Properties

Label 9196.2.a.u.1.8
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-2,0,-6,0,-4,0,12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 25 x^{12} + 52 x^{11} + 222 x^{10} - 492 x^{9} - 800 x^{8} + 1984 x^{7} + 854 x^{6} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.267324\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.267324 q^{3} +3.78137 q^{5} -2.20748 q^{7} -2.92854 q^{9} -1.08019 q^{13} -1.01085 q^{15} +2.61660 q^{17} +1.00000 q^{19} +0.590112 q^{21} +1.70282 q^{23} +9.29875 q^{25} +1.58484 q^{27} -7.08406 q^{29} -2.86036 q^{31} -8.34728 q^{35} +3.73304 q^{37} +0.288760 q^{39} -2.75213 q^{41} -6.77495 q^{43} -11.0739 q^{45} -2.53752 q^{47} -2.12705 q^{49} -0.699481 q^{51} -10.7575 q^{53} -0.267324 q^{57} +8.28389 q^{59} +7.41064 q^{61} +6.46468 q^{63} -4.08458 q^{65} +5.90019 q^{67} -0.455205 q^{69} -10.2320 q^{71} -10.2358 q^{73} -2.48578 q^{75} -4.39977 q^{79} +8.36195 q^{81} -1.18562 q^{83} +9.89433 q^{85} +1.89374 q^{87} +13.6214 q^{89} +2.38449 q^{91} +0.764644 q^{93} +3.78137 q^{95} -2.27485 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 6 q^{5} - 4 q^{7} + 12 q^{9} - 4 q^{13} + 2 q^{15} - 8 q^{17} + 14 q^{19} - 18 q^{21} - 2 q^{23} + 8 q^{25} + 10 q^{27} + 4 q^{29} - 2 q^{31} - 24 q^{35} - 10 q^{37} - 24 q^{39} - 4 q^{41}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.267324 −0.154340 −0.0771699 0.997018i \(-0.524588\pi\)
−0.0771699 + 0.997018i \(0.524588\pi\)
\(4\) 0 0
\(5\) 3.78137 1.69108 0.845540 0.533913i \(-0.179279\pi\)
0.845540 + 0.533913i \(0.179279\pi\)
\(6\) 0 0
\(7\) −2.20748 −0.834348 −0.417174 0.908827i \(-0.636979\pi\)
−0.417174 + 0.908827i \(0.636979\pi\)
\(8\) 0 0
\(9\) −2.92854 −0.976179
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.08019 −0.299590 −0.149795 0.988717i \(-0.547861\pi\)
−0.149795 + 0.988717i \(0.547861\pi\)
\(14\) 0 0
\(15\) −1.01085 −0.261001
\(16\) 0 0
\(17\) 2.61660 0.634619 0.317310 0.948322i \(-0.397221\pi\)
0.317310 + 0.948322i \(0.397221\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.590112 0.128773
\(22\) 0 0
\(23\) 1.70282 0.355063 0.177531 0.984115i \(-0.443189\pi\)
0.177531 + 0.984115i \(0.443189\pi\)
\(24\) 0 0
\(25\) 9.29875 1.85975
\(26\) 0 0
\(27\) 1.58484 0.305003
\(28\) 0 0
\(29\) −7.08406 −1.31548 −0.657739 0.753246i \(-0.728487\pi\)
−0.657739 + 0.753246i \(0.728487\pi\)
\(30\) 0 0
\(31\) −2.86036 −0.513736 −0.256868 0.966446i \(-0.582691\pi\)
−0.256868 + 0.966446i \(0.582691\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.34728 −1.41095
\(36\) 0 0
\(37\) 3.73304 0.613707 0.306854 0.951757i \(-0.400724\pi\)
0.306854 + 0.951757i \(0.400724\pi\)
\(38\) 0 0
\(39\) 0.288760 0.0462386
\(40\) 0 0
\(41\) −2.75213 −0.429810 −0.214905 0.976635i \(-0.568944\pi\)
−0.214905 + 0.976635i \(0.568944\pi\)
\(42\) 0 0
\(43\) −6.77495 −1.03317 −0.516585 0.856236i \(-0.672797\pi\)
−0.516585 + 0.856236i \(0.672797\pi\)
\(44\) 0 0
\(45\) −11.0739 −1.65080
\(46\) 0 0
\(47\) −2.53752 −0.370135 −0.185067 0.982726i \(-0.559250\pi\)
−0.185067 + 0.982726i \(0.559250\pi\)
\(48\) 0 0
\(49\) −2.12705 −0.303864
\(50\) 0 0
\(51\) −0.699481 −0.0979469
\(52\) 0 0
\(53\) −10.7575 −1.47766 −0.738830 0.673891i \(-0.764622\pi\)
−0.738830 + 0.673891i \(0.764622\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.267324 −0.0354080
\(58\) 0 0
\(59\) 8.28389 1.07847 0.539235 0.842155i \(-0.318713\pi\)
0.539235 + 0.842155i \(0.318713\pi\)
\(60\) 0 0
\(61\) 7.41064 0.948835 0.474418 0.880300i \(-0.342659\pi\)
0.474418 + 0.880300i \(0.342659\pi\)
\(62\) 0 0
\(63\) 6.46468 0.814473
\(64\) 0 0
\(65\) −4.08458 −0.506630
\(66\) 0 0
\(67\) 5.90019 0.720823 0.360411 0.932794i \(-0.382636\pi\)
0.360411 + 0.932794i \(0.382636\pi\)
\(68\) 0 0
\(69\) −0.455205 −0.0548003
\(70\) 0 0
\(71\) −10.2320 −1.21431 −0.607157 0.794582i \(-0.707690\pi\)
−0.607157 + 0.794582i \(0.707690\pi\)
\(72\) 0 0
\(73\) −10.2358 −1.19801 −0.599005 0.800746i \(-0.704437\pi\)
−0.599005 + 0.800746i \(0.704437\pi\)
\(74\) 0 0
\(75\) −2.48578 −0.287033
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.39977 −0.495013 −0.247506 0.968886i \(-0.579611\pi\)
