Properties

Label 9196.2.a.j
Level $9196$
Weight $2$
Character orbit 9196.a
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-2,0,-7,0,4,0,6,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.34963625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 13x^{3} + 27x^{2} - 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{5} - 1) q^{5} + (\beta_{5} - \beta_{2} - \beta_1 + 1) q^{7} + (\beta_{4} + \beta_{3} + \beta_1 + 1) q^{9} + (\beta_{2} + \beta_1) q^{13} + ( - \beta_{4} - \beta_{3} - 2 \beta_{2} - 2) q^{15}+ \cdots + ( - \beta_{5} - 3 \beta_{3} - \beta_{2} + \cdots - 5) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 7 q^{5} + 4 q^{7} + 6 q^{9} + q^{13} - 8 q^{15} - 9 q^{17} + 6 q^{19} + 5 q^{21} - 12 q^{23} + 17 q^{25} - 17 q^{27} - 8 q^{29} + 7 q^{31} + 19 q^{35} + 24 q^{37} - 17 q^{39} - 15 q^{41}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 10x^{4} + 13x^{3} + 27x^{2} - 6x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 7\nu^{3} - 4\nu^{2} + \nu + 2 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 10\nu^{3} - \nu^{2} + 19\nu - 4 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 10\nu^{3} + 7\nu^{2} - 25\nu - 20 ) / 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 6\nu^{4} + 10\nu^{3} - 41\nu^{2} - 37\nu + 10 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 7\beta_{4} + 8\beta_{3} + 10\beta _1 + 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 11\beta_{4} - 3\beta_{3} + 10\beta_{2} + 52\beta _1 + 28 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89822
2.75406
0.471235
−0.311022
−1.44304
−2.36946
0 −2.89822 0 2.44421 0 −0.245210 0 5.39968 0
1.2 0 −2.75406 0 −2.20821 0 1.49389 0 4.58484 0
1.3 0 −0.471235 0 −3.53686 0 −2.29934 0 −2.77794 0
1.4 0 0.311022 0 1.88331 0 3.69109 0 −2.90327 0
1.5 0 1.44304 0 −4.29314 0 −3.18498 0 −0.917645 0
1.6 0 2.36946 0 −1.28931 0 4.54455 0 2.61432 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9196.2.a.j 6
11.b odd 2 1 9196.2.a.i 6
11.c even 5 2 836.2.j.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
836.2.j.a 12 11.c even 5 2
9196.2.a.i 6 11.b odd 2 1
9196.2.a.j 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9196))\):

\( T_{3}^{6} + 2T_{3}^{5} - 10T_{3}^{4} - 13T_{3}^{3} + 27T_{3}^{2} + 6T_{3} - 4 \) Copy content Toggle raw display
\( T_{5}^{6} + 7T_{5}^{5} + T_{5}^{4} - 69T_{5}^{3} - 74T_{5}^{2} + 160T_{5} + 199 \) Copy content Toggle raw display
\( T_{7}^{6} - 4T_{7}^{5} - 18T_{7}^{4} + 59T_{7}^{3} + 91T_{7}^{2} - 165T_{7} - 45 \) Copy content Toggle raw display
\( T_{13}^{6} - T_{13}^{5} - 20T_{13}^{4} + 6T_{13}^{3} + 37T_{13}^{2} - 28T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 2 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$5$ \( T^{6} + 7 T^{5} + \cdots + 199 \) Copy content Toggle raw display
$7$ \( T^{6} - 4 T^{5} + \cdots - 45 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - T^{5} - 20 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 12 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} + 8 T^{5} + \cdots - 1436 \) Copy content Toggle raw display
$31$ \( T^{6} - 7 T^{5} + \cdots - 1900 \) Copy content Toggle raw display
$37$ \( T^{6} - 24 T^{5} + \cdots - 144 \) Copy content Toggle raw display
$41$ \( T^{6} + 15 T^{5} + \cdots + 19804 \) Copy content Toggle raw display
$43$ \( T^{6} + 23 T^{5} + \cdots + 69975 \) Copy content Toggle raw display
$47$ \( T^{6} + 10 T^{5} + \cdots - 2339 \) Copy content Toggle raw display
$53$ \( T^{6} - 16 T^{5} + \cdots + 210836 \) Copy content Toggle raw display
$59$ \( T^{6} + 27 T^{5} + \cdots - 8516 \) Copy content Toggle raw display
$61$ \( T^{6} + 7 T^{5} + \cdots + 3681 \) Copy content Toggle raw display
$67$ \( T^{6} + 11 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$71$ \( T^{6} + 16 T^{5} + \cdots - 135920 \) Copy content Toggle raw display
$73$ \( T^{6} - 6 T^{5} + \cdots + 22756 \) Copy content Toggle raw display
$79$ \( T^{6} - 34 T^{5} + \cdots + 20736 \) Copy content Toggle raw display
$83$ \( T^{6} + 2 T^{5} + \cdots - 35951 \) Copy content Toggle raw display
$89$ \( T^{6} - 13 T^{5} + \cdots - 35044 \) Copy content Toggle raw display
$97$ \( T^{6} + 13 T^{5} + \cdots - 28656 \) Copy content Toggle raw display
show more
show less