Properties

Label 2116.3.d.c.1057.34
Level $2116$
Weight $3$
Character 2116.1057
Analytic conductor $57.657$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2116,3,Mod(1057,2116)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2116.1057"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2116, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2116 = 2^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2116.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6568239386\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1057.34
Character \(\chi\) \(=\) 2116.1057
Dual form 2116.3.d.c.1057.33

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.15436 q^{3} +0.508267i q^{5} +5.31530i q^{7} +8.25870 q^{9} -12.0624i q^{11} +0.283237 q^{13} +2.11153i q^{15} +9.14306i q^{17} -20.9092i q^{19} +22.0817i q^{21} +24.7417 q^{25} -3.07962 q^{27} +12.1261 q^{29} +34.8352 q^{31} -50.1115i q^{33} -2.70159 q^{35} -21.6541i q^{37} +1.17667 q^{39} +69.0300 q^{41} +75.5813i q^{43} +4.19763i q^{45} +14.5226 q^{47} +20.7476 q^{49} +37.9836i q^{51} -41.1074i q^{53} +6.13091 q^{55} -86.8642i q^{57} +104.578 q^{59} -56.5574i q^{61} +43.8975i q^{63} +0.143960i q^{65} +68.9338i q^{67} -86.0067 q^{71} +32.7488 q^{73} +102.786 q^{75} +64.1152 q^{77} -137.649i q^{79} -87.1222 q^{81} -21.5253i q^{83} -4.64712 q^{85} +50.3761 q^{87} +83.9505i q^{89} +1.50549i q^{91} +144.718 q^{93} +10.6274 q^{95} +29.0611i q^{97} -99.6196i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} + 126 q^{9} - 2 q^{13} - 208 q^{25} - 26 q^{27} + 56 q^{29} - 20 q^{31} + 174 q^{35} - 42 q^{39} + 248 q^{41} - 58 q^{47} - 478 q^{49} + 56 q^{55} + 234 q^{59} - 776 q^{71} + 62 q^{73} + 246 q^{75}+ \cdots - 1232 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2116\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1059\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.15436 1.38479 0.692393 0.721520i \(-0.256556\pi\)
0.692393 + 0.721520i \(0.256556\pi\)
\(4\) 0 0
\(5\) 0.508267i 0.101653i 0.998707 + 0.0508267i \(0.0161856\pi\)
−0.998707 + 0.0508267i \(0.983814\pi\)
\(6\) 0 0
\(7\) 5.31530i 0.759329i 0.925124 + 0.379664i \(0.123961\pi\)
−0.925124 + 0.379664i \(0.876039\pi\)
\(8\) 0 0
\(9\) 8.25870 0.917634
\(10\) 0 0
\(11\) − 12.0624i − 1.09658i −0.836288 0.548290i \(-0.815279\pi\)
0.836288 0.548290i \(-0.184721\pi\)
\(12\) 0 0
\(13\) 0.283237 0.0217875 0.0108937 0.999941i \(-0.496532\pi\)
0.0108937 + 0.999941i \(0.496532\pi\)
\(14\) 0 0
\(15\) 2.11153i 0.140768i
\(16\) 0 0
\(17\) 9.14306i 0.537827i 0.963164 + 0.268913i \(0.0866646\pi\)
−0.963164 + 0.268913i \(0.913335\pi\)
\(18\) 0 0
\(19\) − 20.9092i − 1.10048i −0.835006 0.550241i \(-0.814536\pi\)
0.835006 0.550241i \(-0.185464\pi\)
\(20\) 0 0
\(21\) 22.0817i 1.05151i
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) 24.7417 0.989667
\(26\) 0 0
\(27\) −3.07962 −0.114060
\(28\) 0 0
\(29\) 12.1261 0.418141 0.209070 0.977901i \(-0.432956\pi\)
0.209070 + 0.977901i \(0.432956\pi\)
\(30\) 0 0
\(31\) 34.8352 1.12372 0.561858 0.827233i \(-0.310087\pi\)
0.561858 + 0.827233i \(0.310087\pi\)
\(32\) 0 0
\(33\) − 50.1115i − 1.51853i
\(34\) 0 0
\(35\) −2.70159 −0.0771884
\(36\) 0 0
\(37\) − 21.6541i − 0.585245i −0.956228 0.292622i \(-0.905472\pi\)
0.956228 0.292622i \(-0.0945279\pi\)
\(38\) 0 0
\(39\) 1.17667 0.0301710
\(40\) 0 0
\(41\) 69.0300 1.68366 0.841829 0.539744i \(-0.181479\pi\)
0.841829 + 0.539744i \(0.181479\pi\)
\(42\) 0 0
\(43\) 75.5813i 1.75770i 0.477094 + 0.878852i \(0.341690\pi\)
−0.477094 + 0.878852i \(0.658310\pi\)
\(44\) 0 0
\(45\) 4.19763i 0.0932806i
\(46\) 0 0
\(47\) 14.5226 0.308991 0.154496 0.987993i \(-0.450625\pi\)
0.154496 + 0.987993i \(0.450625\pi\)
\(48\) 0 0
\(49\) 20.7476 0.423420
\(50\) 0 0
\(51\) 37.9836i 0.744776i
\(52\) 0 0
\(53\) − 41.1074i − 0.775611i −0.921741 0.387805i \(-0.873233\pi\)
0.921741 0.387805i \(-0.126767\pi\)
\(54\) 0 0
\(55\) 6.13091 0.111471
\(56\) 0 0
\(57\) − 86.8642i − 1.52393i
\(58\) 0 0
\(59\) 104.578 1.77251 0.886253 0.463202i \(-0.153300\pi\)
0.886253 + 0.463202i \(0.153300\pi\)
\(60\) 0 0
\(61\) − 56.5574i − 0.927171i −0.886052 0.463586i \(-0.846563\pi\)
0.886052 0.463586i \(-0.153437\pi\)
\(62\) 0 0
\(63\) 43.8975i 0.696786i
\(64\) 0 0
\(65\) 0.143960i 0.00221477i
\(66\) 0 0
\(67\) 68.9338i 1.02886i 0.857532 + 0.514431i \(0.171997\pi\)
