.0136460 + 0.0949101i
\(446\) 0 0
\(447\) −267.408 231.710i −0.598228 0.518368i
\(448\) 0 0
\(449\) 445.424 + 286.257i 0.992036 + 0.637543i 0.932684 0.360694i \(-0.117460\pi\)
0.0593522 + 0.998237i \(0.481096\pi\)
\(450\) 0 0
\(451\) 234.589 798.937i 0.520153 1.77148i
\(452\) 0 0
\(453\) 525.250 + 606.171i 1.15949 + 1.33813i
\(454\) 0 0
\(455\) 0.734196 0.215579i 0.00161362 0.000473801i
\(456\) 0 0
\(457\) 516.622 + 74.2791i 1.13046 + 0.162536i 0.682061 0.731295i \(-0.261084\pi\)
0.448403 + 0.893831i \(0.351993\pi\)
\(458\) 0 0
\(459\) 28.1571i 0.0613445i
\(460\) 0 0
\(461\) −527.521 −1.14430 −0.572149 0.820150i \(-0.693890\pi\)
−0.572149 + 0.820150i \(0.693890\pi\)
\(462\) 0 0
\(463\) 123.518 859.085i 0.266777 1.85548i −0.211647 0.977346i \(-0.567883\pi\)
0.478424 0.878129i \(-0.341208\pi\)
\(464\) 0 0
\(465\) 20.7230 + 70.5759i 0.0445655 + 0.151776i
\(466\) 0 0
\(467\) −311.132 + 269.598i −0.666236 + 0.577297i −0.920932 0.389724i \(-0.872570\pi\)
0.254695 + 0.967021i \(0.418025\pi\)
\(468\) 0 0
\(469\) 351.562 + 103.228i 0.749599 + 0.220102i
\(470\) 0 0
\(471\) −585.836 + 911.578i −1.24381 + 1.93541i
\(472\) 0 0
\(473\) −597.030 + 689.010i −1.26222 + 1.45668i
\(474\) 0 0
\(475\) 512.062 73.6234i 1.07803 0.154997i
\(476\) 0 0
\(477\) −308.814 + 141.031i −0.647409 + 0.295662i
\(478\) 0 0
\(479\) −201.772 92.1460i −0.421235 0.192372i 0.193509 0.981099i \(-0.438013\pi\)
−0.614744 + 0.788727i \(0.710741\pi\)
\(480\) 0 0
\(481\) 3.31588 + 5.15960i 0.00689371 + 0.0107268i
\(482\) 0 0
\(483\) −277.243 425.531i −0.574002 0.881017i
\(484\) 0 0
\(485\) −12.4260 + 7.98569i −0.0256206 + 0.0164653i
\(486\) 0 0
\(487\) −235.358 + 515.362i −0.483281 + 1.05824i 0.498267 + 0.867024i \(0.333970\pi\)
−0.981548 + 0.191214i \(0.938757\pi\)
\(488\) 0 0
\(489\) −312.359 683.971i −0.638771 1.39871i
\(490\) 0 0
\(491\) 6.31765 + 43.9402i 0.0128669 + 0.0894913i 0.995243 0.0974237i \(-0.0310602\pi\)
−0.982376 + 0.186915i \(0.940151\pi\)
\(492\) 0 0
\(493\) 83.7895 + 72.6040i 0.169958 + 0.147270i
\(494\) 0 0
\(495\) 42.5955 + 27.3745i 0.0860516 + 0.0553020i
\(496\) 0 0
\(497\) 128.794 438.634i 0.259144 0.882563i
\(498\) 0 0
\(499\) 41.0545 + 47.3795i 0.0822736 + 0.0949488i 0.795394 0.606093i \(-0.207264\pi\)
−0.713120 + 0.701042i \(0.752719\pi\)
\(500\) 0 0
\(501\) −1116.06 + 327.703i −2.22766 + 0.654099i
\(502\) 0 0
\(503\) 690.036 + 99.2121i 1.37184 + 0.197241i 0.788524 0.615004i \(-0.210846\pi\)
0.583316 + 0.812245i \(0.301755\pi\)
\(504\) 0 0
\(505\) 2.06822i 0.00409549i
\(506\) 0 0
\(507\) −701.753 −1.38413
\(508\) 0 0
\(509\) −133.208 + 926.481i −0.261705 + 1.82020i 0.258333 + 0.966056i \(0.416827\pi\)
−0.520038 + 0.854143i \(0.674082\pi\)
\(510\) 0 0
\(511\) 49.0411 + 167.019i 0.0959708 + 0.326847i
\(512\) 0 0
\(513\) −48.6644 + 42.1680i −0.0948624 + 0.0821987i
\(514\) 0 0
