Defining parameters
| Level: | \( N \) | \(=\) | \( 9114 = 2 \cdot 3 \cdot 7^{2} \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9114.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 63 \) | ||
| Sturm bound: | \(3584\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9114))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1824 | 206 | 1618 |
| Cusp forms | 1761 | 206 | 1555 |
| Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(104\) | \(11\) | \(93\) | \(101\) | \(11\) | \(90\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(120\) | \(15\) | \(105\) | \(116\) | \(15\) | \(101\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(121\) | \(14\) | \(107\) | \(117\) | \(14\) | \(103\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(109\) | \(11\) | \(98\) | \(105\) | \(11\) | \(94\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(116\) | \(15\) | \(101\) | \(112\) | \(15\) | \(97\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(116\) | \(11\) | \(105\) | \(112\) | \(11\) | \(101\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(111\) | \(11\) | \(100\) | \(107\) | \(11\) | \(96\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(115\) | \(14\) | \(101\) | \(111\) | \(14\) | \(97\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(120\) | \(17\) | \(103\) | \(116\) | \(17\) | \(99\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(108\) | \(9\) | \(99\) | \(104\) | \(9\) | \(95\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(110\) | \(10\) | \(100\) | \(106\) | \(10\) | \(96\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(118\) | \(16\) | \(102\) | \(114\) | \(16\) | \(98\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(116\) | \(9\) | \(107\) | \(112\) | \(9\) | \(103\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(112\) | \(17\) | \(95\) | \(108\) | \(17\) | \(91\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(114\) | \(16\) | \(98\) | \(110\) | \(16\) | \(94\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(114\) | \(10\) | \(104\) | \(110\) | \(10\) | \(100\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(888\) | \(82\) | \(806\) | \(857\) | \(82\) | \(775\) | \(31\) | \(0\) | \(31\) | ||||||
| Minus space | \(-\) | \(936\) | \(124\) | \(812\) | \(904\) | \(124\) | \(780\) | \(32\) | \(0\) | \(32\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9114))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9114))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9114)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(217))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(434))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(651))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1302))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1519))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3038))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4557))\)\(^{\oplus 2}\)