−0.857532 + 0.514431i \(0.828003\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −86.0067 −1.21136 −0.605681 0.795707i \(-0.707099\pi\)
−0.605681 + 0.795707i \(0.707099\pi\)
\(72\) 0 0
\(73\) 32.7488 0.448614 0.224307 0.974519i \(-0.427988\pi\)
0.224307 + 0.974519i \(0.427988\pi\)
\(74\) 0 0
\(75\) 102.786 1.37048
\(76\) 0 0
\(77\) 64.1152 0.832665
\(78\) 0 0
\(79\) − 137.649i − 1.74239i −0.490940 0.871193i \(-0.663347\pi\)
0.490940 0.871193i \(-0.336653\pi\)
\(80\) 0 0
\(81\) −87.1222 −1.07558
\(82\) 0 0
\(83\) − 21.5253i − 0.259341i −0.991557 0.129671i \(-0.958608\pi\)
0.991557 0.129671i \(-0.0413920\pi\)
\(84\) 0 0
\(85\) −4.64712 −0.0546720
\(86\) 0 0
\(87\) 50.3761 0.579036
\(88\) 0 0
\(89\) 83.9505i 0.943264i 0.881795 + 0.471632i \(0.156335\pi\)
−0.881795 + 0.471632i \(0.843665\pi\)
\(90\) 0 0
\(91\) 1.50549i 0.0165438i
\(92\) 0 0
\(93\) 144.718 1.55611
\(94\) 0 0
\(95\) 10.6274 0.111868
\(96\) 0 0
\(97\) 29.0611i 0.299599i 0.988716 + 0.149799i \(0.0478628\pi\)
−0.988716 + 0.149799i \(0.952137\pi\)
\(98\) 0 0
\(99\) − 99.6196i − 1.00626i
\(100\) 0 0
\(101\) −4.06916 −0.0402887 −0.0201444 0.999797i \(-0.506413\pi\)
−0.0201444 + 0.999797i \(0.506413\pi\)
\(102\) 0 0
\(103\) 94.5172i 0.917642i 0.888529 + 0.458821i \(0.151728\pi\)
−0.888529 + 0.458821i \(0.848272\pi\)
\(104\) 0 0
\(105\) −11.2234 −0.106889
\(106\) 0 0
\(107\) 41.5836i 0.388631i 0.980939 + 0.194316i \(0.0622486\pi\)
−0.980939 + 0.194316i \(0.937751\pi\)
\(108\) 0 0
\(109\) 178.849i 1.64081i 0.571781 + 0.820406i \(0.306253\pi\)
−0.571781 + 0.820406i \(0.693747\pi\)
\(110\) 0 0
\(111\) − 89.9588i − 0.810439i
\(112\) 0 0
\(113\) 89.5484i 0.792463i 0.918151 + 0.396232i \(0.129682\pi\)
−0.918151 + 0.396232i \(0.870318\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.33917 0.0199929
\(118\) 0 0
\(119\) −48.5981 −0.408388
\(120\) 0 0
\(121\) −24.5011 −0.202488
\(122\) 0 0
\(123\) 286.775 2.33151
\(124\) 0 0
\(125\) 25.2821i 0.202256i
\(126\) 0 0
\(127\) 0.908587 0.00715423 0.00357712 0.999994i \(-0.498861\pi\)
0.00357712 + 0.999994i \(0.498861\pi\)
\(128\) 0 0
\(129\) 313.992i 2.43405i
\(130\) 0 0
\(131\) 192.805 1.47180 0.735899 0.677092i \(-0.236760\pi\)
0.735899 + 0.677092i \(0.236760\pi\)
\(132\) 0 0
\(133\) 111.139 0.835628
\(134\) 0 0
\(135\) − 1.56527i − 0.0115946i
\(136\) 0 0
\(137\) − 34.0085i − 0.248237i −0.992267 0.124119i \(-0.960390\pi\)
0.992267 0.124119i \(-0.0396103\pi\)
\(138\) 0 0
\(139\) 3.78150 0.0272050 0.0136025 0.999907i \(-0.495670\pi\)
0.0136025 + 0.999907i \(0.495670\pi\)
\(140\) 0 0
\(141\) 60.3320 0.427887
\(142\) 0 0
\(143\) − 3.41651i − 0.0238917i
\(144\) 0 0
\(145\) 6.16329i 0.0425054i
\(146\) 0 0
\(147\) 86.1929 0.586346
\(148\) 0 0
\(149\) − 85.1711i − 0.571618i −0.958287 0.285809i \(-0.907738\pi\)
0.958287 0.285809i \(-0.0922623\pi\)
\(150\) 0 0
\(151\) −193.069 −1.27860 −0.639302 0.768956i \(-0.720777\pi\)
−0.639302 + 0.768956i \(0.720777\pi\)
\(152\) 0 0
\(153\) 75.5098i 0.493528i
\(154\) 0 0
\(155\) 17.7056i 0.114230i
\(156\) 0 0
\(157\) − 260.833i − 1.66136i −0.556751 0.830679i \(-0.687952\pi\)
0.556751 0.830679i \(-0.312048\pi\)
\(158\) 0 0
\(159\) − 170.775i − 1.07406i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −180.996 −1.11040 −0.555201 0.831716i \(-0.687359\pi\)
−0.555201 + 0.831716i \(0.687359\pi\)
\(164\) 0 0
\(165\) 25.4700 0.154364
\(166\) 0 0
\(167\) 279.988 1.67658 0.838288 0.545227i \(-0.183557\pi\)
0.838288 + 0.545227i \(0.183557\pi\)
\(168\) 0 0
\(169\) −168.920 −0.999525
\(170\) 0 0
\(171\) − 172.683i − 1.00984i
\(172\) 0 0
\(173\) 139.144 0.804298 0.402149 0.915574i \(-0.368263\pi\)
0.402149 + 0.915574i \(0.368263\pi\)
\(174\) 0 0
\(175\) 131.509i 0.751482i
\(176\) 0 0
\(177\) 434.454 2.45454
\(178\) 0 0
\(179\) −207.474 −1.15907 −0.579536 0.814946i \(-0.696766\pi\)
−0.579536 + 0.814946i \(0.696766\pi\)
\(180\) 0 0
\(181\) − 70.5976i − 0.390042i −0.980799 0.195021i \(-0.937522\pi\)
0.980799 0.195021i \(-0.0624775\pi\)
\(182\) 0 0
\(183\) − 234.960i − 1.28393i
\(184\) 0 0
\(185\) 11.0061 0.0594922
\(186\) 0 0
\(187\) 110.287 0.589770
\(188\) 0 0
\(189\) − 16.3691i − 0.0866089i
\(190\) 0 0
\(191\) − 164.020i − 0.858742i −0.903128 0.429371i \(-0.858735\pi\)
0.903128 0.429371i \(-0.141265\pi\)
\(192\) 0 0