\(515\) 46.0940 + 13.5344i 0.0895030 + 0.0262804i
\(516\) 0 0
\(517\) −94.7078 + 147.368i −0.183187 + 0.285045i
\(518\) 0 0
\(519\) −378.544 + 436.863i −0.729372 + 0.841740i
\(520\) 0 0
\(521\) 36.6368 5.26757i 0.0703201 0.0101105i −0.107065 0.994252i \(-0.534145\pi\)
0.177385 + 0.984142i \(0.443236\pi\)
\(522\) 0 0
\(523\) −134.443 + 61.3982i −0.257062 + 0.117396i −0.539778 0.841807i \(-0.681492\pi\)
0.282716 + 0.959204i \(0.408765\pi\)
\(524\) 0 0
\(525\) −496.966 226.957i −0.946602 0.432299i
\(526\) 0 0
\(527\) −172.194 267.940i −0.326744 0.508424i
\(528\) 0 0
\(529\) 528.959 6.60805i 0.999922 0.0124916i
\(530\) 0 0
\(531\) 726.571 466.939i 1.36831 0.879358i
\(532\) 0 0
\(533\) 8.12213 17.7850i 0.0152385 0.0333677i
\(534\) 0 0
\(535\) −8.78003 19.2256i −0.0164113 0.0359357i
\(536\) 0 0
\(537\) 122.664 + 853.148i 0.228425 + 1.58873i
\(538\) 0 0
\(539\) −189.138 163.889i −0.350905 0.304061i
\(540\) 0 0
\(541\) −803.307 516.254i −1.48486 0.954259i −0.996672 0.0815192i \(-0.974023\pi\)
−0.488185 0.872740i \(-0.662341\pi\)
\(542\) 0 0
\(543\) 82.6287 281.408i 0.152171 0.518246i
\(544\) 0 0
\(545\) 59.5287 + 68.6998i 0.109227 + 0.126055i
\(546\) 0 0
\(547\) 569.680 167.273i 1.04146 0.305801i 0.284099 0.958795i \(-0.408306\pi\)
0.757363 + 0.652994i \(0.226487\pi\)
\(548\) 0 0
\(549\) −462.337 66.4740i −0.842143 0.121082i
\(550\) 0 0
\(551\) 253.546i 0.460157i
\(552\) 0 0
\(553\) 731.644 1.32304
\(554\) 0 0
\(555\) −6.50707 + 45.2577i −0.0117245 + 0.0815454i
\(556\) 0 0
\(557\) 57.9781 + 197.455i 0.104090 + 0.354498i 0.995024 0.0996348i \(-0.0317675\pi\)
−0.890934 + 0.454132i \(0.849949\pi\)
\(558\) 0 0
\(559\) −16.1786 + 14.0189i −0.0289421 + 0.0250785i
\(560\) 0 0
\(561\) −439.613 129.082i −0.783624 0.230093i
\(562\) 0 0
\(563\) 119.290 185.619i 0.211883 0.329696i −0.719003 0.695007i \(-0.755401\pi\)
0.930885 + 0.365311i \(0.119037\pi\)
\(564\) 0 0
\(565\) 29.8057 34.3976i 0.0527534 0.0608807i
\(566\) 0 0
\(567\) 458.367 65.9032i 0.808407 0.116231i
\(568\) 0 0
\(569\) −702.599 + 320.866i −1.23480 + 0.563913i −0.922472 0.386063i \(-0.873835\pi\)
−0.312324 + 0.949976i \(0.601107\pi\)
\(570\) 0 0
\(571\) −35.0993 16.0293i −0.0614699 0.0280724i 0.384443 0.923149i \(-0.374394\pi\)
−0.445913 + 0.895076i \(0.647121\pi\)
\(572\) 0 0
\(573\) 368.391 + 573.228i 0.642916 + 1.00040i
\(574\) 0 0
\(575\) 476.791 310.640i 0.829202 0.540244i
\(576\) 0 0
\(577\) 437.101 280.908i 0.757541 0.486842i −0.103970 0.994580i \(-0.533155\pi\)
0.861511 + 0.507738i \(0.169518\pi\)
\(578\) 0 0
\(579\) 164.173 359.489i 0.283546 0.620879i
\(580\) 0 0
\(581\) 47.5291 + 104.074i 0.0818057 + 0.179130i
\(582\) 0 0
\(583\) 70.5672 + 490.806i 0.121042 + 0.841862i
\(584\) 0 0
\(585\) 0.898529 + 0.778580i 0.00153595 + 0.00133091i
\(586\) 0 0
\(587\) −164.166 105.503i −0.279670 0.179733i 0.393285 0.919417i \(-0.371339\pi\)
−0.672955 + 0.739684i \(0.734975\pi\)