−0.247506 + 0.968886i \(0.579611\pi\)
\(80\) 0 0
\(81\) 8.36195 0.929105
\(82\) 0 0
\(83\) −1.18562 −0.130138 −0.0650692 0.997881i \(-0.520727\pi\)
−0.0650692 + 0.997881i \(0.520727\pi\)
\(84\) 0 0
\(85\) 9.89433 1.07319
\(86\) 0 0
\(87\) 1.89374 0.203030
\(88\) 0 0
\(89\) 13.6214 1.44386 0.721930 0.691966i \(-0.243255\pi\)
0.721930 + 0.691966i \(0.243255\pi\)
\(90\) 0 0
\(91\) 2.38449 0.249962
\(92\) 0 0
\(93\) 0.764644 0.0792899
\(94\) 0 0
\(95\) 3.78137 0.387960
\(96\) 0 0
\(97\) −2.27485 −0.230976 −0.115488 0.993309i \(-0.536843\pi\)
−0.115488 + 0.993309i \(0.536843\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.73819 −0.172956 −0.0864780 0.996254i \(-0.527561\pi\)
−0.0864780 + 0.996254i \(0.527561\pi\)
\(102\) 0 0
\(103\) 2.55388 0.251641 0.125821 0.992053i \(-0.459844\pi\)
0.125821 + 0.992053i \(0.459844\pi\)
\(104\) 0 0
\(105\) 2.23143 0.217765
\(106\) 0 0
\(107\) −15.6970 −1.51749 −0.758743 0.651390i \(-0.774186\pi\)
−0.758743 + 0.651390i \(0.774186\pi\)
\(108\) 0 0
\(109\) 12.6627 1.21287 0.606433 0.795135i \(-0.292600\pi\)
0.606433 + 0.795135i \(0.292600\pi\)
\(110\) 0 0
\(111\) −0.997931 −0.0947194
\(112\) 0 0
\(113\) 9.95727 0.936701 0.468351 0.883543i \(-0.344848\pi\)
0.468351 + 0.883543i \(0.344848\pi\)
\(114\) 0 0
\(115\) 6.43899 0.600439
\(116\) 0 0
\(117\) 3.16337 0.292453
\(118\) 0 0
\(119\) −5.77609 −0.529493
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0.735710 0.0663368
\(124\) 0 0
\(125\) 16.2551 1.45390
\(126\) 0 0
\(127\) −2.84519 −0.252470 −0.126235 0.992000i \(-0.540289\pi\)
−0.126235 + 0.992000i \(0.540289\pi\)
\(128\) 0 0
\(129\) 1.81111 0.159459
\(130\) 0 0
\(131\) −20.5293 −1.79365 −0.896827 0.442381i \(-0.854134\pi\)
−0.896827 + 0.442381i \(0.854134\pi\)
\(132\) 0 0
\(133\) −2.20748 −0.191413
\(134\) 0 0
\(135\) 5.99287 0.515784
\(136\) 0 0
\(137\) −13.3636 −1.14173 −0.570863 0.821046i \(-0.693391\pi\)
−0.570863 + 0.821046i \(0.693391\pi\)
\(138\) 0 0
\(139\) −18.3087 −1.55292 −0.776462 0.630165i \(-0.782987\pi\)
−0.776462 + 0.630165i \(0.782987\pi\)
\(140\) 0 0
\(141\) 0.678339 0.0571265
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −26.7874 −2.22458
\(146\) 0 0
\(147\) 0.568611 0.0468983
\(148\) 0 0
\(149\) −0.829122 −0.0679243 −0.0339621 0.999423i \(-0.510813\pi\)
−0.0339621 + 0.999423i \(0.510813\pi\)
\(150\) 0 0
\(151\) −14.5812 −1.18660 −0.593299 0.804982i \(-0.702175\pi\)
−0.593299 + 0.804982i \(0.702175\pi\)
\(152\) 0 0
\(153\) −7.66282 −0.619502
\(154\) 0 0
\(155\) −10.8161 −0.868768
\(156\) 0 0
\(157\) 0.923144 0.0736749 0.0368375 0.999321i \(-0.488272\pi\)
0.0368375 + 0.999321i \(0.488272\pi\)
\(158\) 0 0
\(159\) 2.87575 0.228062
\(160\) 0 0
\(161\) −3.75894 −0.296246
\(162\) 0 0
\(163\) 11.0056 0.862025 0.431013 0.902346i \(-0.358156\pi\)
0.431013 + 0.902346i \(0.358156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.28230 −0.176610 −0.0883048 0.996093i \(-0.528145\pi\)
−0.0883048 + 0.996093i \(0.528145\pi\)
\(168\) 0 0
\(169\) −11.8332 −0.910246
\(170\) 0 0
\(171\) −2.92854 −0.223951
\(172\) 0 0
\(173\) 13.7974 1.04900 0.524499 0.851411i \(-0.324253\pi\)
0.524499 + 0.851411i \(0.324253\pi\)
\(174\) 0 0
\(175\) −20.5268 −1.55168
\(176\) 0 0
\(177\) −2.21449 −0.166451
\(178\) 0 0
\(179\) −13.6449 −1.01987 −0.509935 0.860213i \(-0.670330\pi\)
−0.509935 + 0.860213i \(0.670330\pi\)
\(180\) 0 0
\(181\) 18.2920 1.35963 0.679816 0.733383i \(-0.262060\pi\)
0.679816 + 0.733383i \(0.262060\pi\)
\(182\) 0 0
\(183\) −1.98104 −0.146443
\(184\) 0 0
\(185\) 14.1160 1.03783
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.49850 −0.254479
\(190\) 0 0
\(191\) 12.8005 0.926214 0.463107 0.886302i \(-0.346735\pi\)
0.463107 + 0.886302i \(0.346735\pi\)
\(192\) 0 0
\(193\) 4.73360 0.340732 0.170366 0.985381i \(-0.445505\pi\)
0.170366 + 0.985381i \(0.445505\pi\)
\(194\) 0 0
\(195\) 1.09191 0.0781931
\(196\) 0 0
\(197\) −18.3771 −1.30931 −0.654656 0.755927i \(-0.727186\pi\)
−0.654656 + 0.755927i \(0.727186\pi\)
\(198\) 0 0
\(199\) −24.0810 −1.70706 −0.853529 0.521046i \(-0.825542\pi\)