\(193\) 95.1296 0.492899 0.246450 0.969156i \(-0.420736\pi\)
0.246450 + 0.969156i \(0.420736\pi\)
\(194\) 0 0
\(195\) 0.598062i 0.00306699i
\(196\) 0 0
\(197\) −356.259 −1.80842 −0.904211 0.427086i \(-0.859540\pi\)
−0.904211 + 0.427086i \(0.859540\pi\)
\(198\) 0 0
\(199\) 283.950i 1.42688i 0.700715 + 0.713441i \(0.252864\pi\)
−0.700715 + 0.713441i \(0.747136\pi\)
\(200\) 0 0
\(201\) 286.376i 1.42475i
\(202\) 0 0
\(203\) 64.4538i 0.317506i
\(204\) 0 0
\(205\) 35.0857i 0.171150i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −252.214 −1.20677
\(210\) 0 0
\(211\) 76.0174 0.360272 0.180136 0.983642i \(-0.442346\pi\)
0.180136 + 0.983642i \(0.442346\pi\)
\(212\) 0 0
\(213\) −357.303 −1.67748
\(214\) 0 0
\(215\) −38.4155 −0.178677
\(216\) 0 0
\(217\) 185.160i 0.853270i
\(218\) 0 0
\(219\) 136.050 0.621234
\(220\) 0 0
\(221\) 2.58965i 0.0117179i
\(222\) 0 0
\(223\) 261.972 1.17476 0.587381 0.809311i \(-0.300159\pi\)
0.587381 + 0.809311i \(0.300159\pi\)
\(224\) 0 0
\(225\) 204.334 0.908151
\(226\) 0 0
\(227\) 91.8956i 0.404827i 0.979300 + 0.202413i \(0.0648784\pi\)
−0.979300 + 0.202413i \(0.935122\pi\)
\(228\) 0 0
\(229\) − 260.193i − 1.13621i −0.822954 0.568107i \(-0.807676\pi\)
0.822954 0.568107i \(-0.192324\pi\)
\(230\) 0 0
\(231\) 266.358 1.15306
\(232\) 0 0
\(233\) −390.311 −1.67515 −0.837577 0.546320i \(-0.816028\pi\)
−0.837577 + 0.546320i \(0.816028\pi\)
\(234\) 0 0
\(235\) 7.38135i 0.0314100i
\(236\) 0 0
\(237\) − 571.842i − 2.41283i
\(238\) 0 0
\(239\) −96.7843 −0.404955 −0.202478 0.979287i \(-0.564899\pi\)
−0.202478 + 0.979287i \(0.564899\pi\)
\(240\) 0 0
\(241\) 154.614i 0.641554i 0.947155 + 0.320777i \(0.103944\pi\)
−0.947155 + 0.320777i \(0.896056\pi\)
\(242\) 0 0
\(243\) −334.220 −1.37539
\(244\) 0 0
\(245\) 10.5453i 0.0430421i
\(246\) 0 0
\(247\) − 5.92225i − 0.0239767i
\(248\) 0 0
\(249\) − 89.4239i − 0.359132i
\(250\) 0 0
\(251\) − 466.210i − 1.85741i −0.370820 0.928705i \(-0.620923\pi\)
0.370820 0.928705i \(-0.379077\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −19.3058 −0.0757090
\(256\) 0 0
\(257\) 87.1695 0.339181 0.169590 0.985515i \(-0.445756\pi\)
0.169590 + 0.985515i \(0.445756\pi\)
\(258\) 0 0
\(259\) 115.098 0.444393
\(260\) 0 0
\(261\) 100.146 0.383700
\(262\) 0 0
\(263\) − 373.550i − 1.42034i −0.704029 0.710171i \(-0.748618\pi\)
0.704029 0.710171i \(-0.251382\pi\)
\(264\) 0 0
\(265\) 20.8935 0.0788435
\(266\) 0 0
\(267\) 348.761i 1.30622i
\(268\) 0 0
\(269\) 237.024 0.881129 0.440565 0.897721i \(-0.354778\pi\)
0.440565 + 0.897721i \(0.354778\pi\)
\(270\) 0 0
\(271\) −346.690 −1.27930 −0.639649 0.768667i \(-0.720920\pi\)
−0.639649 + 0.768667i \(0.720920\pi\)
\(272\) 0 0
\(273\) 6.25435i 0.0229097i
\(274\) 0 0
\(275\) − 298.443i − 1.08525i
\(276\) 0 0
\(277\) −400.755 −1.44677 −0.723385 0.690445i \(-0.757415\pi\)
−0.723385 + 0.690445i \(0.757415\pi\)
\(278\) 0 0
\(279\) 287.694 1.03116
\(280\) 0 0
\(281\) − 264.318i − 0.940632i −0.882498 0.470316i \(-0.844140\pi\)
0.882498 0.470316i \(-0.155860\pi\)
\(282\) 0 0
\(283\) 148.688i 0.525401i 0.964877 + 0.262700i \(0.0846131\pi\)
−0.964877 + 0.262700i \(0.915387\pi\)
\(284\) 0 0
\(285\) 44.1502 0.154913
\(286\) 0 0
\(287\) 366.915i 1.27845i
\(288\) 0 0
\(289\) 205.404 0.710742
\(290\) 0 0
\(291\) 120.730i 0.414880i
\(292\) 0 0
\(293\) − 194.311i − 0.663179i −0.943424 0.331589i \(-0.892415\pi\)
0.943424 0.331589i \(-0.107585\pi\)
\(294\) 0 0
\(295\) 53.1535i 0.180181i
\(296\) 0 0
\(297\) 37.1475i 0.125076i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −401.737 −1.33468
\(302\) 0 0
\(303\) −16.9048 −0.0557913
\(304\) 0 0
\(305\) 28.7463 0.0942501
\(306\) 0 0
\(307\) 255.410 0.831956 0.415978 0.909375i \(-0.363439\pi\)
0.415978 + 0.909375i \(0.363439\pi\)
\(308\) 0 0
\(309\) 392.658i 1.27074i
\(310\) 0 0
\(311\) −219.934 −0.707182 −0.353591 0.935400i \(-0.615040\pi\)
−0.353591 + 0.935400i \(0.615040\pi\)
\(312\) 0 0
\(313\) 513.093i 1.63927i 0.572884 + 0.819637i \(0.305825\pi\)
−0.572884 + 0.819637i \(0.694175\pi\)
\(314\) 0 0
\(315\) −22.3117 −0.0708307
\(316\) 0 0
\(317\) 170.387 0.537498 0.268749 0.963210i \(-0.413390\pi\)
0.268749 + 0.963210i \(0.413390\pi\)
\(318\) 0 0
\(319\) − 146.269i − 0.458525i
\(320\) 0 0
\(321\) 172.753i 0.538171i
\(322\) 0 0
\(323\) 191.174 0.591869
\(324\) 0 0
\(325\) 7.00776 0.0215623
\(326\) 0 0