\(588\) 0 0
\(589\) 205.207 698.871i 0.348399 1.18654i
\(590\) 0 0
\(591\) 969.213 + 1118.53i 1.63995 + 1.89261i
\(592\) 0 0
\(593\) 727.164 213.514i 1.22625 0.360058i 0.396414 0.918072i \(-0.370255\pi\)
0.829832 + 0.558014i \(0.188436\pi\)
\(594\) 0 0
\(595\) −24.4494 3.51529i −0.0410914 0.00590806i
\(596\) 0 0
\(597\) 1179.63i 1.97593i
\(598\) 0 0
\(599\) −734.619 −1.22641 −0.613204 0.789924i \(-0.710120\pi\)
−0.613204 + 0.789924i \(0.710120\pi\)
\(600\) 0 0
\(601\) 63.8759 444.267i 0.106283 0.739212i −0.865084 0.501627i \(-0.832735\pi\)
0.971367 0.237585i \(-0.0763559\pi\)
\(602\) 0 0
\(603\) 160.391 + 546.243i 0.265989 + 0.905875i
\(604\) 0 0
\(605\) 9.41141 8.15503i 0.0155561 0.0134794i
\(606\) 0 0
\(607\) 310.839 + 91.2704i 0.512090 + 0.150363i 0.527561 0.849517i \(-0.323107\pi\)
−0.0154711 + 0.999880i \(0.504925\pi\)
\(608\) 0 0
\(609\) 144.764 225.257i 0.237708 0.369881i
\(610\) 0 0
\(611\) −2.69366 + 3.10865i −0.00440861 + 0.00508781i
\(612\) 0 0
\(613\) 103.646 14.9020i 0.169080 0.0243100i −0.0572549 0.998360i \(-0.518235\pi\)
0.226335 + 0.974050i \(0.427326\pi\)
\(614\) 0 0
\(615\) 132.587 60.5503i 0.215588 0.0984558i
\(616\) 0 0
\(617\) −558.932 255.256i −0.905886 0.413704i −0.0926907 0.995695i \(-0.529547\pi\)
−0.813196 + 0.581991i \(0.802274\pi\)
\(618\) 0 0
\(619\) −585.673 911.325i −0.946160 1.47225i −0.880296 0.474425i \(-0.842656\pi\)
−0.0658646 0.997829i \(-0.520981\pi\)
\(620\) 0 0
\(621\) −29.0213 + 64.6128i −0.0467332 + 0.104046i
\(622\) 0 0
\(623\) −375.386 + 241.246i −0.602546 + 0.387233i
\(624\) 0 0
\(625\) 251.613 550.956i 0.402581 0.881530i
\(626\) 0 0
\(627\) −435.267 953.103i −0.694206 1.52010i
\(628\) 0 0
\(629\) −28.1761 195.969i −0.0447951 0.311557i
\(630\) 0 0
\(631\) 579.678 + 502.294i 0.918665 + 0.796028i 0.979359 0.202128i \(-0.0647858\pi\)
−0.0606936 + 0.998156i \(0.519331\pi\)
\(632\) 0 0
\(633\) 265.671 + 170.736i 0.419701 + 0.269726i
\(634\) 0 0
\(635\) −0.130106 + 0.443099i −0.000204891 + 0.000697793i
\(636\) 0 0
\(637\) −3.84828 4.44115i −0.00604125 0.00697197i
\(638\) 0 0
\(639\) 681.532 200.116i 1.06656 0.313170i
\(640\) 0 0
\(641\) 90.7553 + 13.0486i 0.141584 + 0.0203567i 0.212742 0.977108i \(-0.431761\pi\)
−0.0711584 + 0.997465i \(0.522670\pi\)
\(642\) 0 0
\(643\) 596.760i 0.928088i 0.885812 + 0.464044i \(0.153602\pi\)
−0.885812 + 0.464044i \(0.846398\pi\)
\(644\) 0 0
\(645\) −159.592 −0.247429
\(646\) 0 0
\(647\) 69.3892 482.613i 0.107248 0.745924i −0.863244 0.504787i \(-0.831571\pi\)
0.970491 0.241136i \(-0.0775200\pi\)
\(648\) 0 0
\(649\) −355.394 1210.36i −0.547602 1.86496i
\(650\) 0 0
\(651\) −581.338 + 503.732i −0.892992 + 0.773782i
\(652\) 0 0
\(653\) −982.088 288.367i −1.50396 0.441603i −0.576996 0.816747i \(-0.695775\pi\)
−0.926967 + 0.375143i \(0.877594\pi\)
\(654\) 0 0
\(655\) 52.9810 82.4401i 0.0808871 0.125863i
