Properties

Label 9065.2.a.s.1.6
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,-3,1,11,-19,4,0,-9,12,3,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 3 x^{18} - 20 x^{17} + 62 x^{16} + 161 x^{15} - 522 x^{14} - 670 x^{13} + 2318 x^{12} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.60289\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.60289 q^{2} -2.23948 q^{3} +0.569269 q^{4} -1.00000 q^{5} +3.58964 q^{6} +2.29331 q^{8} +2.01526 q^{9} +1.60289 q^{10} +2.85907 q^{11} -1.27486 q^{12} +3.48980 q^{13} +2.23948 q^{15} -4.81447 q^{16} +2.03875 q^{17} -3.23025 q^{18} +6.37906 q^{19} -0.569269 q^{20} -4.58279 q^{22} +3.61345 q^{23} -5.13582 q^{24} +1.00000 q^{25} -5.59379 q^{26} +2.20531 q^{27} -3.33608 q^{29} -3.58964 q^{30} -3.73108 q^{31} +3.13047 q^{32} -6.40282 q^{33} -3.26791 q^{34} +1.14722 q^{36} +1.00000 q^{37} -10.2250 q^{38} -7.81534 q^{39} -2.29331 q^{40} +4.95006 q^{41} -0.192899 q^{43} +1.62758 q^{44} -2.01526 q^{45} -5.79197 q^{46} -4.68499 q^{47} +10.7819 q^{48} -1.60289 q^{50} -4.56574 q^{51} +1.98664 q^{52} -13.8145 q^{53} -3.53487 q^{54} -2.85907 q^{55} -14.2858 q^{57} +5.34738 q^{58} -8.43775 q^{59} +1.27486 q^{60} -4.40293 q^{61} +5.98052 q^{62} +4.61114 q^{64} -3.48980 q^{65} +10.2630 q^{66} -0.386831 q^{67} +1.16060 q^{68} -8.09223 q^{69} +9.77799 q^{71} +4.62161 q^{72} -8.06134 q^{73} -1.60289 q^{74} -2.23948 q^{75} +3.63140 q^{76} +12.5272 q^{78} -11.9221 q^{79} +4.81447 q^{80} -10.9845 q^{81} -7.93442 q^{82} +5.18099 q^{83} -2.03875 q^{85} +0.309197 q^{86} +7.47108 q^{87} +6.55673 q^{88} +15.3052 q^{89} +3.23025 q^{90} +2.05702 q^{92} +8.35566 q^{93} +7.50953 q^{94} -6.37906 q^{95} -7.01061 q^{96} +4.92715 q^{97} +5.76176 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q - 3 q^{2} + q^{3} + 11 q^{4} - 19 q^{5} + 4 q^{6} - 9 q^{8} + 12 q^{9} + 3 q^{10} - 13 q^{11} + 4 q^{12} + 3 q^{13} - q^{15} - 5 q^{16} + 2 q^{17} - 11 q^{18} + 12 q^{19} - 11 q^{20} - 10 q^{22}+ \cdots - 71 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.60289 −1.13342 −0.566709 0.823918i \(-0.691783\pi\)
−0.566709 + 0.823918i \(0.691783\pi\)
\(3\) −2.23948 −1.29296 −0.646481 0.762930i \(-0.723760\pi\)
−0.646481 + 0.762930i \(0.723760\pi\)
\(4\) 0.569269 0.284634
\(5\) −1.00000 −0.447214
\(6\) 3.58964 1.46547
\(7\) 0 0
\(8\) 2.29331 0.810808
\(9\) 2.01526 0.671753
\(10\) 1.60289 0.506880
\(11\) 2.85907 0.862042 0.431021 0.902342i \(-0.358153\pi\)
0.431021 + 0.902342i \(0.358153\pi\)
\(12\) −1.27486 −0.368022
\(13\) 3.48980 0.967897 0.483949 0.875096i \(-0.339202\pi\)
0.483949 + 0.875096i \(0.339202\pi\)
\(14\) 0 0
\(15\) 2.23948 0.578231
\(16\) −4.81447 −1.20362
\(17\) 2.03875 0.494470 0.247235 0.968955i \(-0.420478\pi\)
0.247235 + 0.968955i \(0.420478\pi\)
\(18\) −3.23025 −0.761376
\(19\) 6.37906 1.46346 0.731729 0.681596i \(-0.238714\pi\)
0.731729 + 0.681596i \(0.238714\pi\)
\(20\) −0.569269 −0.127292
\(21\) 0 0
\(22\) −4.58279 −0.977053
\(23\) 3.61345 0.753456 0.376728 0.926324i \(-0.377049\pi\)
0.376728 + 0.926324i \(0.377049\pi\)
\(24\) −5.13582 −1.04834
\(25\) 1.00000 0.200000
\(26\) −5.59379 −1.09703