\(327\) 743.001i 2.27218i
\(328\) 0 0
\(329\) 77.1919i 0.234626i
\(330\) 0 0
\(331\) −13.6244 −0.0411612 −0.0205806 0.999788i \(-0.506551\pi\)
−0.0205806 + 0.999788i \(0.506551\pi\)
\(332\) 0 0
\(333\) − 178.834i − 0.537040i
\(334\) 0 0
\(335\) −35.0368 −0.104587
\(336\) 0 0
\(337\) − 364.928i − 1.08287i −0.840742 0.541436i \(-0.817881\pi\)
0.840742 0.541436i \(-0.182119\pi\)
\(338\) 0 0
\(339\) 372.016i 1.09739i
\(340\) 0 0
\(341\) − 420.196i − 1.23225i
\(342\) 0 0
\(343\) 370.729i 1.08084i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −148.585 −0.428199 −0.214099 0.976812i \(-0.568682\pi\)
−0.214099 + 0.976812i \(0.568682\pi\)
\(348\) 0 0
\(349\) −165.974 −0.475571 −0.237785 0.971318i \(-0.576421\pi\)
−0.237785 + 0.971318i \(0.576421\pi\)
\(350\) 0 0
\(351\) −0.872261 −0.00248508
\(352\) 0 0
\(353\) −161.960 −0.458812 −0.229406 0.973331i \(-0.573678\pi\)
−0.229406 + 0.973331i \(0.573678\pi\)
\(354\) 0 0
\(355\) − 43.7144i − 0.123139i
\(356\) 0 0
\(357\) −201.894 −0.565529
\(358\) 0 0
\(359\) − 433.184i − 1.20664i −0.797499 0.603320i \(-0.793844\pi\)
0.797499 0.603320i \(-0.206156\pi\)
\(360\) 0 0
\(361\) −76.1936 −0.211063
\(362\) 0 0
\(363\) −101.786 −0.280403
\(364\) 0 0
\(365\) 16.6451i 0.0456031i
\(366\) 0 0
\(367\) 293.723i 0.800334i 0.916442 + 0.400167i \(0.131048\pi\)
−0.916442 + 0.400167i \(0.868952\pi\)
\(368\) 0 0
\(369\) 570.098 1.54498
\(370\) 0 0
\(371\) 218.498 0.588944
\(372\) 0 0
\(373\) − 369.382i − 0.990301i −0.868807 0.495151i \(-0.835113\pi\)
0.868807 0.495151i \(-0.164887\pi\)
\(374\) 0 0
\(375\) 105.031i 0.280082i
\(376\) 0 0
\(377\) 3.43455 0.00911022
\(378\) 0 0
\(379\) − 234.319i − 0.618256i −0.951020 0.309128i \(-0.899963\pi\)
0.951020 0.309128i \(-0.100037\pi\)
\(380\) 0 0
\(381\) 3.77460 0.00990708
\(382\) 0 0
\(383\) 200.282i 0.522930i 0.965213 + 0.261465i \(0.0842055\pi\)
−0.965213 + 0.261465i \(0.915794\pi\)
\(384\) 0 0
\(385\) 32.5877i 0.0846433i
\(386\) 0 0
\(387\) 624.203i 1.61293i
\(388\) 0 0
\(389\) 357.888i 0.920022i 0.887913 + 0.460011i \(0.152154\pi\)
−0.887913 + 0.460011i \(0.847846\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 800.983 2.03813
\(394\) 0 0
\(395\) 69.9623 0.177120
\(396\) 0 0
\(397\) 115.738 0.291531 0.145766 0.989319i \(-0.453435\pi\)
0.145766 + 0.989319i \(0.453435\pi\)
\(398\) 0 0
\(399\) 461.710 1.15717
\(400\) 0 0
\(401\) − 179.718i − 0.448174i −0.974569 0.224087i \(-0.928060\pi\)
0.974569 0.224087i \(-0.0719400\pi\)
\(402\) 0 0
\(403\) 9.86662 0.0244829
\(404\) 0 0
\(405\) − 44.2813i − 0.109337i
\(406\) 0 0
\(407\) −261.200 −0.641768
\(408\) 0 0
\(409\) 378.502 0.925434 0.462717 0.886506i \(-0.346875\pi\)
0.462717 + 0.886506i \(0.346875\pi\)
\(410\) 0 0
\(411\) − 141.284i − 0.343756i
\(412\) 0 0
\(413\) 555.863i 1.34591i
\(414\) 0 0
\(415\) 10.9406 0.0263629
\(416\) 0 0
\(417\) 15.7097 0.0376732
\(418\) 0 0
\(419\) − 293.323i − 0.700054i −0.936740 0.350027i \(-0.886172\pi\)
0.936740 0.350027i \(-0.113828\pi\)
\(420\) 0 0
\(421\) 145.020i 0.344465i 0.985056 + 0.172232i \(0.0550980\pi\)
−0.985056 + 0.172232i \(0.944902\pi\)
\(422\) 0 0
\(423\) 119.938 0.283541
\(424\) 0 0
\(425\) 226.214i 0.532269i
\(426\) 0 0
\(427\) 300.620 0.704028
\(428\) 0 0
\(429\) − 14.1934i − 0.0330849i
\(430\) 0 0
\(431\) − 33.0532i − 0.0766896i −0.999265 0.0383448i \(-0.987791\pi\)
0.999265 0.0383448i \(-0.0122085\pi\)
\(432\) 0 0
\(433\) − 547.450i − 1.26432i −0.774838 0.632159i \(-0.782169\pi\)
0.774838 0.632159i \(-0.217831\pi\)
\(434\) 0 0
\(435\) 25.6045i 0.0588610i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 61.5770 0.140267 0.0701333 0.997538i \(-0.477658\pi\)
0.0701333 + 0.997538i \(0.477658\pi\)
\(440\) 0 0
\(441\) 171.348 0.388544
\(442\) 0 0
\(443\) 774.392 1.74806 0.874032 0.485868i \(-0.161496\pi\)
0.874032 + 0.485868i \(0.161496\pi\)
\(444\) 0 0
\(445\) −42.6693 −0.0958861
\(446\) 0 0
\(447\) − 353.832i − 0.791569i
\(448\) 0 0
\(449\) 529.477 1.17924 0.589618 0.807682i \(-0.299278\pi\)
0.589618 + 0.807682i \(0.299278\pi\)
\(450\) 0 0
\(451\) − 832.666i − 1.84627i
\(452\) 0 0
\(453\) −802.079 −1.77059
\(454\) 0 0
\(455\) −0.765191 −0.00168174
\(456\) 0 0
\(457\) 521.935i 1.14209i 0.820919 + 0.571045i \(0.193462\pi\)
−0.820919 + 0.571045i \(0.806538\pi\)
\(458\) 0 0
\(459\) − 28.1571i − 0.0613445i
\(460\) 0 0