\(656\) 0 0
\(657\) −177.115 + 204.402i −0.269582 + 0.311114i
\(658\) 0 0
\(659\) −261.334 + 37.5742i −0.396562 + 0.0570170i −0.337711 0.941250i \(-0.609653\pi\)
−0.0588508 + 0.998267i \(0.518744\pi\)
\(660\) 0 0
\(661\) −359.139 + 164.013i −0.543327 + 0.248129i −0.668120 0.744054i \(-0.732901\pi\)
0.124793 + 0.992183i \(0.460173\pi\)
\(662\) 0 0
\(663\) −9.78614 4.46918i −0.0147604 0.00674084i
\(664\) 0 0
\(665\) −30.5398 47.5208i −0.0459245 0.0714599i
\(666\) 0 0
\(667\) 117.441 + 252.968i 0.176074 + 0.379262i
\(668\) 0 0
\(669\) 915.557 588.393i 1.36855 0.879511i
\(670\) 0 0
\(671\) −283.403 + 620.567i −0.422360 + 0.924839i
\(672\) 0 0
\(673\) −174.974 383.140i −0.259991 0.569301i 0.733951 0.679202i \(-0.237674\pi\)
−0.993943 + 0.109901i \(0.964947\pi\)
\(674\) 0 0
\(675\) 10.8437 + 75.4193i 0.0160647 + 0.111732i
\(676\) 0 0
\(677\) 755.275 + 654.450i 1.11562 + 0.966691i 0.999647 0.0265617i \(-0.00845586\pi\)
0.115973 + 0.993252i \(0.463001\pi\)
\(678\) 0 0
\(679\) −129.947 83.5119i −0.191380 0.122993i
\(680\) 0 0
\(681\) −107.556 + 366.303i −0.157939 + 0.537890i
\(682\) 0 0
\(683\) 354.454 + 409.062i 0.518966 + 0.598919i 0.953372 0.301798i \(-0.0975869\pi\)
−0.434405 + 0.900717i \(0.643041\pi\)
\(684\) 0 0
\(685\) −16.5852 + 4.86986i −0.0242120 + 0.00710929i
\(686\) 0 0
\(687\) −1069.93 153.833i −1.55740 0.223920i
\(688\) 0 0
\(689\) 11.6431i 0.0168986i
\(690\) 0 0
\(691\) −819.906 −1.18655 −0.593275 0.805000i \(-0.702165\pi\)
−0.593275 + 0.805000i \(0.702165\pi\)
\(692\) 0 0
\(693\) −75.3569 + 524.119i −0.108740 + 0.756304i
\(694\) 0 0
\(695\) 0.541494 + 1.84416i 0.000779128 + 0.00265346i
\(696\) 0 0
\(697\) −476.988 + 413.312i −0.684344 + 0.592988i
\(698\) 0 0
\(699\) 1555.81 + 456.827i 2.22576 + 0.653543i
\(700\) 0 0
\(701\) 602.226 937.082i 0.859096 1.33678i −0.0812972 0.996690i \(-0.525906\pi\)
0.940393 0.340089i \(-0.110457\pi\)
\(702\) 0 0
\(703\) 296.500 342.180i 0.421764 0.486742i
\(704\) 0 0
\(705\) −30.3527 + 4.36406i −0.0430534 + 0.00619015i
\(706\) 0 0
\(707\) −19.6743 + 8.98494i −0.0278278 + 0.0127085i
\(708\) 0 0
\(709\) −444.911 203.184i −0.627518 0.286578i 0.0761612 0.997096i \(-0.475734\pi\)
−0.703680 + 0.710517i \(0.748461\pi\)
\(710\) 0 0
\(711\) 614.600 + 956.336i 0.864416 + 1.34506i
\(712\) 0 0
\(713\) −118.975 792.327i −0.166866 1.11126i
\(714\) 0 0
\(715\) 1.46084 0.938824i 0.00204313 0.00131304i
\(716\) 0 0
\(717\) −167.029 + 365.742i −0.232955 + 0.510100i
\(718\) 0 0
\(719\) 59.9432 + 131.257i 0.0833703 + 0.182556i 0.946726 0.322041i \(-0.104369\pi\)
−0.863356 + 0.504596i \(0.831641\pi\)
\(720\) 0 0
\(721\) 71.4972 + 497.274i 0.0991639 + 0.689700i
\(722\) 0 0
\(723\) 485.436 + 420.633i 0.671419 + 0.581788i
\(724\) 0 0
\(725\) 252.392 + 162.203i 0.348127 + 0.223728i
\(726\) 0 0
\(727\) −67.1964 + 228.850i −0.0924298 + 0.314787i −0.992711 0.120523i \(-0.961543\pi\)