−0.853529 + 0.521046i \(0.825542\pi\)
\(200\) 0 0
\(201\) −1.57726 −0.111252
\(202\) 0 0
\(203\) 15.6379 1.09757
\(204\) 0 0
\(205\) −10.4068 −0.726843
\(206\) 0 0
\(207\) −4.98677 −0.346605
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.206543 0.0142190 0.00710949 0.999975i \(-0.497737\pi\)
0.00710949 + 0.999975i \(0.497737\pi\)
\(212\) 0 0
\(213\) 2.73526 0.187417
\(214\) 0 0
\(215\) −25.6186 −1.74717
\(216\) 0 0
\(217\) 6.31418 0.428634
\(218\) 0 0
\(219\) 2.73628 0.184900
\(220\) 0 0
\(221\) −2.82642 −0.190125
\(222\) 0 0
\(223\) −25.9944 −1.74071 −0.870357 0.492422i \(-0.836112\pi\)
−0.870357 + 0.492422i \(0.836112\pi\)
\(224\) 0 0
\(225\) −27.2317 −1.81545
\(226\) 0 0
\(227\) −3.72912 −0.247511 −0.123755 0.992313i \(-0.539494\pi\)
−0.123755 + 0.992313i \(0.539494\pi\)
\(228\) 0 0
\(229\) 10.8118 0.714466 0.357233 0.934015i \(-0.383720\pi\)
0.357233 + 0.934015i \(0.383720\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1778 −0.797797 −0.398898 0.916995i \(-0.630607\pi\)
−0.398898 + 0.916995i \(0.630607\pi\)
\(234\) 0 0
\(235\) −9.59528 −0.625927
\(236\) 0 0
\(237\) 1.17617 0.0764001
\(238\) 0 0
\(239\) −18.9208 −1.22389 −0.611944 0.790901i \(-0.709612\pi\)
−0.611944 + 0.790901i \(0.709612\pi\)
\(240\) 0 0
\(241\) 4.28508 0.276026 0.138013 0.990430i \(-0.455928\pi\)
0.138013 + 0.990430i \(0.455928\pi\)
\(242\) 0 0
\(243\) −6.98988 −0.448401
\(244\) 0 0
\(245\) −8.04315 −0.513858
\(246\) 0 0
\(247\) −1.08019 −0.0687306
\(248\) 0 0
\(249\) 0.316944 0.0200855
\(250\) 0 0
\(251\) −14.0418 −0.886311 −0.443156 0.896445i \(-0.646141\pi\)
−0.443156 + 0.896445i \(0.646141\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −2.64500 −0.165636
\(256\) 0 0
\(257\) −0.966932 −0.0603156 −0.0301578 0.999545i \(-0.509601\pi\)
−0.0301578 + 0.999545i \(0.509601\pi\)
\(258\) 0 0
\(259\) −8.24059 −0.512045
\(260\) 0 0
\(261\) 20.7459 1.28414
\(262\) 0 0
\(263\) 17.4928 1.07865 0.539326 0.842097i \(-0.318679\pi\)
0.539326 + 0.842097i \(0.318679\pi\)
\(264\) 0 0
\(265\) −40.6782 −2.49884
\(266\) 0 0
\(267\) −3.64132 −0.222845
\(268\) 0 0
\(269\) −16.3634 −0.997692 −0.498846 0.866691i \(-0.666243\pi\)
−0.498846 + 0.866691i \(0.666243\pi\)
\(270\) 0 0
\(271\) 20.0585 1.21847 0.609234 0.792990i \(-0.291477\pi\)
0.609234 + 0.792990i \(0.291477\pi\)
\(272\) 0 0
\(273\) −0.637431 −0.0385791
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.1655 −0.911209 −0.455605 0.890182i \(-0.650577\pi\)
−0.455605 + 0.890182i \(0.650577\pi\)
\(278\) 0 0
\(279\) 8.37667 0.501498
\(280\) 0 0
\(281\) 17.7065 1.05628 0.528141 0.849157i \(-0.322889\pi\)
0.528141 + 0.849157i \(0.322889\pi\)
\(282\) 0 0
\(283\) −13.2854 −0.789735 −0.394867 0.918738i \(-0.629209\pi\)
−0.394867 + 0.918738i \(0.629209\pi\)
\(284\) 0 0
\(285\) −1.01085 −0.0598777
\(286\) 0 0
\(287\) 6.07526 0.358611
\(288\) 0 0
\(289\) −10.1534 −0.597259
\(290\) 0 0
\(291\) 0.608122 0.0356487
\(292\) 0 0
\(293\) 18.3318 1.07095 0.535477 0.844550i \(-0.320132\pi\)
0.535477 + 0.844550i \(0.320132\pi\)
\(294\) 0 0
\(295\) 31.3244 1.82378
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.83936 −0.106373
\(300\) 0 0
\(301\) 14.9555 0.862023
\(302\) 0 0
\(303\) 0.464659 0.0266940
\(304\) 0 0
\(305\) 28.0224 1.60456
\(306\) 0 0
\(307\) −12.9669 −0.740063 −0.370031 0.929019i \(-0.620653\pi\)
−0.370031 + 0.929019i \(0.620653\pi\)
\(308\) 0 0
\(309\) −0.682715 −0.0388383
\(310\) 0 0
\(311\) −21.4404 −1.21577 −0.607886 0.794024i \(-0.707982\pi\)
−0.607886 + 0.794024i \(0.707982\pi\)
\(312\) 0 0
\(313\) −8.08851 −0.457190 −0.228595 0.973522i \(-0.573413\pi\)
−0.228595 + 0.973522i \(0.573413\pi\)
\(314\) 0 0
\(315\) 24.4453 1.37734
\(316\) 0 0
\(317\) 32.7880 1.84156 0.920780 0.390083i \(-0.127554\pi\)
0.920780 + 0.390083i \(0.127554\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.19619 0.234208
\(322\) 0 0
\(323\) 2.61660 0.145592
\(324\) 0 0
\(325\) −10.0444 −0.557162
\(326\) 0 0
\(327\) −3.38504 −0.187193
\(328\) 0 0
\(329\) 5.60151 0.308821
\(330\) 0 0
\(331\) 11.0146 0.605420 0.302710 0.953083i \(-0.402109\pi\)
