Properties

Label 9196.2.a.j.1.5
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-2,0,-7,0,4,0,6,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.34963625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 13x^{3} + 27x^{2} - 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.44304\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.44304 q^{3} -4.29314 q^{5} -3.18498 q^{7} -0.917645 q^{9} +0.891846 q^{13} -6.19516 q^{15} -0.149898 q^{17} +1.00000 q^{19} -4.59605 q^{21} +1.71038 q^{23} +13.4310 q^{25} -5.65331 q^{27} +6.45632 q^{29} +6.04556 q^{31} +13.6736 q^{35} +5.91764 q^{37} +1.28697 q^{39} +7.88959 q^{41} -9.58112 q^{43} +3.93958 q^{45} -3.92668 q^{47} +3.14413 q^{49} -0.216308 q^{51} +12.1822 q^{53} +1.44304 q^{57} -2.15607 q^{59} +2.87920 q^{61} +2.92268 q^{63} -3.82882 q^{65} -0.0354569 q^{67} +2.46814 q^{69} -15.6871 q^{71} +3.90831 q^{73} +19.3815 q^{75} +2.55410 q^{79} -5.40499 q^{81} +1.23048 q^{83} +0.643533 q^{85} +9.31671 q^{87} -0.565663 q^{89} -2.84051 q^{91} +8.72396 q^{93} -4.29314 q^{95} -3.51675 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 7 q^{5} + 4 q^{7} + 6 q^{9} + q^{13} - 8 q^{15} - 9 q^{17} + 6 q^{19} + 5 q^{21} - 12 q^{23} + 17 q^{25} - 17 q^{27} - 8 q^{29} + 7 q^{31} + 19 q^{35} + 24 q^{37} - 17 q^{39} - 15 q^{41}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44304 0.833138 0.416569 0.909104i \(-0.363232\pi\)
0.416569 + 0.909104i \(0.363232\pi\)
\(4\) 0 0
\(5\) −4.29314 −1.91995 −0.959975 0.280086i \(-0.909637\pi\)
−0.959975 + 0.280086i \(0.909637\pi\)
\(6\) 0 0
\(7\) −3.18498 −1.20381 −0.601905 0.798567i \(-0.705592\pi\)
−0.601905 + 0.798567i \(0.705592\pi\)
\(8\) 0 0
\(9\) −0.917645 −0.305882
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.891846 0.247354 0.123677 0.992323i \(-0.460531\pi\)
0.123677 + 0.992323i \(0.460531\pi\)
\(14\) 0 0
\(15\) −6.19516 −1.59958
\(16\) 0 0
\(17\) −0.149898 −0.0363556 −0.0181778 0.999835i \(-0.505786\pi\)
−0.0181778 + 0.999835i \(0.505786\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −4.59605 −1.00294
\(22\) 0 0
\(23\) 1.71038 0.356638 0.178319 0.983973i \(-0.442934\pi\)
0.178319 + 0.983973i \(0.442934\pi\)
\(24\) 0 0
\(25\) 13.4310 2.68621
\(26\) 0 0
\(27\) −5.65331 −1.08798
\(28\) 0 0
\(29\) 6.45632 1.19891 0.599455 0.800409i \(-0.295384\pi\)
0.599455 + 0.800409i \(0.295384\pi\)
\(30\) 0 0
\(31\) 6.04556 1.08581 0.542907 0.839793i \(-0.317324\pi\)
0.542907 + 0.839793i \(0.317324\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 13.6736 2.31126
\(36\) 0 0
\(37\) 5.91764 0.972855 0.486427 0.873721i \(-0.338300\pi\)
0.486427 + 0.873721i \(0.338300\pi\)
\(38\) 0 0
\(39\) 1.28697 0.206080
\(40\) 0 0
\(41\) 7.88959 1.23215 0.616073 0.787689i \(-0.288722\pi\)
0.616073 + 0.787689i \(0.288722\pi\)
\(42\) 0 0
\(43\) −9.58112 −1.46111 −0.730554 0.682855i \(-0.760738\pi\)
−0.730554 + 0.682855i \(0.760738\pi\)
\(44\) 0 0
\(45\) 3.93958 0.587277
\(46\) 0 0
\(47\) −3.92668 −0.572766 −0.286383 0.958115i \(-0.592453\pi\)
−0.286383 + 0.958115i \(0.592453\pi\)
\(48\) 0 0
\(49\) 3.14413 0.449161
\(50\) 0 0
\(51\) −0.216308 −0.0302892
\(52\) 0 0
\(53\) 12.1822 1.67336 0.836678 0.547695i \(-0.184495\pi\)
0.836678 + 0.547695i \(0.184495\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.44304 0.191135
\(58\) 0 0
\(59\) −2.15607 −0.280696 −0.140348 0.990102i \(-0.544822\pi\)
−0.140348 + 0.990102i \(0.544822\pi\)
\(60\) 0 0
\(61\) 2.87920 0.368644 0.184322 0.982866i \(-0.440991\pi\)
0.184322 + 0.982866i \(0.440991\pi\)
\(62\) 0 0
\(63\) 2.92268 0.368224
\(64\) 0 0
\(65\) −3.82882 −0.474906
\(66\) 0 0
\(67\) −0.0354569 −0.00433175 −0.00216588 0.999998i \(-0.500689\pi\)
−0.00216588 + 0.999998i \(0.500689\pi\)
\(68\) 0 0
\(69\) 2.46814 0.297129
\(70\) 0 0
\(71\) −15.6871 −1.86171 −0.930855 0.365388i \(-0.880936\pi\)
−0.930855 + 0.365388i \(0.880936\pi\)
\(72\) 0 0
\(73\) 3.90831 0.457433 0.228716 0.973493i \(-0.426547\pi\)
0.228716 + 0.973493i \(0.426547\pi\)
\(74\) 0 0
\(75\) 19.3815 2.23798
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.55410 0.287358 0.143679 0.989624i \(-0.454107\pi\)
