Properties

Label 2-9196-1.1-c1-0-71
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.471·3-s − 3.53·5-s − 2.29·7-s − 2.77·9-s + 0.762·13-s + 1.66·15-s + 1.00·17-s + 19-s + 1.08·21-s − 2.94·23-s + 7.50·25-s + 2.72·27-s − 5.04·29-s + 3.30·31-s + 8.13·35-s + 7.77·37-s − 0.359·39-s − 1.35·41-s + 3.91·43-s + 9.82·45-s + 0.474·47-s − 1.71·49-s − 0.475·51-s − 5.38·53-s − 0.471·57-s − 1.88·59-s − 2.99·61-s + ⋯
L(s)  = 1  − 0.272·3-s − 1.58·5-s − 0.869·7-s − 0.925·9-s + 0.211·13-s + 0.430·15-s + 0.244·17-s + 0.229·19-s + 0.236·21-s − 0.615·23-s + 1.50·25-s + 0.523·27-s − 0.936·29-s + 0.593·31-s + 1.37·35-s + 1.27·37-s − 0.0575·39-s − 0.211·41-s + 0.596·43-s + 1.46·45-s + 0.0692·47-s − 0.244·49-s − 0.0665·51-s − 0.739·53-s − 0.0624·57-s − 0.245·59-s − 0.383·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 0.471T + 3T^{2} \)
5 \( 1 + 3.53T + 5T^{2} \)
7 \( 1 + 2.29T + 7T^{2} \)
13 \( 1 - 0.762T + 13T^{2} \)
17 \( 1 - 1.00T + 17T^{2} \)
23 \( 1 + 2.94T + 23T^{2} \)
29 \( 1 + 5.04T + 29T^{2} \)
31 \( 1 - 3.30T + 31T^{2} \)
37 \( 1 - 7.77T + 37T^{2} \)
41 \( 1 + 1.35T + 41T^{2} \)
43 \( 1 - 3.91T + 43T^{2} \)
47 \( 1 - 0.474T + 47T^{2} \)
53 \( 1 + 5.38T + 53T^{2} \)
59 \( 1 + 1.88T + 59T^{2} \)
61 \( 1 + 2.99T + 61T^{2} \)
67 \( 1 - 12.5T + 67T^{2} \)
71 \( 1 - 5.84T + 71T^{2} \)
73 \( 1 - 8.06T + 73T^{2} \)
79 \( 1 - 11.6T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 - 12.0T + 89T^{2} \)
97 \( 1 + 3.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58116542325710279180978458052, −6.60434432127830608518732550613, −6.14850521856966402160818302586, −5.31104871949185299205852317955, −4.50514109002281534340465209213, −3.68904913141294262655327222184, −3.28878512613930065986847171650, −2.38937127103862155732867261664, −0.827231966236917548893811304463, 0, 0.827231966236917548893811304463, 2.38937127103862155732867261664, 3.28878512613930065986847171650, 3.68904913141294262655327222184, 4.50514109002281534340465209213, 5.31104871949185299205852317955, 6.14850521856966402160818302586, 6.60434432127830608518732550613, 7.58116542325710279180978458052

Graph of the $Z$-function along the critical line