Properties

Label 9152.2.a.cn
Level $9152$
Weight $2$
Character orbit 9152.a
Self dual yes
Analytic conductor $73.079$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9152,2,Mod(1,9152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9152.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9152 = 2^{6} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-3,0,2,0,-1,0,1,0,6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.0790879299\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.16371248.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 8x^{3} + 15x^{2} - 6x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4576)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} - \beta_{2} q^{5} + \beta_{5} q^{7} + ( - \beta_{5} + \beta_{2} - 2 \beta_1 + 1) q^{9} + q^{11} - q^{13} + ( - \beta_{3} + \beta_{2} - \beta_1 + 1) q^{15} + (\beta_{5} - 2 \beta_{4} - \beta_{3} + \cdots - 2) q^{17}+ \cdots + ( - \beta_{5} + \beta_{2} - 2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} + 2 q^{5} - q^{7} + q^{9} + 6 q^{11} - 6 q^{13} + q^{15} - 6 q^{17} - 10 q^{19} + 8 q^{21} + 8 q^{23} - 4 q^{25} - 3 q^{27} - 3 q^{29} + 3 q^{31} - 3 q^{33} - 11 q^{35} + 3 q^{37} + 3 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 8x^{3} + 15x^{2} - 6x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 5\nu^{3} + 4\nu^{2} + 5\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 4\nu^{4} - \nu^{3} + 14\nu^{2} - 3\nu - 10 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 2\nu^{4} + 7\nu^{3} - 8\nu^{2} - 13\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{3} + 2\beta_{2} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - \beta_{4} + 3\beta_{3} + 9\beta_{2} + 13\beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{5} - 2\beta_{4} + 13\beta_{3} + 24\beta_{2} + 47\beta _1 + 31 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.68188
0.939075
2.99474
−0.749969
1.77127
−1.27324
0 −3.02951 0 −1.51059 0 −0.303583 0 6.17793 0
1.2 0 −1.83986 0 3.05721 0 −4.32043 0 0.385071 0
1.3 0 −0.570243 0 −2.97371 0 0.659060 0 −2.67482 0
1.4 0 −0.478300 0 1.68758 0 3.58359 0 −2.77123 0
1.5 0 0.557301 0 1.63387 0 −1.48700 0 −2.68942 0
1.6 0 2.36061 0 0.105635 0 0.868366 0 2.57247 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9152.2.a.cn 6
4.b odd 2 1 9152.2.a.ct 6
8.b even 2 1 4576.2.a.r yes 6
8.d odd 2 1 4576.2.a.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4576.2.a.o 6 8.d odd 2 1
4576.2.a.r yes 6 8.b even 2 1
9152.2.a.cn 6 1.a even 1 1 trivial
9152.2.a.ct 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9152))\):

\( T_{3}^{6} + 3T_{3}^{5} - 5T_{3}^{4} - 17T_{3}^{3} - 5T_{3}^{2} + 5T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{6} - 2T_{5}^{5} - 11T_{5}^{4} + 22T_{5}^{3} + 18T_{5}^{2} - 40T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{6} + T_{7}^{5} - 17T_{7}^{4} - 5T_{7}^{3} + 27T_{7}^{2} - 5T_{7} - 4 \) Copy content Toggle raw display
\( T_{17}^{6} + 6T_{17}^{5} - 26T_{17}^{4} - 88T_{17}^{3} + 148T_{17}^{2} + 328T_{17} - 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 3 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{6} - 2 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{6} + T^{5} - 17 T^{4} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( (T - 1)^{6} \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 6 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$19$ \( T^{6} + 10 T^{5} + \cdots + 344 \) Copy content Toggle raw display
$23$ \( T^{6} - 8 T^{5} + \cdots + 523 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots - 5744 \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots + 5504 \) Copy content Toggle raw display
$41$ \( T^{6} - 9 T^{5} + \cdots + 6406 \) Copy content Toggle raw display
$43$ \( T^{6} + 13 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$47$ \( T^{6} - 4 T^{5} + \cdots - 64 \) Copy content Toggle raw display
$53$ \( T^{6} + 10 T^{5} + \cdots + 244 \) Copy content Toggle raw display
$59$ \( T^{6} + 18 T^{5} + \cdots - 37936 \) Copy content Toggle raw display
$61$ \( T^{6} - T^{5} + \cdots + 5696 \) Copy content Toggle raw display
$67$ \( T^{6} + 14 T^{5} + \cdots - 7468 \) Copy content Toggle raw display
$71$ \( T^{6} - 23 T^{5} + \cdots + 2597792 \) Copy content Toggle raw display
$73$ \( T^{6} - 9 T^{5} + \cdots - 20738 \) Copy content Toggle raw display
$79$ \( T^{6} + 12 T^{5} + \cdots - 32192 \) Copy content Toggle raw display
$83$ \( T^{6} + 38 T^{5} + \cdots + 5584 \) Copy content Toggle raw display
$89$ \( T^{6} - 15 T^{5} + \cdots - 74912 \) Copy content Toggle raw display
$97$ \( T^{6} - 11 T^{5} + \cdots + 2864 \) Copy content Toggle raw display
show more
show less