0.143679 + 0.989624i \(0.454107\pi\)
\(80\) 0 0
\(81\) −5.40499 −0.600555
\(82\) 0 0
\(83\) 1.23048 0.135063 0.0675314 0.997717i \(-0.478488\pi\)
0.0675314 + 0.997717i \(0.478488\pi\)
\(84\) 0 0
\(85\) 0.643533 0.0698010
\(86\) 0 0
\(87\) 9.31671 0.998856
\(88\) 0 0
\(89\) −0.565663 −0.0599602 −0.0299801 0.999550i \(-0.509544\pi\)
−0.0299801 + 0.999550i \(0.509544\pi\)
\(90\) 0 0
\(91\) −2.84051 −0.297767
\(92\) 0 0
\(93\) 8.72396 0.904633
\(94\) 0 0
\(95\) −4.29314 −0.440467
\(96\) 0 0
\(97\) −3.51675 −0.357072 −0.178536 0.983933i \(-0.557136\pi\)
−0.178536 + 0.983933i \(0.557136\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.4443 −1.23825 −0.619125 0.785292i \(-0.712513\pi\)
−0.619125 + 0.785292i \(0.712513\pi\)
\(102\) 0 0
\(103\) −8.83314 −0.870355 −0.435177 0.900345i \(-0.643314\pi\)
−0.435177 + 0.900345i \(0.643314\pi\)
\(104\) 0 0
\(105\) 19.7315 1.92560
\(106\) 0 0
\(107\) −5.71645 −0.552630 −0.276315 0.961067i \(-0.589113\pi\)
−0.276315 + 0.961067i \(0.589113\pi\)
\(108\) 0 0
\(109\) 2.19072 0.209833 0.104917 0.994481i \(-0.466542\pi\)
0.104917 + 0.994481i \(0.466542\pi\)
\(110\) 0 0
\(111\) 8.53938 0.810522
\(112\) 0 0
\(113\) −13.5547 −1.27512 −0.637560 0.770401i \(-0.720056\pi\)
−0.637560 + 0.770401i \(0.720056\pi\)
\(114\) 0 0
\(115\) −7.34288 −0.684727
\(116\) 0 0
\(117\) −0.818398 −0.0756609
\(118\) 0 0
\(119\) 0.477423 0.0437653
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 11.3850 1.02655
\(124\) 0 0
\(125\) −36.1956 −3.23743
\(126\) 0 0
\(127\) −1.06419 −0.0944312 −0.0472156 0.998885i \(-0.515035\pi\)
−0.0472156 + 0.998885i \(0.515035\pi\)
\(128\) 0 0
\(129\) −13.8259 −1.21730
\(130\) 0 0
\(131\) −22.0727 −1.92850 −0.964252 0.264985i \(-0.914633\pi\)
−0.964252 + 0.264985i \(0.914633\pi\)
\(132\) 0 0
\(133\) −3.18498 −0.276173
\(134\) 0 0
\(135\) 24.2704 2.08887
\(136\) 0 0
\(137\) −7.31607 −0.625054 −0.312527 0.949909i \(-0.601175\pi\)
−0.312527 + 0.949909i \(0.601175\pi\)
\(138\) 0 0
\(139\) −10.5496 −0.894807 −0.447403 0.894332i \(-0.647651\pi\)
−0.447403 + 0.894332i \(0.647651\pi\)
\(140\) 0 0
\(141\) −5.66635 −0.477193
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −27.7179 −2.30185
\(146\) 0 0
\(147\) 4.53709 0.374213
\(148\) 0 0
\(149\) 20.4974 1.67922 0.839608 0.543192i \(-0.182785\pi\)
0.839608 + 0.543192i \(0.182785\pi\)
\(150\) 0 0
\(151\) 2.38438 0.194038 0.0970190 0.995283i \(-0.469069\pi\)
0.0970190 + 0.995283i \(0.469069\pi\)
\(152\) 0 0
\(153\) 0.137553 0.0111205
\(154\) 0 0
\(155\) −25.9544 −2.08471
\(156\) 0 0
\(157\) −0.0864746 −0.00690143 −0.00345071 0.999994i \(-0.501098\pi\)
−0.00345071 + 0.999994i \(0.501098\pi\)
\(158\) 0 0
\(159\) 17.5794 1.39414
\(160\) 0 0
\(161\) −5.44752 −0.429325
\(162\) 0 0
\(163\) −16.1912 −1.26819 −0.634095 0.773255i \(-0.718627\pi\)
−0.634095 + 0.773255i \(0.718627\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.97124 0.771598 0.385799 0.922583i \(-0.373926\pi\)
0.385799 + 0.922583i \(0.373926\pi\)
\(168\) 0 0
\(169\) −12.2046 −0.938816
\(170\) 0 0
\(171\) −0.917645 −0.0701741
\(172\) 0 0
\(173\) 24.9842 1.89952 0.949758 0.312987i \(-0.101329\pi\)
0.949758 + 0.312987i \(0.101329\pi\)
\(174\) 0 0
\(175\) −42.7777 −3.23369
\(176\) 0 0
\(177\) −3.11129 −0.233859
\(178\) 0 0
\(179\) −8.65082 −0.646593 −0.323296 0.946298i \(-0.604791\pi\)
−0.323296 + 0.946298i \(0.604791\pi\)
\(180\) 0 0
\(181\) −16.2875 −1.21064 −0.605319 0.795983i \(-0.706954\pi\)
−0.605319 + 0.795983i \(0.706954\pi\)
\(182\) 0 0
\(183\) 4.15479 0.307131
\(184\) 0 0
\(185\) −25.4053 −1.86783
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 18.0057 1.30972
\(190\) 0 0
\(191\) −10.6153 −0.768100 −0.384050 0.923312i \(-0.625471\pi\)
−0.384050 + 0.923312i \(0.625471\pi\)
\(192\) 0 0
\(193\) −7.10324 −0.511303 −0.255651 0.966769i \(-0.582290\pi\)
−0.255651 + 0.966769i \(0.582290\pi\)
\(194\) 0 0
\(195\) −5.52512 −0.395662
\(196\) 0 0
\(197\) 0.640780 0.0456537 0.0228269 0.999739i \(-0.492733\pi\)
0.0228269 + 0.999739i \(0.492733\pi\)
\(198\) 0 0
\(199\) 21.7365 1.54086 0.770431 0.637524i \(-0.220041\pi\)
