Properties

Label 91.2.h.a
Level $91$
Weight $2$
Character orbit 91.h
Analytic conductor $0.727$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [91,2,Mod(16,91)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(91, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("91.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + 3 \zeta_{6} q^{3} - q^{4} - 3 \zeta_{6} q^{5} + 3 \zeta_{6} q^{6} + ( - 2 \zeta_{6} + 3) q^{7} - 3 q^{8} + (6 \zeta_{6} - 6) q^{9} - 3 \zeta_{6} q^{10} + 3 \zeta_{6} q^{11} - 3 \zeta_{6} q^{12} + \cdots - 18 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} - 2 q^{4} - 3 q^{5} + 3 q^{6} + 4 q^{7} - 6 q^{8} - 6 q^{9} - 3 q^{10} + 3 q^{11} - 3 q^{12} - 2 q^{13} + 4 q^{14} + 9 q^{15} - 2 q^{16} - 4 q^{17} - 6 q^{18} + q^{19} + 3 q^{20}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.50000 2.59808i −1.00000 −1.50000 + 2.59808i 1.50000 2.59808i 2.00000 + 1.73205i −3.00000 −3.00000 5.19615i −1.50000 + 2.59808i
74.1 1.00000 1.50000 + 2.59808i −1.00000 −1.50000 2.59808i 1.50000 + 2.59808i 2.00000 1.73205i −3.00000 −3.00000 + 5.19615i −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.h.a yes 2
3.b odd 2 1 819.2.s.a 2
7.b odd 2 1 637.2.h.a 2
7.c even 3 1 91.2.g.a 2
7.c even 3 1 637.2.f.b 2
7.d odd 6 1 637.2.f.a 2
7.d odd 6 1 637.2.g.a 2
13.c even 3 1 91.2.g.a 2
13.c even 3 1 1183.2.e.a 2
13.e even 6 1 1183.2.e.c 2
21.h odd 6 1 819.2.n.c 2
39.i odd 6 1 819.2.n.c 2
91.g even 3 1 637.2.f.b 2
91.g even 3 1 1183.2.e.a 2
91.h even 3 1 inner 91.2.h.a yes 2
91.h even 3 1 8281.2.a.i 1
91.k even 6 1 8281.2.a.c 1
91.l odd 6 1 8281.2.a.g 1
91.m odd 6 1 637.2.f.a 2
91.n odd 6 1 637.2.g.a 2
91.u even 6 1 1183.2.e.c 2
91.v odd 6 1 637.2.h.a 2
91.v odd 6 1 8281.2.a.j 1
273.s odd 6 1 819.2.s.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.g.a 2 7.c even 3 1
91.2.g.a 2 13.c even 3 1
91.2.h.a yes 2 1.a even 1 1 trivial
91.2.h.a yes 2 91.h even 3 1 inner
637.2.f.a 2 7.d odd 6 1
637.2.f.a 2 91.m odd 6 1
637.2.f.b 2 7.c even 3 1
637.2.f.b 2 91.g even 3 1
637.2.g.a 2 7.d odd 6 1
637.2.g.a 2 91.n odd 6 1
637.2.h.a 2 7.b odd 2 1
637.2.h.a 2 91.v odd 6 1
819.2.n.c 2 21.h odd 6 1
819.2.n.c 2 39.i odd 6 1
819.2.s.a 2 3.b odd 2 1
819.2.s.a 2 273.s odd 6 1
1183.2.e.a 2 13.c even 3 1
1183.2.e.a 2 91.g even 3 1
1183.2.e.c 2 13.e even 6 1
1183.2.e.c 2 91.u even 6 1
8281.2.a.c 1 91.k even 6 1
8281.2.a.g 1 91.l odd 6 1
8281.2.a.i 1 91.h even 3 1
8281.2.a.j 1 91.v odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 13 \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$31$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$47$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$67$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$71$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$73$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
show more
show less