0.900281 + 0.435310i \(0.143361\pi\)
\(728\) 0 0
\(729\) 395.779 + 456.753i 0.542907 + 0.626548i
\(730\) 0 0
\(731\) 663.052 194.690i 0.907048 0.266333i
\(732\) 0 0
\(733\) −335.867 48.2904i −0.458209 0.0658806i −0.0906545 0.995882i \(-0.528896\pi\)
−0.367555 + 0.930002i \(0.619805\pi\)
\(734\) 0 0
\(735\) 43.8090i 0.0596041i
\(736\) 0 0
\(737\) 831.506 1.12823
\(738\) 0 0
\(739\) 15.0572 104.725i 0.0203750 0.141712i −0.977095 0.212806i \(-0.931740\pi\)
0.997470 + 0.0710940i \(0.0226490\pi\)
\(740\) 0 0
\(741\) −6.93151 23.6066i −0.00935427 0.0318577i
\(742\) 0 0
\(743\) −1113.16 + 964.554i −1.49819 + 1.29819i −0.662383 + 0.749165i \(0.730455\pi\)
−0.835807 + 0.549024i \(0.815000\pi\)
\(744\) 0 0
\(745\) −41.5362 12.1961i −0.0557532 0.0163706i
\(746\) 0 0
\(747\) −96.1104 + 149.551i −0.128662 + 0.200202i
\(748\) 0 0
\(749\) 144.743 167.043i 0.193249 0.223021i
\(750\) 0 0
\(751\) 401.385 57.7104i 0.534467 0.0768447i 0.130203 0.991487i \(-0.458437\pi\)
0.404263 + 0.914643i \(0.367528\pi\)
\(752\) 0 0
\(753\) −1761.78 + 804.577i −2.33968 + 1.06850i
\(754\) 0 0
\(755\) 89.2629 + 40.7650i 0.118229 + 0.0539934i
\(756\) 0 0
\(757\) 641.109 + 997.585i 0.846907 + 1.31781i 0.946473 + 0.322783i \(0.104618\pi\)
−0.0995658 + 0.995031i \(0.531745\pi\)
\(758\) 0 0
\(759\) −875.747 749.314i −1.15382 0.987238i
\(760\) 0 0
\(761\) −1136.26 + 730.227i −1.49311 + 0.959562i −0.497350 + 0.867550i \(0.665694\pi\)
−0.995758 + 0.0920124i \(0.970670\pi\)
\(762\) 0 0
\(763\) −394.908 + 864.727i −0.517572 + 1.13333i
\(764\) 0 0
\(765\) −15.9433 34.9109i −0.0208409 0.0456352i
\(766\) 0 0
\(767\) −4.21541 29.3188i −0.00549597 0.0382253i
\(768\) 0 0
\(769\) 488.853 + 423.594i 0.635700 + 0.550837i 0.911977 0.410241i \(-0.134555\pi\)
−0.276277 + 0.961078i \(0.589101\pi\)
\(770\) 0 0
\(771\) 304.646 + 195.784i 0.395131 + 0.253935i
\(772\) 0 0
\(773\) 138.664 472.246i 0.179384 0.610926i −0.819879 0.572537i \(-0.805959\pi\)
0.999263 0.0383891i \(-0.0122226\pi\)
\(774\) 0 0
\(775\) −564.412 651.366i −0.728274 0.840473i
\(776\) 0 0
\(777\) −458.789 + 134.713i −0.590462 + 0.173375i
\(778\) 0 0
\(779\) −1428.67 205.412i −1.83398 0.263686i
\(780\) 0 0
\(781\) 1037.45i 1.32836i
\(782\) 0 0
\(783\) −37.3437 −0.0476931
\(784\) 0 0
\(785\) −18.8671 + 131.224i −0.0240345 + 0.167164i
\(786\) 0 0
\(787\) −65.0689 221.604i −0.0826797 0.281581i 0.907768 0.419474i \(-0.137785\pi\)
−0.990447 + 0.137893i \(0.955967\pi\)
\(788\) 0 0
\(789\) 1172.82 1016.25i 1.48646 1.28803i
\(790\) 0 0
\(791\) 456.696 + 134.098i 0.577366 + 0.169530i
\(792\) 0 0
\(793\) −8.66061 + 13.4762i −0.0109213 + 0.0169939i
\(794\) 0 0
\(795\) −56.8414 + 65.5985i −0.0714986 + 0.0825138i
\(796\) 0 0
\(797\) −1384.05 + 198.996i −1.73657 + 0.249681i −0.936610 0.350373i \(-0.886055\pi\)
−0.799960 + 0.600054i \(0.795146\pi\)
\(798\) 0 0