0.770431 + 0.637524i \(0.220041\pi\)
\(200\) 0 0
\(201\) −0.0511656 −0.00360895
\(202\) 0 0
\(203\) −20.5633 −1.44326
\(204\) 0 0
\(205\) −33.8711 −2.36566
\(206\) 0 0
\(207\) −1.56952 −0.109089
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 25.5972 1.76218 0.881090 0.472948i \(-0.156810\pi\)
0.881090 + 0.472948i \(0.156810\pi\)
\(212\) 0 0
\(213\) −22.6370 −1.55106
\(214\) 0 0
\(215\) 41.1331 2.80525
\(216\) 0 0
\(217\) −19.2550 −1.30712
\(218\) 0 0
\(219\) 5.63983 0.381104
\(220\) 0 0
\(221\) −0.133686 −0.00899269
\(222\) 0 0
\(223\) 13.0847 0.876216 0.438108 0.898922i \(-0.355649\pi\)
0.438108 + 0.898922i \(0.355649\pi\)
\(224\) 0 0
\(225\) −12.3249 −0.821662
\(226\) 0 0
\(227\) −15.5174 −1.02993 −0.514963 0.857212i \(-0.672194\pi\)
−0.514963 + 0.857212i \(0.672194\pi\)
\(228\) 0 0
\(229\) 6.46707 0.427356 0.213678 0.976904i \(-0.431456\pi\)
0.213678 + 0.976904i \(0.431456\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.5723 1.34774 0.673868 0.738852i \(-0.264632\pi\)
0.673868 + 0.738852i \(0.264632\pi\)
\(234\) 0 0
\(235\) 16.8578 1.09968
\(236\) 0 0
\(237\) 3.68565 0.239409
\(238\) 0 0
\(239\) −22.3155 −1.44347 −0.721736 0.692169i \(-0.756655\pi\)
−0.721736 + 0.692169i \(0.756655\pi\)
\(240\) 0 0
\(241\) 28.7968 1.85497 0.927484 0.373864i \(-0.121967\pi\)
0.927484 + 0.373864i \(0.121967\pi\)
\(242\) 0 0
\(243\) 9.16031 0.587634
\(244\) 0 0
\(245\) −13.4982 −0.862366
\(246\) 0 0
\(247\) 0.891846 0.0567468
\(248\) 0 0
\(249\) 1.77563 0.112526
\(250\) 0 0
\(251\) −11.5389 −0.728331 −0.364165 0.931334i \(-0.618646\pi\)
−0.364165 + 0.931334i \(0.618646\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.928642 0.0581538
\(256\) 0 0
\(257\) 24.6390 1.53694 0.768470 0.639886i \(-0.221018\pi\)
0.768470 + 0.639886i \(0.221018\pi\)
\(258\) 0 0
\(259\) −18.8476 −1.17113
\(260\) 0 0
\(261\) −5.92461 −0.366724
\(262\) 0 0
\(263\) 22.1840 1.36792 0.683961 0.729519i \(-0.260256\pi\)
0.683961 + 0.729519i \(0.260256\pi\)
\(264\) 0 0
\(265\) −52.2999 −3.21276
\(266\) 0 0
\(267\) −0.816273 −0.0499551
\(268\) 0 0
\(269\) 14.5304 0.885936 0.442968 0.896537i \(-0.353925\pi\)
0.442968 + 0.896537i \(0.353925\pi\)
\(270\) 0 0
\(271\) 10.0944 0.613189 0.306594 0.951840i \(-0.400810\pi\)
0.306594 + 0.951840i \(0.400810\pi\)
\(272\) 0 0
\(273\) −4.09897 −0.248081
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −11.0488 −0.663856 −0.331928 0.943305i \(-0.607699\pi\)
−0.331928 + 0.943305i \(0.607699\pi\)
\(278\) 0 0
\(279\) −5.54768 −0.332131
\(280\) 0 0
\(281\) 0.162238 0.00967831 0.00483915 0.999988i \(-0.498460\pi\)
0.00483915 + 0.999988i \(0.498460\pi\)
\(282\) 0 0
\(283\) −19.7147 −1.17191 −0.585957 0.810342i \(-0.699281\pi\)
−0.585957 + 0.810342i \(0.699281\pi\)
\(284\) 0 0
\(285\) −6.19516 −0.366969
\(286\) 0 0
\(287\) −25.1282 −1.48327
\(288\) 0 0
\(289\) −16.9775 −0.998678
\(290\) 0 0
\(291\) −5.07480 −0.297490
\(292\) 0 0
\(293\) 9.63486 0.562874 0.281437 0.959580i \(-0.409189\pi\)
0.281437 + 0.959580i \(0.409189\pi\)
\(294\) 0 0
\(295\) 9.25631 0.538923
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.52539 0.0882157
\(300\) 0 0
\(301\) 30.5157 1.75890
\(302\) 0 0
\(303\) −17.9575 −1.03163
\(304\) 0 0
\(305\) −12.3608 −0.707778
\(306\) 0 0
\(307\) 16.9356 0.966564 0.483282 0.875465i \(-0.339445\pi\)
0.483282 + 0.875465i \(0.339445\pi\)
\(308\) 0 0
\(309\) −12.7465 −0.725125
\(310\) 0 0
\(311\) −9.69990 −0.550031 −0.275016 0.961440i \(-0.588683\pi\)
−0.275016 + 0.961440i \(0.588683\pi\)
\(312\) 0 0
\(313\) −21.1064 −1.19300 −0.596501 0.802612i \(-0.703443\pi\)
−0.596501 + 0.802612i \(0.703443\pi\)
\(314\) 0 0
\(315\) −12.5475 −0.706971
\(316\) 0 0
\(317\) −10.1639 −0.570862 −0.285431 0.958399i \(-0.592137\pi\)
−0.285431 + 0.958399i \(0.592137\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −8.24905 −0.460417
\(322\) 0 0
\(323\) −0.149898 −0.00834055
\(324\) 0 0
\(325\) 11.9784 0.664443
\(326\) 0 0
\(327\) 3.16130 0.174820
\(328\) 0 0
\(329\) 12.5064 0.689502
\(330\) 0 0
\(331\) 5.41881 0.297845 0.148922 0.988849i \(-0.452420\pi\)
0.148922 + 0.988849i \(0.452420\pi\)