\(27\) 2.20531 0.424411
\(28\) 0 0
\(29\) −3.33608 −0.619495 −0.309747 0.950819i \(-0.600244\pi\)
−0.309747 + 0.950819i \(0.600244\pi\)
\(30\) −3.58964 −0.655376
\(31\) −3.73108 −0.670121 −0.335061 0.942197i \(-0.608757\pi\)
−0.335061 + 0.942197i \(0.608757\pi\)
\(32\) 3.13047 0.553393
\(33\) −6.40282 −1.11459
\(34\) −3.26791 −0.560441
\(35\) 0 0
\(36\) 1.14722 0.191204
\(37\) 1.00000 0.164399
\(38\) −10.2250 −1.65871
\(39\) −7.81534 −1.25146
\(40\) −2.29331 −0.362604
\(41\) 4.95006 0.773070 0.386535 0.922275i \(-0.373672\pi\)
0.386535 + 0.922275i \(0.373672\pi\)
\(42\) 0 0
\(43\) −0.192899 −0.0294169 −0.0147084 0.999892i \(-0.504682\pi\)
−0.0147084 + 0.999892i \(0.504682\pi\)
\(44\) 1.62758 0.245367
\(45\) −2.01526 −0.300417
\(46\) −5.79197 −0.853980
\(47\) −4.68499 −0.683375 −0.341688 0.939814i \(-0.610998\pi\)
−0.341688 + 0.939814i \(0.610998\pi\)
\(48\) 10.7819 1.55623
\(49\) 0 0
\(50\) −1.60289 −0.226683
\(51\) −4.56574 −0.639332
\(52\) 1.98664 0.275497
\(53\) −13.8145 −1.89756 −0.948782 0.315930i \(-0.897683\pi\)
−0.948782 + 0.315930i \(0.897683\pi\)
\(54\) −3.53487 −0.481035
\(55\) −2.85907 −0.385517
\(56\) 0 0
\(57\) −14.2858 −1.89220
\(58\) 5.34738 0.702146
\(59\) −8.43775 −1.09850 −0.549250 0.835658i \(-0.685087\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(60\) 1.27486 0.164584
\(61\) −4.40293 −0.563738 −0.281869 0.959453i \(-0.590954\pi\)
−0.281869 + 0.959453i \(0.590954\pi\)
\(62\) 5.98052 0.759527
\(63\) 0 0
\(64\) 4.61114 0.576392
\(65\) −3.48980 −0.432857
\(66\) 10.2630 1.26329
\(67\) −0.386831 −0.0472589 −0.0236295 0.999721i \(-0.507522\pi\)
−0.0236295 + 0.999721i \(0.507522\pi\)
\(68\) 1.16060 0.140743
\(69\) −8.09223 −0.974191
\(70\) 0 0
\(71\) 9.77799 1.16043 0.580217 0.814462i \(-0.302968\pi\)
0.580217 + 0.814462i \(0.302968\pi\)
\(72\) 4.62161 0.544662
\(73\) −8.06134 −0.943508 −0.471754 0.881730i \(-0.656379\pi\)
−0.471754 + 0.881730i \(0.656379\pi\)
\(74\) −1.60289 −0.186333
\(75\) −2.23948 −0.258593
\(76\) 3.63140 0.416550
\(77\) 0 0
\(78\) 12.5272 1.41842
\(79\) −11.9221 −1.34134 −0.670670 0.741756i \(-0.733993\pi\)
−0.670670 + 0.741756i \(0.733993\pi\)
\(80\) 4.81447 0.538274
\(81\) −10.9845 −1.22050
\(82\) −7.93442 −0.876210
\(83\) 5.18099 0.568688 0.284344 0.958722i \(-0.408224\pi\)
0.284344 + 0.958722i \(0.408224\pi\)
\(84\) 0 0
\(85\) −2.03875 −0.221134
\(86\) 0.309197 0.0333416
\(87\) 7.47108 0.800983
\(88\) 6.55673 0.698950
\(89\) 15.3052 1.62234 0.811172 0.584807i \(-0.198830\pi\)
0.811172 + 0.584807i \(0.198830\pi\)
\(90\) 3.23025 0.340498
\(91\) 0 0
\(92\) 2.05702 0.214460
\(93\) 8.35566 0.866442
\(94\) 7.50953 0.774549
\(95\) −6.37906 −0.654478
\(96\) −7.01061 −0.715517
\(97\) 4.92715 0.500277 0.250138 0.968210i \(-0.419524\pi\)
0.250138 + 0.968210i \(0.419524\pi\)
\(98\) 0 0
\(99\) 5.76176 0.579079
\(100\) 0.569269 0.0569269
\(101\) 1.77664 0.176783 0.0883913 0.996086i \(-0.471827\pi\)
0.0883913 + 0.996086i \(0.471827\pi\)
\(102\) 7.31840 0.724630
\(103\) −17.9773 −1.77136 −0.885678 0.464300i \(-0.846306\pi\)
−0.885678 + 0.464300i \(0.846306\pi\)
\(104\) 8.00320 0.784779
\(105\) 0 0