0.302710 + 0.953083i \(0.402109\pi\)
\(332\) 0 0
\(333\) −10.9323 −0.599088
\(334\) 0 0
\(335\) 22.3108 1.21897
\(336\) 0 0
\(337\) −15.6294 −0.851385 −0.425693 0.904868i \(-0.639970\pi\)
−0.425693 + 0.904868i \(0.639970\pi\)
\(338\) 0 0
\(339\) −2.66182 −0.144570
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.1477 1.08788
\(344\) 0 0
\(345\) −1.72130 −0.0926716
\(346\) 0 0
\(347\) 3.98533 0.213944 0.106972 0.994262i \(-0.465885\pi\)
0.106972 + 0.994262i \(0.465885\pi\)
\(348\) 0 0
\(349\) −4.30004 −0.230176 −0.115088 0.993355i \(-0.536715\pi\)
−0.115088 + 0.993355i \(0.536715\pi\)
\(350\) 0 0
\(351\) −1.71192 −0.0913757
\(352\) 0 0
\(353\) 17.1224 0.911332 0.455666 0.890151i \(-0.349401\pi\)
0.455666 + 0.890151i \(0.349401\pi\)
\(354\) 0 0
\(355\) −38.6909 −2.05350
\(356\) 0 0
\(357\) 1.54409 0.0817218
\(358\) 0 0
\(359\) 16.9806 0.896203 0.448101 0.893983i \(-0.352100\pi\)
0.448101 + 0.893983i \(0.352100\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −38.7053 −2.02593
\(366\) 0 0
\(367\) 8.61076 0.449478 0.224739 0.974419i \(-0.427847\pi\)
0.224739 + 0.974419i \(0.427847\pi\)
\(368\) 0 0
\(369\) 8.05971 0.419572
\(370\) 0 0
\(371\) 23.7470 1.23288
\(372\) 0 0
\(373\) −8.41225 −0.435570 −0.217785 0.975997i \(-0.569883\pi\)
−0.217785 + 0.975997i \(0.569883\pi\)
\(374\) 0 0
\(375\) −4.34539 −0.224395
\(376\) 0 0
\(377\) 7.65210 0.394103
\(378\) 0 0
\(379\) 9.95201 0.511200 0.255600 0.966783i \(-0.417727\pi\)
0.255600 + 0.966783i \(0.417727\pi\)
\(380\) 0 0
\(381\) 0.760588 0.0389661
\(382\) 0 0
\(383\) 2.02439 0.103441 0.0517207 0.998662i \(-0.483529\pi\)
0.0517207 + 0.998662i \(0.483529\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.8407 1.00856
\(388\) 0 0
\(389\) 23.4981 1.19140 0.595700 0.803207i \(-0.296875\pi\)
0.595700 + 0.803207i \(0.296875\pi\)
\(390\) 0 0
\(391\) 4.45560 0.225330
\(392\) 0 0
\(393\) 5.48798 0.276832
\(394\) 0 0
\(395\) −16.6372 −0.837106
\(396\) 0 0
\(397\) −30.5686 −1.53419 −0.767096 0.641532i \(-0.778299\pi\)
−0.767096 + 0.641532i \(0.778299\pi\)
\(398\) 0 0
\(399\) 0.590112 0.0295426
\(400\) 0 0
\(401\) 3.42757 0.171164 0.0855822 0.996331i \(-0.472725\pi\)
0.0855822 + 0.996331i \(0.472725\pi\)
\(402\) 0 0
\(403\) 3.08972 0.153910
\(404\) 0 0
\(405\) 31.6196 1.57119
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 9.24223 0.456999 0.228499 0.973544i \(-0.426618\pi\)
0.228499 + 0.973544i \(0.426618\pi\)
\(410\) 0 0
\(411\) 3.57240 0.176214
\(412\) 0 0
\(413\) −18.2865 −0.899820
\(414\) 0 0
\(415\) −4.48326 −0.220074
\(416\) 0 0
\(417\) 4.89436 0.239678
\(418\) 0 0
\(419\) −21.8617 −1.06802 −0.534008 0.845479i \(-0.679315\pi\)
−0.534008 + 0.845479i \(0.679315\pi\)
\(420\) 0 0
\(421\) −15.1631 −0.739006 −0.369503 0.929230i \(-0.620472\pi\)
−0.369503 + 0.929230i \(0.620472\pi\)
\(422\) 0 0
\(423\) 7.43121 0.361318
\(424\) 0 0
\(425\) 24.3311 1.18023
\(426\) 0 0
\(427\) −16.3588 −0.791658
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.1392 −1.64443 −0.822213 0.569180i \(-0.807261\pi\)
−0.822213 + 0.569180i \(0.807261\pi\)
\(432\) 0 0
\(433\) −4.12689 −0.198326 −0.0991628 0.995071i \(-0.531616\pi\)
−0.0991628 + 0.995071i \(0.531616\pi\)
\(434\) 0 0
\(435\) 7.16093 0.343341
\(436\) 0 0
\(437\) 1.70282 0.0814570
\(438\) 0 0
\(439\) −33.4222 −1.59515 −0.797577 0.603217i \(-0.793885\pi\)
−0.797577 + 0.603217i \(0.793885\pi\)
\(440\) 0 0
\(441\) 6.22914 0.296626
\(442\) 0 0
\(443\) −20.5059 −0.974266 −0.487133 0.873328i \(-0.661957\pi\)
−0.487133 + 0.873328i \(0.661957\pi\)
\(444\) 0 0
\(445\) 51.5074 2.44168
\(446\) 0 0
\(447\) 0.221644 0.0104834
\(448\) 0 0
\(449\) −3.32297 −0.156821 −0.0784104 0.996921i \(-0.524984\pi\)
−0.0784104 + 0.996921i \(0.524984\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.89790 0.183139
\(454\) 0 0
\(455\) 9.01662 0.422706
\(456\) 0 0
\(457\) 6.68250 0.312594 0.156297 0.987710i \(-0.450044\pi\)
0.156297 + 0.987710i \(0.450044\pi\)
\(458\) 0 0
\(459\) 4.14690 0.193561
\(460\) 0 0
\(461\) 12.1313 0.565012 0.282506 0.959266i \(-0.408834\pi\)