\(332\) 0 0
\(333\) −5.43030 −0.297578
\(334\) 0 0
\(335\) 0.152221 0.00831675
\(336\) 0 0
\(337\) 35.4590 1.93158 0.965788 0.259331i \(-0.0835022\pi\)
0.965788 + 0.259331i \(0.0835022\pi\)
\(338\) 0 0
\(339\) −19.5599 −1.06235
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.2809 0.663106
\(344\) 0 0
\(345\) −10.5960 −0.570472
\(346\) 0 0
\(347\) −31.1448 −1.67194 −0.835970 0.548775i \(-0.815094\pi\)
−0.835970 + 0.548775i \(0.815094\pi\)
\(348\) 0 0
\(349\) 6.44944 0.345230 0.172615 0.984989i \(-0.444778\pi\)
0.172615 + 0.984989i \(0.444778\pi\)
\(350\) 0 0
\(351\) −5.04188 −0.269115
\(352\) 0 0
\(353\) −21.0750 −1.12171 −0.560855 0.827914i \(-0.689528\pi\)
−0.560855 + 0.827914i \(0.689528\pi\)
\(354\) 0 0
\(355\) 67.3467 3.57439
\(356\) 0 0
\(357\) 0.688939 0.0364625
\(358\) 0 0
\(359\) −29.1246 −1.53713 −0.768567 0.639769i \(-0.779030\pi\)
−0.768567 + 0.639769i \(0.779030\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.7789 −0.878248
\(366\) 0 0
\(367\) 21.2444 1.10895 0.554474 0.832201i \(-0.312920\pi\)
0.554474 + 0.832201i \(0.312920\pi\)
\(368\) 0 0
\(369\) −7.23984 −0.376891
\(370\) 0 0
\(371\) −38.8002 −2.01440
\(372\) 0 0
\(373\) 20.0676 1.03906 0.519529 0.854453i \(-0.326107\pi\)
0.519529 + 0.854453i \(0.326107\pi\)
\(374\) 0 0
\(375\) −52.2316 −2.69723
\(376\) 0 0
\(377\) 5.75805 0.296554
\(378\) 0 0
\(379\) 17.0472 0.875658 0.437829 0.899058i \(-0.355748\pi\)
0.437829 + 0.899058i \(0.355748\pi\)
\(380\) 0 0
\(381\) −1.53566 −0.0786742
\(382\) 0 0
\(383\) −6.54074 −0.334216 −0.167108 0.985939i \(-0.553443\pi\)
−0.167108 + 0.985939i \(0.553443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.79207 0.446926
\(388\) 0 0
\(389\) 22.0327 1.11710 0.558550 0.829471i \(-0.311358\pi\)
0.558550 + 0.829471i \(0.311358\pi\)
\(390\) 0 0
\(391\) −0.256382 −0.0129658
\(392\) 0 0
\(393\) −31.8518 −1.60671
\(394\) 0 0
\(395\) −10.9651 −0.551713
\(396\) 0 0
\(397\) −0.619105 −0.0310720 −0.0155360 0.999879i \(-0.504945\pi\)
−0.0155360 + 0.999879i \(0.504945\pi\)
\(398\) 0 0
\(399\) −4.59605 −0.230090
\(400\) 0 0
\(401\) −29.2904 −1.46269 −0.731346 0.682007i \(-0.761107\pi\)
−0.731346 + 0.682007i \(0.761107\pi\)
\(402\) 0 0
\(403\) 5.39171 0.268580
\(404\) 0 0
\(405\) 23.2044 1.15304
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −32.9569 −1.62962 −0.814808 0.579731i \(-0.803157\pi\)
−0.814808 + 0.579731i \(0.803157\pi\)
\(410\) 0 0
\(411\) −10.5574 −0.520756
\(412\) 0 0
\(413\) 6.86705 0.337905
\(414\) 0 0
\(415\) −5.28263 −0.259314
\(416\) 0 0
\(417\) −15.2235 −0.745497
\(418\) 0 0
\(419\) 21.5622 1.05338 0.526692 0.850056i \(-0.323432\pi\)
0.526692 + 0.850056i \(0.323432\pi\)
\(420\) 0 0
\(421\) −36.6290 −1.78519 −0.892594 0.450861i \(-0.851117\pi\)
−0.892594 + 0.450861i \(0.851117\pi\)
\(422\) 0 0
\(423\) 3.60330 0.175199
\(424\) 0 0
\(425\) −2.01329 −0.0976588
\(426\) 0 0
\(427\) −9.17021 −0.443778
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.81884 −0.376620 −0.188310 0.982110i \(-0.560301\pi\)
−0.188310 + 0.982110i \(0.560301\pi\)
\(432\) 0 0
\(433\) −14.6422 −0.703660 −0.351830 0.936064i \(-0.614441\pi\)
−0.351830 + 0.936064i \(0.614441\pi\)
\(434\) 0 0
\(435\) −39.9979 −1.91775
\(436\) 0 0
\(437\) 1.71038 0.0818184
\(438\) 0 0
\(439\) 14.7358 0.703300 0.351650 0.936132i \(-0.385621\pi\)
0.351650 + 0.936132i \(0.385621\pi\)
\(440\) 0 0
\(441\) −2.88519 −0.137390
\(442\) 0 0
\(443\) −13.0339 −0.619260 −0.309630 0.950857i \(-0.600205\pi\)
−0.309630 + 0.950857i \(0.600205\pi\)
\(444\) 0 0
\(445\) 2.42847 0.115121
\(446\) 0 0
\(447\) 29.5786 1.39902
\(448\) 0 0
\(449\) −31.6701 −1.49460 −0.747302 0.664484i \(-0.768651\pi\)
−0.747302 + 0.664484i \(0.768651\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.44075 0.161660
\(454\) 0 0
\(455\) 12.1947 0.571697
\(456\) 0 0
\(457\) 35.4503 1.65830 0.829148 0.559029i \(-0.188826\pi\)
0.829148 + 0.559029i \(0.188826\pi\)
\(458\) 0 0
\(459\) 0.847420 0.0395542
\(460\) 0 0
\(461\) −38.2849 −1.78311 −0.891553 0.452916i \(-0.850384\pi\)
−0.891553 + 0.452916i \(0.850384\pi\)
\(462\) 0 0