\(461\) −527.521 −1.14430 −0.572149 0.820150i \(-0.693890\pi\)
−0.572149 + 0.820150i \(0.693890\pi\)
\(462\) 0 0
\(463\) −867.919 −1.87456 −0.937278 0.348583i \(-0.886663\pi\)
−0.937278 + 0.348583i \(0.886663\pi\)
\(464\) 0 0
\(465\) 73.5554i 0.158184i
\(466\) 0 0
\(467\) 411.687i 0.881557i 0.897616 + 0.440779i \(0.145298\pi\)
−0.897616 + 0.440779i \(0.854702\pi\)
\(468\) 0 0
\(469\) −366.404 −0.781245
\(470\) 0 0
\(471\) − 1083.60i − 2.30063i
\(472\) 0 0
\(473\) 911.690 1.92746
\(474\) 0 0
\(475\) − 517.328i − 1.08911i
\(476\) 0 0
\(477\) − 339.494i − 0.711727i
\(478\) 0 0
\(479\) 221.817i 0.463083i 0.972825 + 0.231541i \(0.0743769\pi\)
−0.972825 + 0.231541i \(0.925623\pi\)
\(480\) 0 0
\(481\) − 6.13323i − 0.0127510i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.7708 −0.0304552
\(486\) 0 0
\(487\) −566.561 −1.16337 −0.581685 0.813414i \(-0.697606\pi\)
−0.581685 + 0.813414i \(0.697606\pi\)
\(488\) 0 0
\(489\) −751.920 −1.53767
\(490\) 0 0
\(491\) −44.3921 −0.0904115 −0.0452058 0.998978i \(-0.514394\pi\)
−0.0452058 + 0.998978i \(0.514394\pi\)
\(492\) 0 0
\(493\) 110.869i 0.224887i
\(494\) 0 0
\(495\) 50.6334 0.102290
\(496\) 0 0
\(497\) − 457.152i − 0.919822i
\(498\) 0 0
\(499\) −62.6920 −0.125635 −0.0628176 0.998025i \(-0.520009\pi\)
−0.0628176 + 0.998025i \(0.520009\pi\)
\(500\) 0 0
\(501\) 1163.17 2.32170
\(502\) 0 0
\(503\) 697.131i 1.38595i 0.720963 + 0.692974i \(0.243700\pi\)
−0.720963 + 0.692974i \(0.756300\pi\)
\(504\) 0 0
\(505\) − 2.06822i − 0.00409549i
\(506\) 0 0
\(507\) −701.753 −1.38413
\(508\) 0 0
\(509\) 936.009 1.83892 0.919458 0.393187i \(-0.128628\pi\)
0.919458 + 0.393187i \(0.128628\pi\)
\(510\) 0 0
\(511\) 174.070i 0.340645i
\(512\) 0 0
\(513\) 64.3922i 0.125521i
\(514\) 0 0
\(515\) −48.0400 −0.0932815
\(516\) 0 0
\(517\) − 175.177i − 0.338834i
\(518\) 0 0
\(519\) 578.052 1.11378
\(520\) 0 0
\(521\) − 37.0135i − 0.0710432i −0.999369 0.0355216i \(-0.988691\pi\)
0.999369 0.0355216i \(-0.0113093\pi\)
\(522\) 0 0
\(523\) − 147.800i − 0.282600i −0.989967 0.141300i \(-0.954872\pi\)
0.989967 0.141300i \(-0.0451282\pi\)
\(524\) 0 0
\(525\) 546.337i 1.04064i
\(526\) 0 0
\(527\) 318.500i 0.604365i
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 863.677 1.62651
\(532\) 0 0
\(533\) 19.5519 0.0366827
\(534\) 0 0
\(535\) −21.1356 −0.0395057
\(536\) 0 0
\(537\) −861.921 −1.60507
\(538\) 0 0
\(539\) − 250.265i − 0.464314i
\(540\) 0 0
\(541\) −954.893 −1.76505 −0.882526 0.470263i \(-0.844159\pi\)
−0.882526 + 0.470263i \(0.844159\pi\)
\(542\) 0 0
\(543\) − 293.288i − 0.540125i
\(544\) 0 0
\(545\) −90.9029 −0.166794
\(546\) 0 0
\(547\) −593.730 −1.08543 −0.542715 0.839917i \(-0.682603\pi\)
−0.542715 + 0.839917i \(0.682603\pi\)
\(548\) 0 0
\(549\) − 467.091i − 0.850803i
\(550\) 0 0
\(551\) − 253.546i − 0.460157i
\(552\) 0 0
\(553\) 731.644 1.32304
\(554\) 0 0
\(555\) 45.7231 0.0823840
\(556\) 0 0
\(557\) 205.791i 0.369464i 0.982789 + 0.184732i \(0.0591416\pi\)
−0.982789 + 0.184732i \(0.940858\pi\)
\(558\) 0 0
\(559\) 21.4074i 0.0382959i
\(560\) 0 0
\(561\) 458.172 0.816706
\(562\) 0 0
\(563\) 220.646i 0.391911i 0.980613 + 0.195955i \(0.0627808\pi\)
−0.980613 + 0.195955i \(0.937219\pi\)
\(564\) 0 0
\(565\) −45.5145 −0.0805566
\(566\) 0 0
\(567\) − 463.081i − 0.816720i
\(568\) 0 0
\(569\) − 772.399i − 1.35747i −0.734384 0.678734i \(-0.762529\pi\)
0.734384 0.678734i \(-0.237471\pi\)
\(570\) 0 0
\(571\) 38.5863i 0.0675767i 0.999429 + 0.0337883i \(0.0107572\pi\)
−0.999429 + 0.0337883i \(0.989243\pi\)
\(572\) 0 0
\(573\) − 681.397i − 1.18917i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 519.583 0.900491 0.450245 0.892905i \(-0.351337\pi\)
0.450245 + 0.892905i \(0.351337\pi\)
\(578\) 0 0
\(579\) 395.202 0.682560
\(580\) 0 0
\(581\) 114.414 0.196925
\(582\) 0 0
\(583\) −495.853 −0.850519
\(584\) 0 0
\(585\) 1.18892i 0.00203235i
\(586\) 0 0
\(587\) −195.145 −0.332444 −0.166222 0.986088i \(-0.553157\pi\)
−0.166222 + 0.986088i \(0.553157\pi\)
\(588\) 0 0
\(589\) − 728.376i − 1.23663i
\(590\) 0 0
\(591\) −1480.03 −2.50428
\(592\) 0 0
\(593\) −757.862 −1.27801 −0.639007 0.769201i \(-0.720655\pi\)
−0.639007 + 0.769201i \(0.720655\pi\)
\(594\) 0 0
\(595\) − 24.7008i − 0.0415140i
\(596\) 0 0
\(597\) 1179.63i 1.97593i
\(598\) 0 0
\(599\) −734.619 −1.22641 −0.613204 0.789924i \(-0.710120\pi\)
