Properties

Label 9114.2.a.bx
Level $9114$
Weight $2$
Character orbit 9114.a
Self dual yes
Analytic conductor $72.776$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9114,2,Mod(1,9114)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9114.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9114, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9114 = 2 \cdot 3 \cdot 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9114.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,-5,5,0,-5,0,5,5,0,10,-5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.7756564022\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.11978672.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 15x^{3} + 48x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - \beta_1 q^{5} - q^{6} + q^{8} + q^{9} - \beta_1 q^{10} + (\beta_1 + 2) q^{11} - q^{12} + \beta_{2} q^{13} + \beta_1 q^{15} + q^{16} + \beta_{2} q^{17} + q^{18} + ( - \beta_{3} - 1) q^{19}+ \cdots + (\beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} - 5 q^{3} + 5 q^{4} - 5 q^{6} + 5 q^{8} + 5 q^{9} + 10 q^{11} - 5 q^{12} + 5 q^{16} + 5 q^{18} - 4 q^{19} + 10 q^{22} + 14 q^{23} - 5 q^{24} + 5 q^{25} - 5 q^{27} + 10 q^{29} + 5 q^{31} + 5 q^{32}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 15x^{3} + 48x - 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 11\nu^{2} - 2\nu + 14 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{3} - \nu^{2} - 9\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{2} + 9\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{3} + 11\beta_{2} + 2\beta _1 + 52 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.33353
1.83932
0.346196
−2.48144
−3.03761
1.00000 −1.00000 1.00000 −3.33353 −1.00000 0 1.00000 1.00000 −3.33353
1.2 1.00000 −1.00000 1.00000 −1.83932 −1.00000 0 1.00000 1.00000 −1.83932
1.3 1.00000 −1.00000 1.00000 −0.346196 −1.00000 0 1.00000 1.00000 −0.346196
1.4 1.00000 −1.00000 1.00000 2.48144 −1.00000 0 1.00000 1.00000 2.48144
1.5 1.00000 −1.00000 1.00000 3.03761 −1.00000 0 1.00000 1.00000 3.03761
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9114.2.a.bx 5
7.b odd 2 1 9114.2.a.cc yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9114.2.a.bx 5 1.a even 1 1 trivial
9114.2.a.cc yes 5 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9114))\):

\( T_{5}^{5} - 15T_{5}^{3} + 48T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{5} - 10T_{11}^{4} + 25T_{11}^{3} + 10T_{11}^{2} - 52T_{11} - 24 \) Copy content Toggle raw display
\( T_{13}^{5} - 39T_{13}^{3} + 18T_{13}^{2} + 252T_{13} - 40 \) Copy content Toggle raw display
\( T_{17}^{5} - 39T_{17}^{3} + 18T_{17}^{2} + 252T_{17} - 40 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{5} \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 15 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 10 T^{4} + \cdots - 24 \) Copy content Toggle raw display
$13$ \( T^{5} - 39 T^{3} + \cdots - 40 \) Copy content Toggle raw display
$17$ \( T^{5} - 39 T^{3} + \cdots - 40 \) Copy content Toggle raw display
$19$ \( T^{5} + 4 T^{4} + \cdots + 3152 \) Copy content Toggle raw display
$23$ \( T^{5} - 14 T^{4} + \cdots + 96 \) Copy content Toggle raw display
$29$ \( T^{5} - 10 T^{4} + \cdots - 10656 \) Copy content Toggle raw display
$31$ \( (T - 1)^{5} \) Copy content Toggle raw display
$37$ \( T^{5} - 6 T^{4} + \cdots - 640 \) Copy content Toggle raw display
$41$ \( T^{5} - 4 T^{4} + \cdots + 384 \) Copy content Toggle raw display
$43$ \( T^{5} - 6 T^{4} + \cdots - 8160 \) Copy content Toggle raw display
$47$ \( T^{5} - 4 T^{4} + \cdots + 352 \) Copy content Toggle raw display
$53$ \( T^{5} - 10 T^{4} + \cdots - 352 \) Copy content Toggle raw display
$59$ \( T^{5} - 108 T^{3} + \cdots - 1088 \) Copy content Toggle raw display
$61$ \( T^{5} - 303 T^{3} + \cdots + 27832 \) Copy content Toggle raw display
$67$ \( T^{5} - 10 T^{4} + \cdots + 2176 \) Copy content Toggle raw display
$71$ \( T^{5} - 10 T^{4} + \cdots - 121152 \) Copy content Toggle raw display
$73$ \( T^{5} - 10 T^{4} + \cdots - 130784 \) Copy content Toggle raw display
$79$ \( T^{5} - 10 T^{4} + \cdots + 344 \) Copy content Toggle raw display
$83$ \( T^{5} + 10 T^{4} + \cdots + 704 \) Copy content Toggle raw display
$89$ \( T^{5} - 10 T^{4} + \cdots - 6304 \) Copy content Toggle raw display
$97$ \( T^{5} + 20 T^{4} + \cdots - 42048 \) Copy content Toggle raw display
show more
show less