0.282506 + 0.959266i \(0.408834\pi\)
\(462\) 0 0
\(463\) −24.0312 −1.11683 −0.558413 0.829563i \(-0.688589\pi\)
−0.558413 + 0.829563i \(0.688589\pi\)
\(464\) 0 0
\(465\) 2.89140 0.134085
\(466\) 0 0
\(467\) 28.8225 1.33375 0.666873 0.745171i \(-0.267632\pi\)
0.666873 + 0.745171i \(0.267632\pi\)
\(468\) 0 0
\(469\) −13.0245 −0.601417
\(470\) 0 0
\(471\) −0.246779 −0.0113710
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 9.29875 0.426656
\(476\) 0 0
\(477\) 31.5038 1.44246
\(478\) 0 0
\(479\) 21.9551 1.00315 0.501576 0.865113i \(-0.332754\pi\)
0.501576 + 0.865113i \(0.332754\pi\)
\(480\) 0 0
\(481\) −4.03237 −0.183860
\(482\) 0 0
\(483\) 1.00486 0.0457225
\(484\) 0 0
\(485\) −8.60203 −0.390598
\(486\) 0 0
\(487\) 19.4521 0.881458 0.440729 0.897640i \(-0.354720\pi\)
0.440729 + 0.897640i \(0.354720\pi\)
\(488\) 0 0
\(489\) −2.94206 −0.133045
\(490\) 0 0
\(491\) −31.0732 −1.40231 −0.701157 0.713007i \(-0.747333\pi\)
−0.701157 + 0.713007i \(0.747333\pi\)
\(492\) 0 0
\(493\) −18.5362 −0.834827
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.5869 1.01316
\(498\) 0 0
\(499\) −10.7364 −0.480629 −0.240314 0.970695i \(-0.577251\pi\)
−0.240314 + 0.970695i \(0.577251\pi\)
\(500\) 0 0
\(501\) 0.610114 0.0272579
\(502\) 0 0
\(503\) −3.37082 −0.150297 −0.0751487 0.997172i \(-0.523943\pi\)
−0.0751487 + 0.997172i \(0.523943\pi\)
\(504\) 0 0
\(505\) −6.57272 −0.292482
\(506\) 0 0
\(507\) 3.16330 0.140487
\(508\) 0 0
\(509\) −35.6084 −1.57831 −0.789157 0.614192i \(-0.789482\pi\)
−0.789157 + 0.614192i \(0.789482\pi\)
\(510\) 0 0
\(511\) 22.5953 0.999556
\(512\) 0 0
\(513\) 1.58484 0.0699725
\(514\) 0 0
\(515\) 9.65717 0.425546
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.68838 −0.161902
\(520\) 0 0
\(521\) 2.37619 0.104103 0.0520513 0.998644i \(-0.483424\pi\)
0.0520513 + 0.998644i \(0.483424\pi\)
\(522\) 0 0
\(523\) −44.5098 −1.94628 −0.973140 0.230215i \(-0.926057\pi\)
−0.973140 + 0.230215i \(0.926057\pi\)
\(524\) 0 0
\(525\) 5.48730 0.239486
\(526\) 0 0
\(527\) −7.48442 −0.326027
\(528\) 0 0
\(529\) −20.1004 −0.873931
\(530\) 0 0
\(531\) −24.2597 −1.05278
\(532\) 0 0
\(533\) 2.97281 0.128767
\(534\) 0 0
\(535\) −59.3562 −2.56619
\(536\) 0 0
\(537\) 3.64762 0.157406
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 24.8687 1.06919 0.534595 0.845109i \(-0.320464\pi\)
0.534595 + 0.845109i \(0.320464\pi\)
\(542\) 0 0
\(543\) −4.88989 −0.209845
\(544\) 0 0
\(545\) 47.8823 2.05105
\(546\) 0 0
\(547\) −3.61284 −0.154474 −0.0772370 0.997013i \(-0.524610\pi\)
−0.0772370 + 0.997013i \(0.524610\pi\)
\(548\) 0 0
\(549\) −21.7023 −0.926233
\(550\) 0 0
\(551\) −7.08406 −0.301791
\(552\) 0 0
\(553\) 9.71239 0.413013
\(554\) 0 0
\(555\) −3.77355 −0.160178
\(556\) 0 0
\(557\) 0.884220 0.0374656 0.0187328 0.999825i \(-0.494037\pi\)
0.0187328 + 0.999825i \(0.494037\pi\)
\(558\) 0 0
\(559\) 7.31820 0.309527
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.7311 −0.662988 −0.331494 0.943457i \(-0.607553\pi\)
−0.331494 + 0.943457i \(0.607553\pi\)
\(564\) 0 0
\(565\) 37.6521 1.58404
\(566\) 0 0
\(567\) −18.4588 −0.775197
\(568\) 0 0
\(569\) 9.72101 0.407526 0.203763 0.979020i \(-0.434683\pi\)
0.203763 + 0.979020i \(0.434683\pi\)
\(570\) 0 0
\(571\) 15.2407 0.637804 0.318902 0.947788i \(-0.396686\pi\)
0.318902 + 0.947788i \(0.396686\pi\)
\(572\) 0 0
\(573\) −3.42189 −0.142952
\(574\) 0 0
\(575\) 15.8341 0.660328
\(576\) 0 0
\(577\) 0.867254 0.0361042 0.0180521 0.999837i \(-0.494254\pi\)
0.0180521 + 0.999837i \(0.494254\pi\)
\(578\) 0 0
\(579\) −1.26541 −0.0525885
\(580\) 0 0
\(581\) 2.61722 0.108581
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 11.9618 0.494562
\(586\) 0 0
\(587\) −3.13461 −0.129379 −0.0646895 0.997905i \(-0.520606\pi\)
−0.0646895 + 0.997905i \(0.520606\pi\)
\(588\) 0 0
\(589\) −2.86036 −0.117859
\(590\) 0 0
\(591\) 4.91263 0.202079
\(592\) 0 0
\(593\) 9.49179 0.389781 0.194891 0.980825i \(-0.437565\pi\)
0.194891 + 0.980825i \(0.437565\pi\)
\(594\) 0 0
\(595\) −21.8415 −0.895415
\(596\) 0 0
\(597\) 6.43744 0.263467
\(598\) 0 0
\(599\) 9.32986 0.381208 0.190604 0.981667i \(-0.438955\pi\)