−0.613204 + 0.789924i \(0.710120\pi\)
\(600\) 0 0
\(601\) −448.835 −0.746814 −0.373407 0.927668i \(-0.621810\pi\)
−0.373407 + 0.927668i \(0.621810\pi\)
\(602\) 0 0
\(603\) 569.304i 0.944119i
\(604\) 0 0
\(605\) − 12.4531i − 0.0205836i
\(606\) 0 0
\(607\) −323.961 −0.533709 −0.266854 0.963737i \(-0.585984\pi\)
−0.266854 + 0.963737i \(0.585984\pi\)
\(608\) 0 0
\(609\) 267.764i 0.439678i
\(610\) 0 0
\(611\) 4.11333 0.00673213
\(612\) 0 0
\(613\) − 104.712i − 0.170818i −0.996346 0.0854092i \(-0.972780\pi\)
0.996346 0.0854092i \(-0.0272198\pi\)
\(614\) 0 0
\(615\) 145.759i 0.237006i
\(616\) 0 0
\(617\) 614.459i 0.995882i 0.867211 + 0.497941i \(0.165910\pi\)
−0.867211 + 0.497941i \(0.834090\pi\)
\(618\) 0 0
\(619\) 1083.29i 1.75007i 0.484058 + 0.875036i \(0.339162\pi\)
−0.484058 + 0.875036i \(0.660838\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −446.222 −0.716248
\(624\) 0 0
\(625\) 605.692 0.969107
\(626\) 0 0
\(627\) −1047.79 −1.67112
\(628\) 0 0
\(629\) 197.984 0.314761
\(630\) 0 0
\(631\) 767.024i 1.21557i 0.794102 + 0.607784i \(0.207941\pi\)
−0.794102 + 0.607784i \(0.792059\pi\)
\(632\) 0 0
\(633\) 315.804 0.498900
\(634\) 0 0
\(635\) 0.461805i 0 0.000727252i
\(636\) 0 0
\(637\) 5.87648 0.00922524
\(638\) 0 0
\(639\) −710.304 −1.11159
\(640\) 0 0
\(641\) 91.6885i 0.143040i 0.997439 + 0.0715199i \(0.0227850\pi\)
−0.997439 + 0.0715199i \(0.977215\pi\)
\(642\) 0 0
\(643\) − 596.760i − 0.928088i −0.885812 0.464044i \(-0.846398\pi\)
0.885812 0.464044i \(-0.153602\pi\)
\(644\) 0 0
\(645\) −159.592 −0.247429
\(646\) 0 0
\(647\) −487.575 −0.753594 −0.376797 0.926296i \(-0.622975\pi\)
−0.376797 + 0.926296i \(0.622975\pi\)
\(648\) 0 0
\(649\) − 1261.46i − 1.94369i
\(650\) 0 0
\(651\) 769.220i 1.18160i
\(652\) 0 0
\(653\) 1023.55 1.56746 0.783728 0.621104i \(-0.213316\pi\)
0.783728 + 0.621104i \(0.213316\pi\)
\(654\) 0 0
\(655\) 97.9967i 0.149613i
\(656\) 0 0
\(657\) 270.462 0.411663
\(658\) 0 0
\(659\) 264.022i 0.400640i 0.979731 + 0.200320i \(0.0641982\pi\)
−0.979731 + 0.200320i \(0.935802\pi\)
\(660\) 0 0
\(661\) − 394.818i − 0.597304i −0.954362 0.298652i \(-0.903463\pi\)
0.954362 0.298652i \(-0.0965370\pi\)
\(662\) 0 0
\(663\) 10.7583i 0.0162268i
\(664\) 0 0
\(665\) 56.4881i 0.0849445i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1088.32 1.62679
\(670\) 0 0
\(671\) −682.217 −1.01672
\(672\) 0 0
\(673\) −421.203 −0.625859 −0.312929 0.949776i \(-0.601310\pi\)
−0.312929 + 0.949776i \(0.601310\pi\)
\(674\) 0 0
\(675\) −76.1948 −0.112881
\(676\) 0 0
\(677\) 999.372i 1.47618i 0.674704 + 0.738089i \(0.264271\pi\)
−0.674704 + 0.738089i \(0.735729\pi\)
\(678\) 0 0
\(679\) −154.468 −0.227494
\(680\) 0 0
\(681\) 381.767i 0.560598i
\(682\) 0 0
\(683\) −541.266 −0.792484 −0.396242 0.918146i \(-0.629686\pi\)
−0.396242 + 0.918146i \(0.629686\pi\)
\(684\) 0 0
\(685\) 17.2854 0.0252342
\(686\) 0 0
\(687\) − 1080.94i − 1.57342i
\(688\) 0 0
\(689\) − 11.6431i − 0.0168986i
\(690\) 0 0
\(691\) −819.906 −1.18655 −0.593275 0.805000i \(-0.702165\pi\)
−0.593275 + 0.805000i \(0.702165\pi\)
\(692\) 0 0
\(693\) 529.508 0.764081
\(694\) 0 0
\(695\) 1.92201i 0.00276549i
\(696\) 0 0
\(697\) 631.145i 0.905517i
\(698\) 0 0
\(699\) −1621.49 −2.31973
\(700\) 0 0
\(701\) 1113.91i 1.58903i 0.607243 + 0.794516i \(0.292276\pi\)
−0.607243 + 0.794516i \(0.707724\pi\)
\(702\) 0 0
\(703\) −452.769 −0.644052
\(704\) 0 0
\(705\) 30.6648i 0.0434962i
\(706\) 0 0
\(707\) − 21.6288i − 0.0305924i
\(708\) 0 0
\(709\) 489.110i 0.689860i 0.938628 + 0.344930i \(0.112097\pi\)
−0.938628 + 0.344930i \(0.887903\pi\)
\(710\) 0 0
\(711\) − 1136.80i − 1.59887i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 1.73650 0.00242867
\(716\) 0 0
\(717\) −402.077 −0.560777
\(718\) 0 0
\(719\) 144.297 0.200692 0.100346 0.994953i \(-0.468005\pi\)
0.100346 + 0.994953i \(0.468005\pi\)
\(720\) 0 0
\(721\) −502.387 −0.696792
\(722\) 0 0
\(723\) 642.324i 0.888415i
\(724\) 0 0
\(725\) 300.019 0.413820
\(726\) 0 0
\(727\) 238.511i 0.328076i 0.986454 + 0.164038i \(0.0524520\pi\)
−0.986454 + 0.164038i \(0.947548\pi\)
\(728\) 0 0
\(729\) −604.371 −0.829042
\(730\) 0 0
\(731\) −691.044 −0.945341
\(732\) 0 0
\(733\) − 339.321i − 0.462921i −0.972844 0.231461i \(-0.925650\pi\)
0.972844 0.231461i \(-0.0743504\pi\)
\(734\) 0 0
