Properties

Label 2-92-23.11-c2-0-0
Degree $2$
Conductor $92$
Sign $-0.479 - 0.877i$
Analytic cond. $2.50681$
Root an. cond. $1.58329$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.591 + 4.11i)3-s + (0.143 + 0.487i)5-s + (−4.01 + 3.48i)7-s + (−7.92 − 2.32i)9-s + (−6.52 + 10.1i)11-s + (−0.185 + 0.214i)13-s + (−2.09 + 0.300i)15-s + (8.31 − 3.79i)17-s + (19.0 + 8.68i)19-s + (−11.9 − 18.5i)21-s + (22.9 − 0.143i)23-s + (20.8 − 13.3i)25-s + (−1.27 + 2.80i)27-s + (5.03 + 11.0i)29-s + (−4.95 − 34.4i)31-s + ⋯
L(s)  = 1  + (−0.197 + 1.37i)3-s + (0.0286 + 0.0975i)5-s + (−0.573 + 0.497i)7-s + (−0.880 − 0.258i)9-s + (−0.592 + 0.922i)11-s + (−0.0142 + 0.0164i)13-s + (−0.139 + 0.0200i)15-s + (0.489 − 0.223i)17-s + (1.00 + 0.457i)19-s + (−0.568 − 0.884i)21-s + (0.999 − 0.00624i)23-s + (0.832 − 0.535i)25-s + (−0.0473 + 0.103i)27-s + (0.173 + 0.380i)29-s + (−0.159 − 1.11i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.479 - 0.877i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.479 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92\)    =    \(2^{2} \cdot 23\)
Sign: $-0.479 - 0.877i$
Analytic conductor: \(2.50681\)
Root analytic conductor: \(1.58329\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{92} (57, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 92,\ (\ :1),\ -0.479 - 0.877i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.552973 + 0.932400i\)
\(L(\frac12)\) \(\approx\) \(0.552973 + 0.932400i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + (-22.9 + 0.143i)T \)
good3 \( 1 + (0.591 - 4.11i)T + (-8.63 - 2.53i)T^{2} \)
5 \( 1 + (-0.143 - 0.487i)T + (-21.0 + 13.5i)T^{2} \)
7 \( 1 + (4.01 - 3.48i)T + (6.97 - 48.5i)T^{2} \)
11 \( 1 + (6.52 - 10.1i)T + (-50.2 - 110. i)T^{2} \)
13 \( 1 + (0.185 - 0.214i)T + (-24.0 - 167. i)T^{2} \)
17 \( 1 + (-8.31 + 3.79i)T + (189. - 218. i)T^{2} \)
19 \( 1 + (-19.0 - 8.68i)T + (236. + 272. i)T^{2} \)
29 \( 1 + (-5.03 - 11.0i)T + (-550. + 635. i)T^{2} \)
31 \( 1 + (4.95 + 34.4i)T + (-922. + 270. i)T^{2} \)
37 \( 1 + (-6.10 + 20.7i)T + (-1.15e3 - 740. i)T^{2} \)
41 \( 1 + (66.2 - 19.4i)T + (1.41e3 - 908. i)T^{2} \)
43 \( 1 + (-74.8 - 10.7i)T + (1.77e3 + 520. i)T^{2} \)
47 \( 1 - 14.5T + 2.20e3T^{2} \)
53 \( 1 + (-31.0 + 26.9i)T + (399. - 2.78e3i)T^{2} \)
59 \( 1 + (68.4 - 79.0i)T + (-495. - 3.44e3i)T^{2} \)
61 \( 1 + (-55.9 + 8.04i)T + (3.57e3 - 1.04e3i)T^{2} \)
67 \( 1 + (37.2 + 57.9i)T + (-1.86e3 + 4.08e3i)T^{2} \)
71 \( 1 + (72.3 - 46.4i)T + (2.09e3 - 4.58e3i)T^{2} \)
73 \( 1 + (-13.6 + 29.7i)T + (-3.48e3 - 4.02e3i)T^{2} \)
79 \( 1 + (104. + 90.1i)T + (888. + 6.17e3i)T^{2} \)
83 \( 1 + (-6.06 + 20.6i)T + (-5.79e3 - 3.72e3i)T^{2} \)
89 \( 1 + (-83.0 - 11.9i)T + (7.60e3 + 2.23e3i)T^{2} \)
97 \( 1 + (-8.18 - 27.8i)T + (-7.91e3 + 5.08e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50880098947267532584099477780, −13.02144998194107717747005145122, −11.95536885900473915175565148919, −10.67321515163940491184252614027, −9.862613092676886700153818875514, −9.060496028962204682674663072019, −7.37642697081315844979860391206, −5.68491241164092659431243891955, −4.59752977323227508741960103253, −3.04662324483060056172993506643, 0.938047565572181851660099983109, 3.10159700335936248848158841301, 5.40608009639977328231332898112, 6.71391917348083224792975274578, 7.55432314160082614907054187325, 8.819424062616376295259347810590, 10.35580838795758173514485669001, 11.51997085602941668888495745033, 12.62988881187300055064399741115, 13.33432357475746775341850551888

Graph of the $Z$-function along the critical line