0.190604 + 0.981667i \(0.438955\pi\)
\(600\) 0 0
\(601\) 41.2338 1.68196 0.840981 0.541065i \(-0.181979\pi\)
0.840981 + 0.541065i \(0.181979\pi\)
\(602\) 0 0
\(603\) −17.2789 −0.703652
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 27.0481 1.09785 0.548925 0.835872i \(-0.315037\pi\)
0.548925 + 0.835872i \(0.315037\pi\)
\(608\) 0 0
\(609\) −4.18039 −0.169398
\(610\) 0 0
\(611\) 2.74099 0.110889
\(612\) 0 0
\(613\) −31.8532 −1.28654 −0.643269 0.765640i \(-0.722422\pi\)
−0.643269 + 0.765640i \(0.722422\pi\)
\(614\) 0 0
\(615\) 2.78199 0.112181
\(616\) 0 0
\(617\) −25.3344 −1.01993 −0.509963 0.860196i \(-0.670341\pi\)
−0.509963 + 0.860196i \(0.670341\pi\)
\(618\) 0 0
\(619\) 19.8583 0.798173 0.399087 0.916913i \(-0.369327\pi\)
0.399087 + 0.916913i \(0.369327\pi\)
\(620\) 0 0
\(621\) 2.69870 0.108295
\(622\) 0 0
\(623\) −30.0688 −1.20468
\(624\) 0 0
\(625\) 14.9730 0.598918
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.76787 0.389470
\(630\) 0 0
\(631\) −23.5275 −0.936615 −0.468308 0.883565i \(-0.655136\pi\)
−0.468308 + 0.883565i \(0.655136\pi\)
\(632\) 0 0
\(633\) −0.0552139 −0.00219455
\(634\) 0 0
\(635\) −10.7587 −0.426946
\(636\) 0 0
\(637\) 2.29761 0.0910345
\(638\) 0 0
\(639\) 29.9648 1.18539
\(640\) 0 0
\(641\) 41.5323 1.64043 0.820214 0.572056i \(-0.193854\pi\)
0.820214 + 0.572056i \(0.193854\pi\)
\(642\) 0 0
\(643\) 19.7315 0.778135 0.389067 0.921209i \(-0.372797\pi\)
0.389067 + 0.921209i \(0.372797\pi\)
\(644\) 0 0
\(645\) 6.84847 0.269658
\(646\) 0 0
\(647\) −18.9367 −0.744479 −0.372239 0.928137i \(-0.621410\pi\)
−0.372239 + 0.928137i \(0.621410\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.68793 −0.0661553
\(652\) 0 0
\(653\) 1.12045 0.0438466 0.0219233 0.999760i \(-0.493021\pi\)
0.0219233 + 0.999760i \(0.493021\pi\)
\(654\) 0 0
\(655\) −77.6289 −3.03321
\(656\) 0 0
\(657\) 29.9759 1.16947
\(658\) 0 0
\(659\) −10.9076 −0.424899 −0.212450 0.977172i \(-0.568144\pi\)
−0.212450 + 0.977172i \(0.568144\pi\)
\(660\) 0 0
\(661\) −3.75082 −0.145890 −0.0729450 0.997336i \(-0.523240\pi\)
−0.0729450 + 0.997336i \(0.523240\pi\)
\(662\) 0 0
\(663\) 0.755570 0.0293439
\(664\) 0 0
\(665\) −8.34728 −0.323694
\(666\) 0 0
\(667\) −12.0629 −0.467077
\(668\) 0 0
\(669\) 6.94893 0.268661
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −39.7035 −1.53046 −0.765228 0.643759i \(-0.777374\pi\)
−0.765228 + 0.643759i \(0.777374\pi\)
\(674\) 0 0
\(675\) 14.7370 0.567229
\(676\) 0 0
\(677\) 45.6752 1.75544 0.877720 0.479174i \(-0.159064\pi\)
0.877720 + 0.479174i \(0.159064\pi\)
\(678\) 0 0
\(679\) 5.02167 0.192714
\(680\) 0 0
\(681\) 0.996885 0.0382007
\(682\) 0 0
\(683\) 28.9548 1.10793 0.553963 0.832541i \(-0.313115\pi\)
0.553963 + 0.832541i \(0.313115\pi\)
\(684\) 0 0
\(685\) −50.5325 −1.93075
\(686\) 0 0
\(687\) −2.89027 −0.110271
\(688\) 0 0
\(689\) 11.6201 0.442692
\(690\) 0 0
\(691\) 33.1628 1.26157 0.630787 0.775956i \(-0.282732\pi\)
0.630787 + 0.775956i \(0.282732\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −69.2319 −2.62612
\(696\) 0 0
\(697\) −7.20122 −0.272766
\(698\) 0 0
\(699\) 3.25543 0.123132
\(700\) 0 0
\(701\) 37.6787 1.42311 0.711553 0.702632i \(-0.247992\pi\)
0.711553 + 0.702632i \(0.247992\pi\)
\(702\) 0 0
\(703\) 3.73304 0.140794
\(704\) 0 0
\(705\) 2.56505 0.0966054
\(706\) 0 0
\(707\) 3.83701 0.144305
\(708\) 0 0
\(709\) −17.9471 −0.674016 −0.337008 0.941502i \(-0.609415\pi\)
−0.337008 + 0.941502i \(0.609415\pi\)
\(710\) 0 0
\(711\) 12.8849 0.483221
\(712\) 0 0
\(713\) −4.87068 −0.182408
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.05800 0.188895
\(718\) 0 0
\(719\) 47.2012 1.76031 0.880153 0.474690i \(-0.157440\pi\)
0.880153 + 0.474690i \(0.157440\pi\)
\(720\) 0 0
\(721\) −5.63763 −0.209956
\(722\) 0 0
\(723\) −1.14550 −0.0426018
\(724\) 0 0
\(725\) −65.8729 −2.44646
\(726\) 0 0
\(727\) −37.5639 −1.39317 −0.696584 0.717475i \(-0.745298\pi\)
−0.696584 + 0.717475i \(0.745298\pi\)
\(728\) 0 0
\(729\) −23.2173 −0.859899
\(730\) 0 0
\(731\) −17.7273 −0.655669
\(732\) 0 0