\(799\) 120.782 55.1592i 0.151166 0.0690352i
\(800\) 0 0
\(801\) −630.668 288.016i −0.787351 0.359571i
\(802\) 0 0
\(803\) 213.568 + 332.319i 0.265963 + 0.413847i
\(804\) 0 0
\(805\) −52.4815 33.2665i −0.0651944 0.0413248i
\(806\) 0 0
\(807\) 828.367 532.359i 1.02648 0.659677i
\(808\) 0 0
\(809\) 507.632 1111.56i 0.627481 1.37399i −0.282469 0.959276i \(-0.591154\pi\)
0.909951 0.414716i \(-0.136119\pi\)
\(810\) 0 0
\(811\) −172.707 378.175i −0.212955 0.466307i 0.772766 0.634691i \(-0.218872\pi\)
−0.985721 + 0.168384i \(0.946145\pi\)
\(812\) 0 0
\(813\) 204.973 + 1425.62i 0.252119 + 1.75352i
\(814\) 0 0
\(815\) −69.5245 60.2433i −0.0853061 0.0739182i
\(816\) 0 0
\(817\) 1329.47 + 854.398i 1.62726 + 1.04577i
\(818\) 0 0
\(819\) −3.50289 + 11.9298i −0.00427704 + 0.0145662i
\(820\) 0 0
\(821\) 254.015 + 293.148i 0.309397 + 0.357063i 0.889058 0.457795i \(-0.151361\pi\)
−0.579661 + 0.814858i \(0.696815\pi\)
\(822\) 0 0
\(823\) 33.2587 9.76563i 0.0404115 0.0118659i −0.261464 0.965213i \(-0.584205\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(824\) 0 0
\(825\) −1227.22 176.448i −1.48754 0.213876i
\(826\) 0 0
\(827\) 203.231i 0.245744i −0.992423 0.122872i \(-0.960789\pi\)
0.992423 0.122872i \(-0.0392105\pi\)
\(828\) 0 0
\(829\) −1341.34 −1.61802 −0.809011 0.587794i \(-0.799997\pi\)
−0.809011 + 0.587794i \(0.799997\pi\)
\(830\) 0 0
\(831\) 236.937 1647.94i 0.285123 1.98308i
\(832\) 0 0
\(833\) 53.4436 + 182.012i 0.0641580 + 0.218502i
\(834\) 0 0
\(835\) −107.550 + 93.1925i −0.128802 + 0.111608i
\(836\) 0 0
\(837\) 102.934 + 30.2240i 0.122979 + 0.0361099i
\(838\) 0 0
\(839\) 362.076 563.401i 0.431556 0.671515i −0.555568 0.831471i \(-0.687499\pi\)
0.987124 + 0.159957i \(0.0511355\pi\)
\(840\) 0 0
\(841\) 454.446 524.459i 0.540364 0.623613i
\(842\) 0 0
\(843\) 1086.89 156.272i 1.28932 0.185376i
\(844\) 0 0
\(845\) −78.0977 + 35.6660i −0.0924233 + 0.0422083i
\(846\) 0 0
\(847\) 118.462 + 54.0997i 0.139860 + 0.0638721i
\(848\) 0 0
\(849\) −333.957 519.647i −0.393353 0.612069i
\(850\) 0 0
\(851\) 137.328 478.736i 0.161372 0.562557i
\(852\) 0 0
\(853\) −793.676 + 510.064i −0.930452 + 0.597965i −0.915672 0.401925i \(-0.868341\pi\)
−0.0147798 + 0.999891i \(0.504705\pi\)
\(854\) 0 0
\(855\) 36.4605 79.8374i 0.0426439 0.0933771i
\(856\) 0 0
\(857\) 480.945 + 1053.12i 0.561197 + 1.22885i 0.951354 + 0.308101i \(0.0996934\pi\)
−0.390157 + 0.920748i \(0.627579\pi\)
\(858\) 0 0
\(859\) 163.143 + 1134.69i 0.189922 + 1.32094i 0.832204 + 0.554470i \(0.187079\pi\)
−0.642281 + 0.766469i \(0.722012\pi\)
\(860\) 0 0
\(861\) 1151.99 + 998.203i 1.33796 + 1.15935i
\(862\) 0 0
\(863\) −407.422 261.834i −0.472100 0.303400i 0.282872 0.959158i \(-0.408713\pi\)
−0.754972 + 0.655758i \(0.772349\pi\)
\(864\) 0 0
\(865\) −19.9247 + 67.8574i −0.0230344 + 0.0784478i
\(866\) 0 0
\(867\) −558.808 644.899i −0.644531 0.743828i
