Defining parameters
Level: | \( N \) | \(=\) | \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9196.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(2640\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9196))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1356 | 163 | 1193 |
Cusp forms | 1285 | 163 | 1122 |
Eisenstein series | 71 | 0 | 71 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(162\) | \(0\) | \(162\) | \(151\) | \(0\) | \(151\) | \(11\) | \(0\) | \(11\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(180\) | \(0\) | \(180\) | \(168\) | \(0\) | \(168\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(177\) | \(0\) | \(177\) | \(165\) | \(0\) | \(165\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(165\) | \(0\) | \(165\) | \(153\) | \(0\) | \(153\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(168\) | \(41\) | \(127\) | \(162\) | \(41\) | \(121\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(168\) | \(37\) | \(131\) | \(162\) | \(37\) | \(125\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(168\) | \(40\) | \(128\) | \(162\) | \(40\) | \(122\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(168\) | \(45\) | \(123\) | \(162\) | \(45\) | \(117\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(663\) | \(77\) | \(586\) | \(628\) | \(77\) | \(551\) | \(35\) | \(0\) | \(35\) | |||||
Minus space | \(-\) | \(693\) | \(86\) | \(607\) | \(657\) | \(86\) | \(571\) | \(36\) | \(0\) | \(36\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9196))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9196))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9196)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(418))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(836))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4598))\)\(^{\oplus 2}\)