\(463\) −36.1313 −1.67916 −0.839581 0.543234i \(-0.817200\pi\)
−0.839581 + 0.543234i \(0.817200\pi\)
\(464\) 0 0
\(465\) −37.4532 −1.73685
\(466\) 0 0
\(467\) 28.7931 1.33239 0.666194 0.745779i \(-0.267922\pi\)
0.666194 + 0.745779i \(0.267922\pi\)
\(468\) 0 0
\(469\) 0.112930 0.00521461
\(470\) 0 0
\(471\) −0.124786 −0.00574984
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 13.4310 0.616258
\(476\) 0 0
\(477\) −11.1789 −0.511849
\(478\) 0 0
\(479\) −18.1375 −0.828723 −0.414361 0.910112i \(-0.635995\pi\)
−0.414361 + 0.910112i \(0.635995\pi\)
\(480\) 0 0
\(481\) 5.27763 0.240639
\(482\) 0 0
\(483\) −7.86097 −0.357687
\(484\) 0 0
\(485\) 15.0979 0.685561
\(486\) 0 0
\(487\) −3.09958 −0.140455 −0.0702276 0.997531i \(-0.522373\pi\)
−0.0702276 + 0.997531i \(0.522373\pi\)
\(488\) 0 0
\(489\) −23.3644 −1.05658
\(490\) 0 0
\(491\) −18.6828 −0.843144 −0.421572 0.906795i \(-0.638521\pi\)
−0.421572 + 0.906795i \(0.638521\pi\)
\(492\) 0 0
\(493\) −0.967791 −0.0435871
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 49.9630 2.24115
\(498\) 0 0
\(499\) −18.9834 −0.849813 −0.424906 0.905237i \(-0.639693\pi\)
−0.424906 + 0.905237i \(0.639693\pi\)
\(500\) 0 0
\(501\) 14.3889 0.642847
\(502\) 0 0
\(503\) 1.24512 0.0555170 0.0277585 0.999615i \(-0.491163\pi\)
0.0277585 + 0.999615i \(0.491163\pi\)
\(504\) 0 0
\(505\) 53.4250 2.37738
\(506\) 0 0
\(507\) −17.6117 −0.782163
\(508\) 0 0
\(509\) −18.1680 −0.805282 −0.402641 0.915358i \(-0.631908\pi\)
−0.402641 + 0.915358i \(0.631908\pi\)
\(510\) 0 0
\(511\) −12.4479 −0.550662
\(512\) 0 0
\(513\) −5.65331 −0.249600
\(514\) 0 0
\(515\) 37.9219 1.67104
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 36.0531 1.58256
\(520\) 0 0
\(521\) −21.1319 −0.925806 −0.462903 0.886409i \(-0.653192\pi\)
−0.462903 + 0.886409i \(0.653192\pi\)
\(522\) 0 0
\(523\) 5.83699 0.255234 0.127617 0.991824i \(-0.459267\pi\)
0.127617 + 0.991824i \(0.459267\pi\)
\(524\) 0 0
\(525\) −61.7297 −2.69411
\(526\) 0 0
\(527\) −0.906218 −0.0394755
\(528\) 0 0
\(529\) −20.0746 −0.872809
\(530\) 0 0
\(531\) 1.97851 0.0858599
\(532\) 0 0
\(533\) 7.03630 0.304776
\(534\) 0 0
\(535\) 24.5415 1.06102
\(536\) 0 0
\(537\) −12.4835 −0.538701
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −36.1044 −1.55225 −0.776125 0.630579i \(-0.782817\pi\)
−0.776125 + 0.630579i \(0.782817\pi\)
\(542\) 0 0
\(543\) −23.5034 −1.00863
\(544\) 0 0
\(545\) −9.40508 −0.402869
\(546\) 0 0
\(547\) 23.6154 1.00972 0.504860 0.863201i \(-0.331544\pi\)
0.504860 + 0.863201i \(0.331544\pi\)
\(548\) 0 0
\(549\) −2.64208 −0.112761
\(550\) 0 0
\(551\) 6.45632 0.275049
\(552\) 0 0
\(553\) −8.13476 −0.345925
\(554\) 0 0
\(555\) −36.6607 −1.55616
\(556\) 0 0
\(557\) 18.2180 0.771921 0.385961 0.922515i \(-0.373870\pi\)
0.385961 + 0.922515i \(0.373870\pi\)
\(558\) 0 0
\(559\) −8.54488 −0.361410
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.5165 1.28612 0.643058 0.765817i \(-0.277665\pi\)
0.643058 + 0.765817i \(0.277665\pi\)
\(564\) 0 0
\(565\) 58.1922 2.44817
\(566\) 0 0
\(567\) 17.2148 0.722954
\(568\) 0 0
\(569\) 31.9283 1.33850 0.669252 0.743035i \(-0.266615\pi\)
0.669252 + 0.743035i \(0.266615\pi\)
\(570\) 0 0
\(571\) 22.2999 0.933222 0.466611 0.884463i \(-0.345475\pi\)
0.466611 + 0.884463i \(0.345475\pi\)
\(572\) 0 0
\(573\) −15.3183 −0.639933
\(574\) 0 0
\(575\) 22.9721 0.958004
\(576\) 0 0
\(577\) −15.4682 −0.643951 −0.321976 0.946748i \(-0.604347\pi\)
−0.321976 + 0.946748i \(0.604347\pi\)
\(578\) 0 0
\(579\) −10.2502 −0.425986
\(580\) 0 0
\(581\) −3.91906 −0.162590
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 3.51349 0.145265
\(586\) 0 0
\(587\) −7.93758 −0.327619 −0.163810 0.986492i \(-0.552378\pi\)
−0.163810 + 0.986492i \(0.552378\pi\)
\(588\) 0 0
\(589\) 6.04556 0.249103
\(590\) 0 0
\(591\) 0.924670 0.0380358
\(592\) 0 0
\(593\) 6.09113 0.250133 0.125066 0.992148i \(-0.460086\pi\)
0.125066 + 0.992148i \(0.460086\pi\)
\(594\) 0 0
\(595\) −2.04964 −0.0840272
\(596\) 0 0
\(597\) 31.3666 1.28375
\(598\) 0 0
\(599\) −18.6986 −0.764004 −0.382002 0.924162i \(-0.624765\pi\)
−0.382002 + 0.924162i \(0.624765\pi\)