\(868\) 0 0
\(869\) 1593.11 467.780i 1.83327 0.538297i
\(870\) 0 0
\(871\) 19.3259 + 2.77864i 0.0221881 + 0.00319017i
\(872\) 0 0
\(873\) 240.007i 0.274922i
\(874\) 0 0
\(875\) −134.382 −0.153579
\(876\) 0 0
\(877\) 0.837900 5.82772i 0.000955416 0.00664507i −0.989338 0.145637i \(-0.953477\pi\)
0.990294 + 0.138992i \(0.0443861\pi\)
\(878\) 0 0
\(879\) −227.426 774.541i −0.258732 0.881161i
\(880\) 0 0
\(881\) −114.530 + 99.2405i −0.130000 + 0.112645i −0.717434 0.696627i \(-0.754683\pi\)
0.587434 + 0.809272i \(0.300138\pi\)
\(882\) 0 0
\(883\) 916.663 + 269.157i 1.03812 + 0.304821i 0.756010 0.654560i \(-0.227146\pi\)
0.282114 + 0.959381i \(0.408964\pi\)
\(884\) 0 0
\(885\) 119.384 185.764i 0.134897 0.209903i
\(886\) 0 0
\(887\) 907.506 1047.32i 1.02312 1.18074i 0.0397333 0.999210i \(-0.487349\pi\)
0.983385 0.181531i \(-0.0581054\pi\)
\(888\) 0 0
\(889\) −4.78026 + 0.687297i −0.00537712 + 0.000773113i
\(890\) 0 0
\(891\) 955.933 436.560i 1.07288 0.489966i
\(892\) 0 0
\(893\) 276.215 + 126.143i 0.309311 + 0.141257i
\(894\) 0 0
\(895\) 57.0118 + 88.7121i 0.0637003 + 0.0991196i
\(896\) 0 0
\(897\) −17.8501 20.3420i −0.0198998 0.0226779i
\(898\) 0 0
\(899\) 355.358 228.375i 0.395281 0.254032i
\(900\) 0 0
\(901\) 156.133 341.883i 0.173288 0.379448i
\(902\) 0 0
\(903\) −693.312 1518.14i −0.767787 1.68122i
\(904\) 0 0
\(905\) −5.10661 35.5172i −0.00564266 0.0392455i
\(906\) 0 0
\(907\) 11.9801 + 10.3808i 0.0132084 + 0.0114452i 0.661440 0.749998i \(-0.269946\pi\)
−0.648232 + 0.761443i \(0.724491\pi\)
\(908\) 0 0
\(909\) −28.2712 18.1688i −0.0311014 0.0199876i
\(910\) 0 0
\(911\) 113.499 386.543i 0.124587 0.424306i −0.873451 0.486912i \(-0.838123\pi\)
0.998038 + 0.0626065i \(0.0199413\pi\)
\(912\) 0 0
\(913\) 170.032 + 196.228i 0.186235 + 0.214926i
\(914\) 0 0
\(915\) −114.585 + 33.6452i −0.125229 + 0.0367707i
\(916\) 0 0
\(917\) 1014.39 + 145.847i 1.10620 + 0.159048i
\(918\) 0 0
\(919\) 1163.05i 1.26557i 0.774329 + 0.632783i \(0.218087\pi\)
−0.774329 + 0.632783i \(0.781913\pi\)
\(920\) 0 0
\(921\) 1061.07 1.15208
\(922\) 0 0
\(923\) 3.46683 24.1123i 0.00375605 0.0261239i
\(924\) 0 0
\(925\) −150.940 514.056i −0.163179 0.555736i
\(926\) 0 0
\(927\) −589.930 + 511.177i −0.636386 + 0.551432i
\(928\) 0 0
\(929\) −1132.41 332.505i −1.21895 0.357917i −0.391882 0.920015i \(-0.628176\pi\)
−0.827070 + 0.562099i \(0.809994\pi\)
\(930\) 0 0
\(931\) −234.538 + 364.948i −0.251920 + 0.391996i
\(932\) 0 0
\(933\) 598.335 690.516i 0.641302 0.740102i
\(934\) 0 0
\(935\) −55.4847 + 7.97750i −0.0593420 + 0.00853209i
\(936\) 0 0
\(937\) −830.817 + 379.421i −0.886677 + 0.404932i −0.806074 0.591814i \(-0.798412\pi\)
−0.0806029 + 0.996746i \(0.525685\pi\)
\(938\) 0 0
\(939\) −1938.95 885.487i −2.06490 0.943010i
\(940\) 0 0
\(941\) 842.159 + 1310.42i 0.894962 + 1.39259i 0.919585 + 0.392891i \(0.128525\pi\)