\(733\) −23.5701 −0.870583 −0.435291 0.900290i \(-0.643355\pi\)
−0.435291 + 0.900290i \(0.643355\pi\)
\(734\) 0 0
\(735\) 2.15013 0.0793087
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.36640 −0.160621 −0.0803103 0.996770i \(-0.525591\pi\)
−0.0803103 + 0.996770i \(0.525591\pi\)
\(740\) 0 0
\(741\) 0.288760 0.0106079
\(742\) 0 0
\(743\) 2.51725 0.0923488 0.0461744 0.998933i \(-0.485297\pi\)
0.0461744 + 0.998933i \(0.485297\pi\)
\(744\) 0 0
\(745\) −3.13521 −0.114865
\(746\) 0 0
\(747\) 3.47213 0.127038
\(748\) 0 0
\(749\) 34.6508 1.26611
\(750\) 0 0
\(751\) −10.7548 −0.392449 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(752\) 0 0
\(753\) 3.75372 0.136793
\(754\) 0 0
\(755\) −55.1367 −2.00663
\(756\) 0 0
\(757\) −42.6256 −1.54925 −0.774627 0.632418i \(-0.782062\pi\)
−0.774627 + 0.632418i \(0.782062\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.67338 0.169410 0.0847049 0.996406i \(-0.473005\pi\)
0.0847049 + 0.996406i \(0.473005\pi\)
\(762\) 0 0
\(763\) −27.9526 −1.01195
\(764\) 0 0
\(765\) −28.9759 −1.04763
\(766\) 0 0
\(767\) −8.94814 −0.323099
\(768\) 0 0
\(769\) 9.54946 0.344362 0.172181 0.985065i \(-0.444919\pi\)
0.172181 + 0.985065i \(0.444919\pi\)
\(770\) 0 0
\(771\) 0.258484 0.00930909
\(772\) 0 0
\(773\) −5.29914 −0.190597 −0.0952984 0.995449i \(-0.530381\pi\)
−0.0952984 + 0.995449i \(0.530381\pi\)
\(774\) 0 0
\(775\) −26.5978 −0.955420
\(776\) 0 0
\(777\) 2.20291 0.0790290
\(778\) 0 0
\(779\) −2.75213 −0.0986052
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −11.2271 −0.401224
\(784\) 0 0
\(785\) 3.49075 0.124590
\(786\) 0 0
\(787\) 51.4527 1.83409 0.917046 0.398782i \(-0.130567\pi\)
0.917046 + 0.398782i \(0.130567\pi\)
\(788\) 0 0
\(789\) −4.67625 −0.166479
\(790\) 0 0
\(791\) −21.9804 −0.781535
\(792\) 0 0
\(793\) −8.00487 −0.284261
\(794\) 0 0
\(795\) 10.8743 0.385671
\(796\) 0 0
\(797\) −26.0638 −0.923226 −0.461613 0.887081i \(-0.652729\pi\)
−0.461613 + 0.887081i \(0.652729\pi\)
\(798\) 0 0
\(799\) −6.63967 −0.234894
\(800\) 0 0
\(801\) −39.8907 −1.40947
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −14.2139 −0.500975
\(806\) 0 0
\(807\) 4.37432 0.153984
\(808\) 0 0
\(809\) 34.3187 1.20658 0.603291 0.797521i \(-0.293856\pi\)
0.603291 + 0.797521i \(0.293856\pi\)
\(810\) 0 0
\(811\) −32.4926 −1.14097 −0.570484 0.821309i \(-0.693244\pi\)
−0.570484 + 0.821309i \(0.693244\pi\)
\(812\) 0 0
\(813\) −5.36213 −0.188058
\(814\) 0 0
\(815\) 41.6162 1.45775
\(816\) 0 0
\(817\) −6.77495 −0.237025
\(818\) 0 0
\(819\) −6.98306 −0.244008
\(820\) 0 0
\(821\) −2.04163 −0.0712532 −0.0356266 0.999365i \(-0.511343\pi\)
−0.0356266 + 0.999365i \(0.511343\pi\)
\(822\) 0 0
\(823\) −13.5640 −0.472810 −0.236405 0.971655i \(-0.575969\pi\)
−0.236405 + 0.971655i \(0.575969\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −55.6132 −1.93386 −0.966929 0.255044i \(-0.917910\pi\)
−0.966929 + 0.255044i \(0.917910\pi\)
\(828\) 0 0
\(829\) 11.7891 0.409453 0.204727 0.978819i \(-0.434369\pi\)
0.204727 + 0.978819i \(0.434369\pi\)
\(830\) 0 0
\(831\) 4.05412 0.140636
\(832\) 0 0
\(833\) −5.56563 −0.192838
\(834\) 0 0
\(835\) −8.63022 −0.298661
\(836\) 0 0
\(837\) −4.53322 −0.156691
\(838\) 0 0
\(839\) 55.4798 1.91538 0.957688 0.287807i \(-0.0929263\pi\)
0.957688 + 0.287807i \(0.0929263\pi\)
\(840\) 0 0
\(841\) 21.1839 0.730480
\(842\) 0 0
\(843\) −4.73338 −0.163026
\(844\) 0 0
\(845\) −44.7457 −1.53930
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.55151 0.121887
\(850\) 0 0
\(851\) 6.35669 0.217905
\(852\) 0 0
\(853\) −12.5734 −0.430507 −0.215253 0.976558i \(-0.569058\pi\)
−0.215253 + 0.976558i \(0.569058\pi\)
\(854\) 0 0
\(855\) −11.0739 −0.378719
\(856\) 0 0
\(857\) 10.5267 0.359587 0.179793 0.983704i \(-0.442457\pi\)
0.179793 + 0.983704i \(0.442457\pi\)
\(858\) 0 0
\(859\) −3.49588 −0.119278 −0.0596389 0.998220i \(-0.518995\pi\)
−0.0596389 + 0.998220i \(0.518995\pi\)
\(860\) 0 0
\(861\) −1.62406 −0.0553479
\(862\) 0 0
\(863\) 51.7773 1.76252 0.881259 0.472634i \(-0.156697\pi\)
0.881259 + 0.472634i \(0.156697\pi\)
\(864\) 0 0
\(865\) 52.1731 1.77394