\(600\) 0 0
\(601\) 3.82057 0.155844 0.0779222 0.996959i \(-0.475171\pi\)
0.0779222 + 0.996959i \(0.475171\pi\)
\(602\) 0 0
\(603\) 0.0325369 0.00132500
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −46.9999 −1.90767 −0.953833 0.300338i \(-0.902901\pi\)
−0.953833 + 0.300338i \(0.902901\pi\)
\(608\) 0 0
\(609\) −29.6736 −1.20243
\(610\) 0 0
\(611\) −3.50200 −0.141676
\(612\) 0 0
\(613\) 3.70436 0.149618 0.0748089 0.997198i \(-0.476165\pi\)
0.0748089 + 0.997198i \(0.476165\pi\)
\(614\) 0 0
\(615\) −48.8772 −1.97092
\(616\) 0 0
\(617\) −40.9171 −1.64726 −0.823631 0.567127i \(-0.808055\pi\)
−0.823631 + 0.567127i \(0.808055\pi\)
\(618\) 0 0
\(619\) −11.3657 −0.456824 −0.228412 0.973565i \(-0.573353\pi\)
−0.228412 + 0.973565i \(0.573353\pi\)
\(620\) 0 0
\(621\) −9.66928 −0.388015
\(622\) 0 0
\(623\) 1.80163 0.0721807
\(624\) 0 0
\(625\) 88.2376 3.52951
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.887044 −0.0353687
\(630\) 0 0
\(631\) 25.1913 1.00285 0.501425 0.865201i \(-0.332809\pi\)
0.501425 + 0.865201i \(0.332809\pi\)
\(632\) 0 0
\(633\) 36.9376 1.46814
\(634\) 0 0
\(635\) 4.56870 0.181303
\(636\) 0 0
\(637\) 2.80408 0.111102
\(638\) 0 0
\(639\) 14.3951 0.569463
\(640\) 0 0
\(641\) −42.6015 −1.68266 −0.841330 0.540522i \(-0.818227\pi\)
−0.841330 + 0.540522i \(0.818227\pi\)
\(642\) 0 0
\(643\) 4.06828 0.160437 0.0802187 0.996777i \(-0.474438\pi\)
0.0802187 + 0.996777i \(0.474438\pi\)
\(644\) 0 0
\(645\) 59.3566 2.33716
\(646\) 0 0
\(647\) −1.08891 −0.0428094 −0.0214047 0.999771i \(-0.506814\pi\)
−0.0214047 + 0.999771i \(0.506814\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −27.7857 −1.08901
\(652\) 0 0
\(653\) 20.1627 0.789026 0.394513 0.918890i \(-0.370913\pi\)
0.394513 + 0.918890i \(0.370913\pi\)
\(654\) 0 0
\(655\) 94.7614 3.70263
\(656\) 0 0
\(657\) −3.58644 −0.139920
\(658\) 0 0
\(659\) 24.0501 0.936859 0.468430 0.883501i \(-0.344820\pi\)
0.468430 + 0.883501i \(0.344820\pi\)
\(660\) 0 0
\(661\) −16.4673 −0.640503 −0.320252 0.947333i \(-0.603767\pi\)
−0.320252 + 0.947333i \(0.603767\pi\)
\(662\) 0 0
\(663\) −0.192914 −0.00749215
\(664\) 0 0
\(665\) 13.6736 0.530239
\(666\) 0 0
\(667\) 11.0427 0.427577
\(668\) 0 0
\(669\) 18.8817 0.730009
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −28.7742 −1.10917 −0.554583 0.832129i \(-0.687122\pi\)
−0.554583 + 0.832129i \(0.687122\pi\)
\(674\) 0 0
\(675\) −75.9298 −2.92254
\(676\) 0 0
\(677\) −35.1961 −1.35270 −0.676348 0.736582i \(-0.736439\pi\)
−0.676348 + 0.736582i \(0.736439\pi\)
\(678\) 0 0
\(679\) 11.2008 0.429847
\(680\) 0 0
\(681\) −22.3922 −0.858070
\(682\) 0 0
\(683\) −28.5789 −1.09354 −0.546770 0.837283i \(-0.684143\pi\)
−0.546770 + 0.837283i \(0.684143\pi\)
\(684\) 0 0
\(685\) 31.4089 1.20007
\(686\) 0 0
\(687\) 9.33223 0.356047
\(688\) 0 0
\(689\) 10.8647 0.413910
\(690\) 0 0
\(691\) 18.7354 0.712727 0.356364 0.934347i \(-0.384016\pi\)
0.356364 + 0.934347i \(0.384016\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 45.2910 1.71798
\(696\) 0 0
\(697\) −1.18263 −0.0447955
\(698\) 0 0
\(699\) 29.6866 1.12285
\(700\) 0 0
\(701\) −7.66391 −0.289462 −0.144731 0.989471i \(-0.546232\pi\)
−0.144731 + 0.989471i \(0.546232\pi\)
\(702\) 0 0
\(703\) 5.91764 0.223188
\(704\) 0 0
\(705\) 24.3264 0.916186
\(706\) 0 0
\(707\) 39.6348 1.49062
\(708\) 0 0
\(709\) −3.10440 −0.116588 −0.0582941 0.998299i \(-0.518566\pi\)
−0.0582941 + 0.998299i \(0.518566\pi\)
\(710\) 0 0
\(711\) −2.34375 −0.0878976
\(712\) 0 0
\(713\) 10.3402 0.387243
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −32.2021 −1.20261
\(718\) 0 0
\(719\) −14.1597 −0.528069 −0.264034 0.964513i \(-0.585053\pi\)
−0.264034 + 0.964513i \(0.585053\pi\)
\(720\) 0 0
\(721\) 28.1334 1.04774
\(722\) 0 0
\(723\) 41.5549 1.54544
\(724\) 0 0
\(725\) 86.7151 3.22052
\(726\) 0 0
\(727\) 18.8580 0.699404 0.349702 0.936861i \(-0.386283\pi\)
0.349702 + 0.936861i \(0.386283\pi\)
\(728\) 0 0
\(729\) 29.4336 1.09014
\(730\) 0 0
\(731\) 1.43619 0.0531195
\(732\) 0 0
\(733\) −21.0001 −0.775656 −0.387828 0.921732i \(-0.626775\pi\)
−0.387828 + 0.921732i \(0.626775\pi\)
