Defining parameters
Level: | \( N \) | \(=\) | \( 9152 = 2^{6} \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9152.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 80 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9152))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1368 | 240 | 1128 |
Cusp forms | 1321 | 240 | 1081 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(159\) | \(29\) | \(130\) | \(154\) | \(29\) | \(125\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(183\) | \(34\) | \(149\) | \(177\) | \(34\) | \(143\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(179\) | \(31\) | \(148\) | \(173\) | \(31\) | \(142\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(163\) | \(26\) | \(137\) | \(157\) | \(26\) | \(131\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(173\) | \(31\) | \(142\) | \(167\) | \(31\) | \(136\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(169\) | \(26\) | \(143\) | \(163\) | \(26\) | \(137\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(173\) | \(29\) | \(144\) | \(167\) | \(29\) | \(138\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(169\) | \(34\) | \(135\) | \(163\) | \(34\) | \(129\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(664\) | \(110\) | \(554\) | \(641\) | \(110\) | \(531\) | \(23\) | \(0\) | \(23\) | |||||
Minus space | \(-\) | \(704\) | \(130\) | \(574\) | \(680\) | \(130\) | \(550\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9152))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9152))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9152)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(572))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2288))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4576))\)\(^{\oplus 2}\)