Properties

Label 2-9196-1.1-c1-0-132
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.267·3-s + 3.78·5-s − 2.20·7-s − 2.92·9-s − 1.08·13-s − 1.01·15-s + 2.61·17-s + 19-s + 0.590·21-s + 1.70·23-s + 9.29·25-s + 1.58·27-s − 7.08·29-s − 2.86·31-s − 8.34·35-s + 3.73·37-s + 0.288·39-s − 2.75·41-s − 6.77·43-s − 11.0·45-s − 2.53·47-s − 2.12·49-s − 0.699·51-s − 10.7·53-s − 0.267·57-s + 8.28·59-s + 7.41·61-s + ⋯
L(s)  = 1  − 0.154·3-s + 1.69·5-s − 0.834·7-s − 0.976·9-s − 0.299·13-s − 0.261·15-s + 0.634·17-s + 0.229·19-s + 0.128·21-s + 0.355·23-s + 1.85·25-s + 0.305·27-s − 1.31·29-s − 0.513·31-s − 1.41·35-s + 0.613·37-s + 0.0462·39-s − 0.429·41-s − 1.03·43-s − 1.65·45-s − 0.370·47-s − 0.303·49-s − 0.0979·51-s − 1.47·53-s − 0.0354·57-s + 1.07·59-s + 0.948·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 0.267T + 3T^{2} \)
5 \( 1 - 3.78T + 5T^{2} \)
7 \( 1 + 2.20T + 7T^{2} \)
13 \( 1 + 1.08T + 13T^{2} \)
17 \( 1 - 2.61T + 17T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 + 7.08T + 29T^{2} \)
31 \( 1 + 2.86T + 31T^{2} \)
37 \( 1 - 3.73T + 37T^{2} \)
41 \( 1 + 2.75T + 41T^{2} \)
43 \( 1 + 6.77T + 43T^{2} \)
47 \( 1 + 2.53T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 - 8.28T + 59T^{2} \)
61 \( 1 - 7.41T + 61T^{2} \)
67 \( 1 - 5.90T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 + 4.39T + 79T^{2} \)
83 \( 1 + 1.18T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 + 2.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22222174920006238057842352651, −6.48753592683353102483951624675, −6.00480418315940625887352004864, −5.42301526741929509258311939378, −4.94455843908727321146393194700, −3.59833160758129100953332197523, −2.96708285767007092628856196601, −2.23067981651754462382448557391, −1.34394005581505495827511854698, 0, 1.34394005581505495827511854698, 2.23067981651754462382448557391, 2.96708285767007092628856196601, 3.59833160758129100953332197523, 4.94455843908727321146393194700, 5.42301526741929509258311939378, 6.00480418315940625887352004864, 6.48753592683353102483951624675, 7.22222174920006238057842352651

Graph of the $Z$-function along the critical line