\(734\) 0 0
\(735\) −19.4784 −0.718470
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −33.6752 −1.23876 −0.619381 0.785091i \(-0.712616\pi\)
−0.619381 + 0.785091i \(0.712616\pi\)
\(740\) 0 0
\(741\) 1.28697 0.0472779
\(742\) 0 0
\(743\) −24.0620 −0.882749 −0.441374 0.897323i \(-0.645509\pi\)
−0.441374 + 0.897323i \(0.645509\pi\)
\(744\) 0 0
\(745\) −87.9984 −3.22401
\(746\) 0 0
\(747\) −1.12914 −0.0413132
\(748\) 0 0
\(749\) 18.2068 0.665262
\(750\) 0 0
\(751\) 28.1906 1.02869 0.514346 0.857583i \(-0.328035\pi\)
0.514346 + 0.857583i \(0.328035\pi\)
\(752\) 0 0
\(753\) −16.6511 −0.606800
\(754\) 0 0
\(755\) −10.2365 −0.372543
\(756\) 0 0
\(757\) 15.5458 0.565023 0.282511 0.959264i \(-0.408833\pi\)
0.282511 + 0.959264i \(0.408833\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.5679 −0.455584 −0.227792 0.973710i \(-0.573151\pi\)
−0.227792 + 0.973710i \(0.573151\pi\)
\(762\) 0 0
\(763\) −6.97742 −0.252600
\(764\) 0 0
\(765\) −0.590535 −0.0213508
\(766\) 0 0
\(767\) −1.92288 −0.0694313
\(768\) 0 0
\(769\) 19.0550 0.687139 0.343570 0.939127i \(-0.388364\pi\)
0.343570 + 0.939127i \(0.388364\pi\)
\(770\) 0 0
\(771\) 35.5550 1.28048
\(772\) 0 0
\(773\) 29.5088 1.06136 0.530678 0.847573i \(-0.321937\pi\)
0.530678 + 0.847573i \(0.321937\pi\)
\(774\) 0 0
\(775\) 81.1981 2.91672
\(776\) 0 0
\(777\) −27.1978 −0.975715
\(778\) 0 0
\(779\) 7.88959 0.282674
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −36.4996 −1.30439
\(784\) 0 0
\(785\) 0.371248 0.0132504
\(786\) 0 0
\(787\) −34.6089 −1.23368 −0.616838 0.787090i \(-0.711586\pi\)
−0.616838 + 0.787090i \(0.711586\pi\)
\(788\) 0 0
\(789\) 32.0123 1.13967
\(790\) 0 0
\(791\) 43.1715 1.53500
\(792\) 0 0
\(793\) 2.56780 0.0911854
\(794\) 0 0
\(795\) −75.4707 −2.67667
\(796\) 0 0
\(797\) 13.8827 0.491752 0.245876 0.969301i \(-0.420924\pi\)
0.245876 + 0.969301i \(0.420924\pi\)
\(798\) 0 0
\(799\) 0.588603 0.0208233
\(800\) 0 0
\(801\) 0.519078 0.0183407
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 23.3870 0.824282
\(806\) 0 0
\(807\) 20.9680 0.738107
\(808\) 0 0
\(809\) −38.6407 −1.35853 −0.679267 0.733891i \(-0.737702\pi\)
−0.679267 + 0.733891i \(0.737702\pi\)
\(810\) 0 0
\(811\) −19.0764 −0.669863 −0.334931 0.942243i \(-0.608713\pi\)
−0.334931 + 0.942243i \(0.608713\pi\)
\(812\) 0 0
\(813\) 14.5665 0.510871
\(814\) 0 0
\(815\) 69.5109 2.43486
\(816\) 0 0
\(817\) −9.58112 −0.335201
\(818\) 0 0
\(819\) 2.60658 0.0910814
\(820\) 0 0
\(821\) −12.8223 −0.447500 −0.223750 0.974647i \(-0.571830\pi\)
−0.223750 + 0.974647i \(0.571830\pi\)
\(822\) 0 0
\(823\) 44.6103 1.55502 0.777508 0.628873i \(-0.216483\pi\)
0.777508 + 0.628873i \(0.216483\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.9500 0.589411 0.294705 0.955588i \(-0.404778\pi\)
0.294705 + 0.955588i \(0.404778\pi\)
\(828\) 0 0
\(829\) −40.2151 −1.39673 −0.698363 0.715743i \(-0.746088\pi\)
−0.698363 + 0.715743i \(0.746088\pi\)
\(830\) 0 0
\(831\) −15.9438 −0.553084
\(832\) 0 0
\(833\) −0.471298 −0.0163295
\(834\) 0 0
\(835\) −42.8079 −1.48143
\(836\) 0 0
\(837\) −34.1774 −1.18134
\(838\) 0 0
\(839\) −16.8539 −0.581860 −0.290930 0.956744i \(-0.593965\pi\)
−0.290930 + 0.956744i \(0.593965\pi\)
\(840\) 0 0
\(841\) 12.6841 0.437383
\(842\) 0 0
\(843\) 0.234115 0.00806336
\(844\) 0 0
\(845\) 52.3961 1.80248
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −28.4490 −0.976366
\(850\) 0 0
\(851\) 10.1214 0.346957
\(852\) 0 0
\(853\) 17.1077 0.585757 0.292879 0.956150i \(-0.405387\pi\)
0.292879 + 0.956150i \(0.405387\pi\)
\(854\) 0 0
\(855\) 3.93958 0.134731
\(856\) 0 0
\(857\) −20.8283 −0.711482 −0.355741 0.934585i \(-0.615772\pi\)
−0.355741 + 0.934585i \(0.615772\pi\)
\(858\) 0 0
\(859\) 1.69054 0.0576806 0.0288403 0.999584i \(-0.490819\pi\)
0.0288403 + 0.999584i \(0.490819\pi\)
\(860\) 0 0
\(861\) −36.2609 −1.23577
\(862\) 0 0
\(863\) −15.7743 −0.536963 −0.268481 0.963285i \(-0.586522\pi\)
−0.268481 + 0.963285i \(0.586522\pi\)
\(864\) 0 0
\(865\) −107.261 −3.64697
\(866\) 0 0
\(867\) −24.4992 −0.832036
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.0316221 −0.00107147