\(866\) 0 0
\(867\) 2.71425 0.0921807
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −6.37330 −0.215951
\(872\) 0 0
\(873\) 6.66197 0.225474
\(874\) 0 0
\(875\) −35.8829 −1.21306
\(876\) 0 0
\(877\) 35.0022 1.18194 0.590969 0.806694i \(-0.298745\pi\)
0.590969 + 0.806694i \(0.298745\pi\)
\(878\) 0 0
\(879\) −4.90053 −0.165291
\(880\) 0 0
\(881\) 3.50850 0.118204 0.0591022 0.998252i \(-0.481176\pi\)
0.0591022 + 0.998252i \(0.481176\pi\)
\(882\) 0 0
\(883\) 47.9969 1.61523 0.807613 0.589713i \(-0.200759\pi\)
0.807613 + 0.589713i \(0.200759\pi\)
\(884\) 0 0
\(885\) −8.37378 −0.281482
\(886\) 0 0
\(887\) 8.55985 0.287412 0.143706 0.989620i \(-0.454098\pi\)
0.143706 + 0.989620i \(0.454098\pi\)
\(888\) 0 0
\(889\) 6.28069 0.210648
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.53752 −0.0849147
\(894\) 0 0
\(895\) −51.5965 −1.72468
\(896\) 0 0
\(897\) 0.491706 0.0164176
\(898\) 0 0
\(899\) 20.2630 0.675808
\(900\) 0 0
\(901\) −28.1482 −0.937752
\(902\) 0 0
\(903\) −3.99798 −0.133044
\(904\) 0 0
\(905\) 69.1687 2.29925
\(906\) 0 0
\(907\) −28.4156 −0.943523 −0.471762 0.881726i \(-0.656382\pi\)
−0.471762 + 0.881726i \(0.656382\pi\)
\(908\) 0 0
\(909\) 5.09035 0.168836
\(910\) 0 0
\(911\) −16.6776 −0.552552 −0.276276 0.961078i \(-0.589100\pi\)
−0.276276 + 0.961078i \(0.589100\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −7.49106 −0.247647
\(916\) 0 0
\(917\) 45.3180 1.49653
\(918\) 0 0
\(919\) 8.44101 0.278443 0.139222 0.990261i \(-0.455540\pi\)
0.139222 + 0.990261i \(0.455540\pi\)
\(920\) 0 0
\(921\) 3.46638 0.114221
\(922\) 0 0
\(923\) 11.0524 0.363796
\(924\) 0 0
\(925\) 34.7126 1.14134
\(926\) 0 0
\(927\) −7.47914 −0.245647
\(928\) 0 0
\(929\) −11.7442 −0.385315 −0.192658 0.981266i \(-0.561711\pi\)
−0.192658 + 0.981266i \(0.561711\pi\)
\(930\) 0 0
\(931\) −2.12705 −0.0697111
\(932\) 0 0
\(933\) 5.73153 0.187642
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 51.7386 1.69023 0.845113 0.534587i \(-0.179533\pi\)
0.845113 + 0.534587i \(0.179533\pi\)
\(938\) 0 0
\(939\) 2.16226 0.0705625
\(940\) 0 0
\(941\) 39.6474 1.29247 0.646233 0.763140i \(-0.276343\pi\)
0.646233 + 0.763140i \(0.276343\pi\)
\(942\) 0 0
\(943\) −4.68638 −0.152609
\(944\) 0 0
\(945\) −13.2291 −0.430343
\(946\) 0 0
\(947\) −23.6506 −0.768541 −0.384270 0.923221i \(-0.625547\pi\)
−0.384270 + 0.923221i \(0.625547\pi\)
\(948\) 0 0
\(949\) 11.0566 0.358911
\(950\) 0 0
\(951\) −8.76504 −0.284226
\(952\) 0 0
\(953\) −55.4629 −1.79662 −0.898310 0.439362i \(-0.855204\pi\)
−0.898310 + 0.439362i \(0.855204\pi\)
\(954\) 0 0
\(955\) 48.4035 1.56630
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 29.4997 0.952596
\(960\) 0 0
\(961\) −22.8183 −0.736075
\(962\) 0 0
\(963\) 45.9693 1.48134
\(964\) 0 0
\(965\) 17.8995 0.576204
\(966\) 0 0
\(967\) 46.7483 1.50333 0.751663 0.659548i \(-0.229252\pi\)
0.751663 + 0.659548i \(0.229252\pi\)
\(968\) 0 0
\(969\) −0.699481 −0.0224706
\(970\) 0 0
\(971\) −10.5727 −0.339294 −0.169647 0.985505i \(-0.554263\pi\)
−0.169647 + 0.985505i \(0.554263\pi\)
\(972\) 0 0
\(973\) 40.4160 1.29568
\(974\) 0 0
\(975\) 2.68511 0.0859922
\(976\) 0 0
\(977\) 30.0515 0.961431 0.480716 0.876876i \(-0.340377\pi\)
0.480716 + 0.876876i \(0.340377\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −37.0832 −1.18397
\(982\) 0 0
\(983\) −23.1493 −0.738349 −0.369175 0.929360i \(-0.620360\pi\)
−0.369175 + 0.929360i \(0.620360\pi\)
\(984\) 0 0
\(985\) −69.4904 −2.21415
\(986\) 0 0
\(987\) −1.49742 −0.0476633
\(988\) 0 0
\(989\) −11.5365 −0.366840
\(990\) 0 0
\(991\) 44.7833 1.42259 0.711294 0.702894i \(-0.248109\pi\)
0.711294 + 0.702894i \(0.248109\pi\)
\(992\) 0 0
\(993\) −2.94448 −0.0934403
\(994\) 0 0
\(995\) −91.0592 −2.88677
\(996\) 0 0
\(997\) −53.1983 −1.68481 −0.842403 0.538848i \(-0.818860\pi\)
−0.842403 + 0.538848i \(0.818860\pi\)
\(998\) 0 0
\(999\) 5.91627 0.187183
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.u.1.8 14
11.10 odd 2 9196.2.a.v.1.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.u.1.8 14 1.1 even 1 trivial
9196.2.a.v.1.8 yes 14 11.10 odd 2