−0.0246234 + 0.999697i \(0.507839\pi\)
\(942\) 0 0
\(943\) −1520.55 + 456.810i −1.61246 + 0.484422i
\(944\) 0 0
\(945\) 6.99912 4.49806i 0.00740648 0.00475986i
\(946\) 0 0
\(947\) −204.993 + 448.873i −0.216466 + 0.473994i −0.986449 0.164070i \(-0.947538\pi\)
0.769983 + 0.638065i \(0.220265\pi\)
\(948\) 0 0
\(949\) 3.85325 + 8.43745i 0.00406033 + 0.00889088i
\(950\) 0 0
\(951\) −100.737 700.644i −0.105928 0.736744i
\(952\) 0 0
\(953\) −298.040 258.253i −0.312738 0.270989i 0.484321 0.874890i \(-0.339067\pi\)
−0.797059 + 0.603901i \(0.793612\pi\)
\(954\) 0 0
\(955\) 70.1318 + 45.0710i 0.0734365 + 0.0471948i
\(956\) 0 0
\(957\) 171.196 583.041i 0.178889 0.609239i
\(958\) 0 0
\(959\) −118.376 136.613i −0.123437 0.142454i
\(960\) 0 0
\(961\) −242.264 + 71.1353i −0.252096 + 0.0740221i
\(962\) 0 0
\(963\) 339.931 + 48.8746i 0.352991 + 0.0507525i
\(964\) 0 0
\(965\) 48.3513i 0.0501049i
\(966\) 0 0
\(967\) −951.697 −0.984175 −0.492087 0.870546i \(-0.663766\pi\)
−0.492087 + 0.870546i \(0.663766\pi\)
\(968\) 0 0
\(969\) −113.027 + 786.121i −0.116643 + 0.811270i
\(970\) 0 0
\(971\) 44.2245 + 150.615i 0.0455453 + 0.155113i 0.979126 0.203254i \(-0.0651518\pi\)
−0.933581 + 0.358367i \(0.883334\pi\)
\(972\) 0 0
\(973\) −15.1904 + 13.1626i −0.0156120 + 0.0135278i
\(974\) 0 0
\(975\) −27.9335 8.20201i −0.0286497 0.00841231i
\(976\) 0 0
\(977\) 847.836 1319.26i 0.867795 1.35032i −0.0679684 0.997687i \(-0.521652\pi\)
0.935764 0.352628i \(-0.114712\pi\)
\(978\) 0 0
\(979\) −663.140 + 765.305i −0.677365 + 0.781721i
\(980\) 0 0
\(981\) −1462.02 + 210.207i −1.49034 + 0.214278i
\(982\) 0 0
\(983\) −1482.06 + 676.836i −1.50769 + 0.688541i −0.986328 0.164792i \(-0.947305\pi\)
−0.521366 + 0.853333i \(0.674577\pi\)
\(984\) 0 0
\(985\) 164.711 + 75.2212i 0.167220 + 0.0763667i
\(986\) 0 0
\(987\) −173.374 269.776i −0.175658 0.273329i
\(988\) 0 0
\(989\) 1722.19 + 236.644i 1.74134 + 0.239276i
\(990\) 0 0
\(991\) 303.039 194.751i 0.305791 0.196520i −0.378741 0.925503i \(-0.623643\pi\)
0.684532 + 0.728983i \(0.260006\pi\)
\(992\) 0 0
\(993\) −23.5127 + 51.4857i −0.0236785 + 0.0518486i
\(994\) 0 0
\(995\) −59.9536 131.280i −0.0602549 0.131940i
\(996\) 0 0
\(997\) 23.1928 + 161.310i 0.0232626 + 0.161795i 0.998141 0.0609412i \(-0.0194102\pi\)
−0.974879 + 0.222736i \(0.928501\pi\)
\(998\) 0 0
\(999\) 50.3981 + 43.6702i 0.0504485 + 0.0437139i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.3.f.a.57.1 yes 40
4.3 odd 2 368.3.p.c.241.4 40
23.5 odd 22 2116.3.d.c.1057.34 40
23.18 even 11 2116.3.d.c.1057.33 40
23.21 odd 22 inner 92.3.f.a.21.1 40
92.67 even 22 368.3.p.c.113.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.f.a.21.1 40 23.21 odd 22 inner
92.3.f.a.57.1 yes 40 1.1 even 1 trivial
368.3.p.c.113.4 40 92.67 even 22
368.3.p.c.241.4 40 4.3 odd 2
2116.3.d.c.1057.33 40 23.18 even 11
2116.3.d.c.1057.34 40 23.5 odd 22