\(735\) 43.8090i 0.0596041i
\(736\) 0 0
\(737\) 831.506 1.12823
\(738\) 0 0
\(739\) −105.802 −0.143169 −0.0715844 0.997435i \(-0.522806\pi\)
−0.0715844 + 0.997435i \(0.522806\pi\)
\(740\) 0 0
\(741\) − 24.6032i − 0.0332027i
\(742\) 0 0
\(743\) 1472.92i 1.98239i 0.132413 + 0.991195i \(0.457728\pi\)
−0.132413 + 0.991195i \(0.542272\pi\)
\(744\) 0 0
\(745\) 43.2897 0.0581070
\(746\) 0 0
\(747\) − 177.771i − 0.237980i
\(748\) 0 0
\(749\) −221.029 −0.295099
\(750\) 0 0
\(751\) − 405.512i − 0.539963i −0.962866 0.269981i \(-0.912982\pi\)
0.962866 0.269981i \(-0.0870176\pi\)
\(752\) 0 0
\(753\) − 1936.80i − 2.57212i
\(754\) 0 0
\(755\) − 98.1307i − 0.129974i
\(756\) 0 0
\(757\) − 1185.83i − 1.56649i −0.621714 0.783244i \(-0.713564\pi\)
0.621714 0.783244i \(-0.286436\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1350.67 −1.77486 −0.887430 0.460942i \(-0.847512\pi\)
−0.887430 + 0.460942i \(0.847512\pi\)
\(762\) 0 0
\(763\) −950.634 −1.24592
\(764\) 0 0
\(765\) −38.3792 −0.0501688
\(766\) 0 0
\(767\) 29.6203 0.0386184
\(768\) 0 0
\(769\) 646.846i 0.841152i 0.907257 + 0.420576i \(0.138172\pi\)
−0.907257 + 0.420576i \(0.861828\pi\)
\(770\) 0 0
\(771\) 362.133 0.469693
\(772\) 0 0
\(773\) − 492.183i − 0.636718i −0.947970 0.318359i \(-0.896868\pi\)
0.947970 0.318359i \(-0.103132\pi\)
\(774\) 0 0
\(775\) 861.881 1.11210
\(776\) 0 0
\(777\) 478.158 0.615390
\(778\) 0 0
\(779\) − 1443.36i − 1.85284i
\(780\) 0 0
\(781\) 1037.45i 1.32836i
\(782\) 0 0
\(783\) −37.3437 −0.0476931
\(784\) 0 0
\(785\) 132.573 0.168883
\(786\) 0 0
\(787\) − 230.960i − 0.293469i −0.989176 0.146734i \(-0.953124\pi\)
0.989176 0.146734i \(-0.0468762\pi\)
\(788\) 0 0
\(789\) − 1551.86i − 1.96687i
\(790\) 0 0
\(791\) −475.977 −0.601740
\(792\) 0 0
\(793\) − 16.0192i − 0.0202007i
\(794\) 0 0
\(795\) 86.7992 0.109181
\(796\) 0 0
\(797\) 1398.28i 1.75443i 0.480100 + 0.877214i \(0.340600\pi\)
−0.480100 + 0.877214i \(0.659400\pi\)
\(798\) 0 0
\(799\) 132.781i 0.166184i
\(800\) 0 0
\(801\) 693.322i 0.865571i
\(802\) 0 0
\(803\) − 395.028i − 0.491941i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 984.682 1.22018
\(808\) 0 0
\(809\) 1221.99 1.51049 0.755246 0.655441i \(-0.227517\pi\)
0.755246 + 0.655441i \(0.227517\pi\)
\(810\) 0 0
\(811\) −415.745 −0.512632 −0.256316 0.966593i \(-0.582509\pi\)
−0.256316 + 0.966593i \(0.582509\pi\)
\(812\) 0 0
\(813\) −1440.27 −1.77156
\(814\) 0 0
\(815\) − 91.9941i − 0.112876i
\(816\) 0 0
\(817\) 1580.34 1.93432
\(818\) 0 0
\(819\) 12.4334i 0.0151812i
\(820\) 0 0
\(821\) −387.891 −0.472462 −0.236231 0.971697i \(-0.575912\pi\)
−0.236231 + 0.971697i \(0.575912\pi\)
\(822\) 0 0
\(823\) −34.6628 −0.0421176 −0.0210588 0.999778i \(-0.506704\pi\)
−0.0210588 + 0.999778i \(0.506704\pi\)
\(824\) 0 0
\(825\) − 1239.84i − 1.50284i
\(826\) 0 0
\(827\) 203.231i 0.245744i 0.992423 + 0.122872i \(0.0392105\pi\)
−0.992423 + 0.122872i \(0.960789\pi\)
\(828\) 0 0
\(829\) −1341.34 −1.61802 −0.809011 0.587794i \(-0.799997\pi\)
−0.809011 + 0.587794i \(0.799997\pi\)
\(830\) 0 0
\(831\) −1664.88 −2.00347
\(832\) 0 0
\(833\) 189.696i 0.227727i
\(834\) 0 0
\(835\) 142.309i 0.170430i
\(836\) 0 0
\(837\) −107.279 −0.128171
\(838\) 0 0
\(839\) 669.716i 0.798231i 0.916901 + 0.399115i \(0.130683\pi\)
−0.916901 + 0.399115i \(0.869317\pi\)
\(840\) 0 0
\(841\) −693.958 −0.825158
\(842\) 0 0
\(843\) − 1098.07i − 1.30257i
\(844\) 0 0
\(845\) − 85.8564i − 0.101605i
\(846\) 0 0
\(847\) − 130.230i − 0.153755i
\(848\) 0 0
\(849\) 617.705i 0.727568i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −943.444 −1.10603 −0.553015 0.833171i \(-0.686523\pi\)
−0.553015 + 0.833171i \(0.686523\pi\)
\(854\) 0 0
\(855\) 87.7689 0.102654
\(856\) 0 0
\(857\) 1157.75 1.35093 0.675465 0.737392i \(-0.263943\pi\)
0.675465 + 0.737392i \(0.263943\pi\)
\(858\) 0 0
\(859\) −1146.35 −1.33452 −0.667261 0.744824i \(-0.732533\pi\)
−0.667261 + 0.744824i \(0.732533\pi\)
\(860\) 0 0
\(861\) 1524.30i 1.77038i
\(862\) 0 0
\(863\) −484.304 −0.561186 −0.280593 0.959827i \(-0.590531\pi\)
−0.280593 + 0.959827i \(0.590531\pi\)
\(864\) 0 0
\(865\) 70.7221i 0.0817597i
\(866\) 0 0
\(867\) 853.324 0.984226
\(868\) 0 0
\(869\) −1660.37 −1.91067
\(870\) 0 0
\(871\) 19.5246i 0.0224163i
\(872\) 0 0
\(873\) 240.007i 0.274922i
\(874\) 0 0
\(875\) −134.382 −0.153579
\(876\) 0 0