\(872\) 0 0
\(873\) 3.22713 0.109222
\(874\) 0 0
\(875\) 115.282 3.89726
\(876\) 0 0
\(877\) −14.1378 −0.477398 −0.238699 0.971094i \(-0.576721\pi\)
−0.238699 + 0.971094i \(0.576721\pi\)
\(878\) 0 0
\(879\) 13.9035 0.468952
\(880\) 0 0
\(881\) 23.4093 0.788680 0.394340 0.918965i \(-0.370973\pi\)
0.394340 + 0.918965i \(0.370973\pi\)
\(882\) 0 0
\(883\) −29.8628 −1.00496 −0.502482 0.864588i \(-0.667580\pi\)
−0.502482 + 0.864588i \(0.667580\pi\)
\(884\) 0 0
\(885\) 13.3572 0.448997
\(886\) 0 0
\(887\) −40.4679 −1.35878 −0.679390 0.733777i \(-0.737756\pi\)
−0.679390 + 0.733777i \(0.737756\pi\)
\(888\) 0 0
\(889\) 3.38941 0.113677
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.92668 −0.131401
\(894\) 0 0
\(895\) 37.1392 1.24143
\(896\) 0 0
\(897\) 2.20120 0.0734958
\(898\) 0 0
\(899\) 39.0321 1.30179
\(900\) 0 0
\(901\) −1.82609 −0.0608359
\(902\) 0 0
\(903\) 44.0353 1.46540
\(904\) 0 0
\(905\) 69.9244 2.32436
\(906\) 0 0
\(907\) −16.7806 −0.557191 −0.278595 0.960409i \(-0.589869\pi\)
−0.278595 + 0.960409i \(0.589869\pi\)
\(908\) 0 0
\(909\) 11.4194 0.378758
\(910\) 0 0
\(911\) −58.6056 −1.94169 −0.970845 0.239707i \(-0.922949\pi\)
−0.970845 + 0.239707i \(0.922949\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −17.8371 −0.589676
\(916\) 0 0
\(917\) 70.3014 2.32156
\(918\) 0 0
\(919\) 47.8554 1.57860 0.789301 0.614006i \(-0.210443\pi\)
0.789301 + 0.614006i \(0.210443\pi\)
\(920\) 0 0
\(921\) 24.4386 0.805281
\(922\) 0 0
\(923\) −13.9904 −0.460501
\(924\) 0 0
\(925\) 79.4801 2.61329
\(926\) 0 0
\(927\) 8.10568 0.266226
\(928\) 0 0
\(929\) −19.1317 −0.627690 −0.313845 0.949474i \(-0.601617\pi\)
−0.313845 + 0.949474i \(0.601617\pi\)
\(930\) 0 0
\(931\) 3.14413 0.103045
\(932\) 0 0
\(933\) −13.9973 −0.458252
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 57.1084 1.86565 0.932825 0.360330i \(-0.117336\pi\)
0.932825 + 0.360330i \(0.117336\pi\)
\(938\) 0 0
\(939\) −30.4573 −0.993935
\(940\) 0 0
\(941\) −31.0790 −1.01314 −0.506572 0.862197i \(-0.669088\pi\)
−0.506572 + 0.862197i \(0.669088\pi\)
\(942\) 0 0
\(943\) 13.4942 0.439430
\(944\) 0 0
\(945\) −77.3009 −2.51460
\(946\) 0 0
\(947\) −43.3148 −1.40754 −0.703771 0.710427i \(-0.748502\pi\)
−0.703771 + 0.710427i \(0.748502\pi\)
\(948\) 0 0
\(949\) 3.48561 0.113148
\(950\) 0 0
\(951\) −14.6669 −0.475607
\(952\) 0 0
\(953\) −40.7978 −1.32157 −0.660786 0.750574i \(-0.729777\pi\)
−0.660786 + 0.750574i \(0.729777\pi\)
\(954\) 0 0
\(955\) 45.5732 1.47471
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.3016 0.752447
\(960\) 0 0
\(961\) 5.54878 0.178993
\(962\) 0 0
\(963\) 5.24567 0.169039
\(964\) 0 0
\(965\) 30.4952 0.981676
\(966\) 0 0
\(967\) −38.1966 −1.22832 −0.614159 0.789182i \(-0.710505\pi\)
−0.614159 + 0.789182i \(0.710505\pi\)
\(968\) 0 0
\(969\) −0.216308 −0.00694883
\(970\) 0 0
\(971\) 46.0351 1.47734 0.738668 0.674069i \(-0.235455\pi\)
0.738668 + 0.674069i \(0.235455\pi\)
\(972\) 0 0
\(973\) 33.6004 1.07718
\(974\) 0 0
\(975\) 17.2853 0.553572
\(976\) 0 0
\(977\) 38.6494 1.23650 0.618252 0.785980i \(-0.287841\pi\)
0.618252 + 0.785980i \(0.287841\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.01031 −0.0641842
\(982\) 0 0
\(983\) 21.4558 0.684332 0.342166 0.939639i \(-0.388839\pi\)
0.342166 + 0.939639i \(0.388839\pi\)
\(984\) 0 0
\(985\) −2.75096 −0.0876528
\(986\) 0 0
\(987\) 18.0472 0.574450
\(988\) 0 0
\(989\) −16.3873 −0.521087
\(990\) 0 0
\(991\) −24.0223 −0.763092 −0.381546 0.924350i \(-0.624608\pi\)
−0.381546 + 0.924350i \(0.624608\pi\)
\(992\) 0 0
\(993\) 7.81955 0.248146
\(994\) 0 0
\(995\) −93.3179 −2.95838
\(996\) 0 0
\(997\) 0.509091 0.0161231 0.00806154 0.999968i \(-0.497434\pi\)
0.00806154 + 0.999968i \(0.497434\pi\)
\(998\) 0 0
\(999\) −33.4543 −1.05845
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.j.1.5 6
11.3 even 5 836.2.j.a.229.1 12
11.4 even 5 836.2.j.a.533.1 yes 12
11.10 odd 2 9196.2.a.i.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.a.229.1 12 11.3 even 5
836.2.j.a.533.1 yes 12 11.4 even 5
9196.2.a.i.1.5 6 11.10 odd 2
9196.2.a.j.1.5 6 1.1 even 1 trivial