| L(s)  = 1  |   + 2-s   − 3-s   + 4-s   + 3.03·5-s   − 6-s     + 8-s   + 9-s   + 3.03·10-s   − 1.03·11-s   − 12-s   + 3.22·13-s     − 3.03·15-s   + 16-s   + 3.22·17-s   + 18-s   − 2.85·19-s   + 3.03·20-s     − 1.03·22-s   + 7.89·23-s   − 24-s   + 4.22·25-s   + 3.22·26-s   − 27-s     + 9.14·29-s   − 3.03·30-s   + 31-s   + 32-s  + ⋯ | 
 
| L(s)  = 1  |   + 0.707·2-s   − 0.577·3-s   + 0.5·4-s   + 1.35·5-s   − 0.408·6-s     + 0.353·8-s   + 0.333·9-s   + 0.960·10-s   − 0.312·11-s   − 0.288·12-s   + 0.895·13-s     − 0.784·15-s   + 0.250·16-s   + 0.782·17-s   + 0.235·18-s   − 0.655·19-s   + 0.679·20-s     − 0.221·22-s   + 1.64·23-s   − 0.204·24-s   + 0.845·25-s   + 0.632·26-s   − 0.192·27-s     + 1.69·29-s   − 0.554·30-s   + 0.179·31-s   + 0.176·32-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 9114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(4.216462729\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(4.216462729\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 - T \)  | 
 | 3 |  \( 1 + T \)  | 
 | 7 |  \( 1 \)  | 
 | 31 |  \( 1 - T \)  | 
| good | 5 |  \( 1 - 3.03T + 5T^{2} \)  | 
 | 11 |  \( 1 + 1.03T + 11T^{2} \)  | 
 | 13 |  \( 1 - 3.22T + 13T^{2} \)  | 
 | 17 |  \( 1 - 3.22T + 17T^{2} \)  | 
 | 19 |  \( 1 + 2.85T + 19T^{2} \)  | 
 | 23 |  \( 1 - 7.89T + 23T^{2} \)  | 
 | 29 |  \( 1 - 9.14T + 29T^{2} \)  | 
 | 37 |  \( 1 + 4.58T + 37T^{2} \)  | 
 | 41 |  \( 1 + 0.179T + 41T^{2} \)  | 
 | 43 |  \( 1 + 11.0T + 43T^{2} \)  | 
 | 47 |  \( 1 - 9.62T + 47T^{2} \)  | 
 | 53 |  \( 1 - 8.76T + 53T^{2} \)  | 
 | 59 |  \( 1 - 0.689T + 59T^{2} \)  | 
 | 61 |  \( 1 + 11.0T + 61T^{2} \)  | 
 | 67 |  \( 1 - 4.84T + 67T^{2} \)  | 
 | 71 |  \( 1 + 15.1T + 71T^{2} \)  | 
 | 73 |  \( 1 + 11.9T + 73T^{2} \)  | 
 | 79 |  \( 1 + 0.347T + 79T^{2} \)  | 
 | 83 |  \( 1 + 11.3T + 83T^{2} \)  | 
 | 89 |  \( 1 - 14.1T + 89T^{2} \)  | 
 | 97 |  \( 1 + 13.8T + 97T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.41717596048144886980188511353, −6.80433312140486788630855361283, −6.13583279030084307723744963427, −5.74495161906496661239703304808, −5.03848724328490391785632156047, −4.48937774391407939088105049321, −3.37618185670401382414100035708, −2.71927037957713419563283978337, −1.72738968550599773716908830720, −0.984679059442436294209931885023, 
0.984679059442436294209931885023, 1.72738968550599773716908830720, 2.71927037957713419563283978337, 3.37618185670401382414100035708, 4.48937774391407939088105049321, 5.03848724328490391785632156047, 5.74495161906496661239703304808, 6.13583279030084307723744963427, 6.80433312140486788630855361283, 7.41717596048144886980188511353