\(877\) −5.88765 −0.00671340 −0.00335670 0.999994i \(-0.501068\pi\)
−0.00335670 + 0.999994i \(0.501068\pi\)
\(878\) 0 0
\(879\) − 807.240i − 0.918361i
\(880\) 0 0
\(881\) 151.544i 0.172014i 0.996295 + 0.0860071i \(0.0274108\pi\)
−0.996295 + 0.0860071i \(0.972589\pi\)
\(882\) 0 0
\(883\) −955.362 −1.08195 −0.540975 0.841039i \(-0.681945\pi\)
−0.540975 + 0.841039i \(0.681945\pi\)
\(884\) 0 0
\(885\) 220.819i 0.249513i
\(886\) 0 0
\(887\) −1385.80 −1.56235 −0.781173 0.624315i \(-0.785378\pi\)
−0.781173 + 0.624315i \(0.785378\pi\)
\(888\) 0 0
\(889\) 4.82942i 0.00543241i
\(890\) 0 0
\(891\) 1050.90i 1.17946i
\(892\) 0 0
\(893\) − 303.655i − 0.340039i
\(894\) 0 0
\(895\) − 105.452i − 0.117824i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 422.415 0.469872
\(900\) 0 0
\(901\) 375.847 0.417144
\(902\) 0 0
\(903\) −1668.96 −1.84824
\(904\) 0 0
\(905\) 35.8825 0.0396491
\(906\) 0 0
\(907\) 15.8519i 0.0174773i 0.999962 + 0.00873864i \(0.00278163\pi\)
−0.999962 + 0.00873864i \(0.997218\pi\)
\(908\) 0 0
\(909\) −33.6060 −0.0369703
\(910\) 0 0
\(911\) − 402.861i − 0.442219i −0.975249 0.221109i \(-0.929032\pi\)
0.975249 0.221109i \(-0.0709678\pi\)
\(912\) 0 0
\(913\) −259.647 −0.284388
\(914\) 0 0
\(915\) 119.422 0.130516
\(916\) 0 0
\(917\) 1024.82i 1.11758i
\(918\) 0 0
\(919\) − 1163.05i − 1.26557i −0.774329 0.632783i \(-0.781913\pi\)
0.774329 0.632783i \(-0.218087\pi\)
\(920\) 0 0
\(921\) 1061.07 1.15208
\(922\) 0 0
\(923\) −24.3603 −0.0263925
\(924\) 0 0
\(925\) − 535.758i − 0.579197i
\(926\) 0 0
\(927\) 780.589i 0.842060i
\(928\) 0 0
\(929\) 1180.21 1.27041 0.635206 0.772342i \(-0.280915\pi\)
0.635206 + 0.772342i \(0.280915\pi\)
\(930\) 0 0
\(931\) − 433.815i − 0.465966i
\(932\) 0 0
\(933\) −913.683 −0.979296
\(934\) 0 0
\(935\) 56.0553i 0.0599522i
\(936\) 0 0
\(937\) − 913.355i − 0.974765i −0.873189 0.487382i \(-0.837952\pi\)
0.873189 0.487382i \(-0.162048\pi\)
\(938\) 0 0
\(939\) 2131.57i 2.27004i
\(940\) 0 0
\(941\) − 1557.71i − 1.65537i −0.561191 0.827686i \(-0.689657\pi\)
0.561191 0.827686i \(-0.310343\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 8.31987 0.00880410
\(946\) 0 0
\(947\) −493.466 −0.521084 −0.260542 0.965463i \(-0.583901\pi\)
−0.260542 + 0.965463i \(0.583901\pi\)
\(948\) 0 0
\(949\) 9.27567 0.00977415
\(950\) 0 0
\(951\) 707.849 0.744320
\(952\) 0 0
\(953\) − 394.363i − 0.413812i −0.978361 0.206906i \(-0.933661\pi\)
0.978361 0.206906i \(-0.0663395\pi\)
\(954\) 0 0
\(955\) 83.3659 0.0872941
\(956\) 0 0
\(957\) − 607.656i − 0.634959i
\(958\) 0 0
\(959\) 180.765 0.188494
\(960\) 0 0
\(961\) 252.492 0.262739
\(962\) 0 0
\(963\) 343.426i 0.356621i
\(964\) 0 0
\(965\) 48.3513i 0.0501049i
\(966\) 0 0
\(967\) −951.697 −0.984175 −0.492087 0.870546i \(-0.663766\pi\)
−0.492087 + 0.870546i \(0.663766\pi\)
\(968\) 0 0
\(969\) 794.205 0.819613
\(970\) 0 0
\(971\) 156.973i 0.161662i 0.996728 + 0.0808308i \(0.0257573\pi\)
−0.996728 + 0.0808308i \(0.974243\pi\)
\(972\) 0 0
\(973\) 20.0998i 0.0206576i
\(974\) 0 0
\(975\) 29.1127 0.0298592
\(976\) 0 0
\(977\) 1568.21i 1.60512i 0.596569 + 0.802562i \(0.296530\pi\)
−0.596569 + 0.802562i \(0.703470\pi\)
\(978\) 0 0
\(979\) 1012.64 1.03436
\(980\) 0 0
\(981\) 1477.06i 1.50567i
\(982\) 0 0
\(983\) − 1629.30i − 1.65748i −0.559636 0.828739i \(-0.689059\pi\)
0.559636 0.828739i \(-0.310941\pi\)
\(984\) 0 0
\(985\) − 181.075i − 0.183832i
\(986\) 0 0
\(987\) 320.683i 0.324907i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 360.223 0.363495 0.181747 0.983345i \(-0.441825\pi\)
0.181747 + 0.983345i \(0.441825\pi\)
\(992\) 0 0
\(993\) −56.6005 −0.0569995
\(994\) 0 0
\(995\) −144.322 −0.145048
\(996\) 0 0
\(997\) −162.968 −0.163459 −0.0817294 0.996655i \(-0.526044\pi\)
−0.0817294 + 0.996655i \(0.526044\pi\)
\(998\) 0 0
\(999\) 66.6862i 0.0667530i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2116.3.d.c.1057.34 40
23.14 odd 22 92.3.f.a.57.1 yes 40
23.18 even 11 92.3.f.a.21.1 40
23.22 odd 2 inner 2116.3.d.c.1057.33 40
92.83 even 22 368.3.p.c.241.4 40
92.87 odd 22 368.3.p.c.113.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.f.a.21.1 40 23.18 even 11
92.3.f.a.57.1 yes 40 23.14 odd 22
368.3.p.c.113.4 40 92.87 odd 22
368.3.p.c.241.4 40 92.83 even 22
2116.3.d.c.1057.33 40 23.22 odd 2 inner
2116.3.d.c.1057.34 40 1.1 even 1 trivial