Properties

Label 2-9152-1.1-c1-0-108
Degree $2$
Conductor $9152$
Sign $-1$
Analytic cond. $73.0790$
Root an. cond. $8.54863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.02·3-s − 1.51·5-s − 0.303·7-s + 6.17·9-s + 11-s − 13-s + 4.57·15-s + 2.62·17-s − 5.11·19-s + 0.919·21-s + 0.820·23-s − 2.71·25-s − 9.62·27-s − 1.69·29-s + 3.60·31-s − 3.02·33-s + 0.458·35-s + 5.23·37-s + 3.02·39-s + 3.95·41-s − 4.25·43-s − 9.33·45-s − 1.93·47-s − 6.90·49-s − 7.96·51-s − 2.09·53-s − 1.51·55-s + ⋯
L(s)  = 1  − 1.74·3-s − 0.675·5-s − 0.114·7-s + 2.05·9-s + 0.301·11-s − 0.277·13-s + 1.18·15-s + 0.637·17-s − 1.17·19-s + 0.200·21-s + 0.171·23-s − 0.543·25-s − 1.85·27-s − 0.313·29-s + 0.646·31-s − 0.527·33-s + 0.0775·35-s + 0.861·37-s + 0.485·39-s + 0.617·41-s − 0.648·43-s − 1.39·45-s − 0.282·47-s − 0.986·49-s − 1.11·51-s − 0.288·53-s − 0.203·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9152\)    =    \(2^{6} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(73.0790\)
Root analytic conductor: \(8.54863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9152,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + 3.02T + 3T^{2} \)
5 \( 1 + 1.51T + 5T^{2} \)
7 \( 1 + 0.303T + 7T^{2} \)
17 \( 1 - 2.62T + 17T^{2} \)
19 \( 1 + 5.11T + 19T^{2} \)
23 \( 1 - 0.820T + 23T^{2} \)
29 \( 1 + 1.69T + 29T^{2} \)
31 \( 1 - 3.60T + 31T^{2} \)
37 \( 1 - 5.23T + 37T^{2} \)
41 \( 1 - 3.95T + 41T^{2} \)
43 \( 1 + 4.25T + 43T^{2} \)
47 \( 1 + 1.93T + 47T^{2} \)
53 \( 1 + 2.09T + 53T^{2} \)
59 \( 1 - 5.59T + 59T^{2} \)
61 \( 1 - 14.4T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 12.3T + 71T^{2} \)
73 \( 1 - 12.7T + 73T^{2} \)
79 \( 1 + 3.98T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 + 7.38T + 89T^{2} \)
97 \( 1 - 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.18166717697053353290391910601, −6.62100883089676310985272398661, −5.98136239638166967165272405682, −5.44449884385218031960702402617, −4.52746188597779923970827613434, −4.21604930245990136325526601754, −3.21859439233190974058336024050, −1.94117128850624179756848199555, −0.880293682437463385900769937205, 0, 0.880293682437463385900769937205, 1.94117128850624179756848199555, 3.21859439233190974058336024050, 4.21604930245990136325526601754, 4.52746188597779923970827613434, 5.44449884385218031960702402617, 5.98136239638166967165272405682, 6.62100883089676310985272398661, 7.18166717697053353290391910601

Graph of the $Z$-function along the critical line