\(106\) 22.1431 2.15073
\(107\) −17.5742 −1.69897 −0.849483 0.527616i \(-0.823086\pi\)
−0.849483 + 0.527616i \(0.823086\pi\)
\(108\) 1.25541 0.120802
\(109\) 1.18692 0.113687 0.0568433 0.998383i \(-0.481896\pi\)
0.0568433 + 0.998383i \(0.481896\pi\)
\(110\) 4.58279 0.436951
\(111\) −2.23948 −0.212562
\(112\) 0 0
\(113\) −8.36114 −0.786550 −0.393275 0.919421i \(-0.628658\pi\)
−0.393275 + 0.919421i \(0.628658\pi\)
\(114\) 22.8986 2.14465
\(115\) −3.61345 −0.336956
\(116\) −1.89913 −0.176329
\(117\) 7.03286 0.650188
\(118\) 13.5248 1.24506
\(119\) 0 0
\(120\) 5.13582 0.468834
\(121\) −2.82572 −0.256884
\(122\) 7.05744 0.638950
\(123\) −11.0855 −0.999550
\(124\) −2.12399 −0.190740
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.60437 0.319836 0.159918 0.987130i \(-0.448877\pi\)
0.159918 + 0.987130i \(0.448877\pi\)
\(128\) −13.6521 −1.20669
\(129\) 0.431994 0.0380349
\(130\) 5.59379 0.490607
\(131\) 6.64904 0.580930 0.290465 0.956886i \(-0.406190\pi\)
0.290465 + 0.956886i \(0.406190\pi\)
\(132\) −3.64493 −0.317250
\(133\) 0 0
\(134\) 0.620049 0.0535641
\(135\) −2.20531 −0.189803
\(136\) 4.67550 0.400920
\(137\) −11.9755 −1.02314 −0.511568 0.859243i \(-0.670935\pi\)
−0.511568 + 0.859243i \(0.670935\pi\)
\(138\) 12.9710 1.10416
\(139\) 5.73090 0.486088 0.243044 0.970015i \(-0.421854\pi\)
0.243044 + 0.970015i \(0.421854\pi\)
\(140\) 0 0
\(141\) 10.4919 0.883579
\(142\) −15.6731 −1.31526
\(143\) 9.97759 0.834368
\(144\) −9.70240 −0.808533
\(145\) 3.33608 0.277046
\(146\) 12.9215 1.06939
\(147\) 0 0
\(148\) 0.569269 0.0467936
\(149\) −15.7548 −1.29069 −0.645343 0.763893i \(-0.723286\pi\)
−0.645343 + 0.763893i \(0.723286\pi\)
\(150\) 3.58964 0.293093
\(151\) −4.84112 −0.393965 −0.196982 0.980407i \(-0.563114\pi\)
−0.196982 + 0.980407i \(0.563114\pi\)
\(152\) 14.6292 1.18658
\(153\) 4.10862 0.332162
\(154\) 0 0
\(155\) 3.73108 0.299687
\(156\) −4.44903 −0.356207
\(157\) −3.36089 −0.268228 −0.134114 0.990966i \(-0.542819\pi\)
−0.134114 + 0.990966i \(0.542819\pi\)
\(158\) 19.1099 1.52030
\(159\) 30.9372 2.45348
\(160\) −3.13047 −0.247485
\(161\) 0 0
\(162\) 17.6070 1.38334
\(163\) −21.6172 −1.69319 −0.846595 0.532238i \(-0.821351\pi\)
−0.846595 + 0.532238i \(0.821351\pi\)
\(164\) 2.81792 0.220042
\(165\) 6.40282 0.498459
\(166\) −8.30458 −0.644560
\(167\) −12.5724 −0.972883 −0.486442 0.873713i \(-0.661705\pi\)
−0.486442 + 0.873713i \(0.661705\pi\)
\(168\) 0 0
\(169\) −0.821270 −0.0631746
\(170\) 3.26791 0.250637
\(171\) 12.8555 0.983081
\(172\) −0.109812 −0.00837305
\(173\) 9.96158 0.757365 0.378682 0.925527i \(-0.376377\pi\)
0.378682 + 0.925527i \(0.376377\pi\)
\(174\) −11.9753 −0.907848
\(175\) 0 0
\(176\) −13.7649 −1.03757
\(177\) 18.8961 1.42032
\(178\) −24.5326 −1.83879
\(179\) 18.9663 1.41761 0.708804 0.705405i \(-0.249235\pi\)
0.708804 + 0.705405i \(0.249235\pi\)
\(180\) −1.14722 −0.0855090
\(181\) 7.20783 0.535754 0.267877 0.963453i \(-0.413678\pi\)
0.267877 + 0.963453i \(0.413678\pi\)
\(182\) 0 0
\(183\) 9.86027 0.728892
\(184\) 8.28676 0.610908
\(185\) −1.00000 −0.0735215
\(186\) −13.3932 −0.982040
\(187\) 5.82894 0.426254
\(188\) −2.66702 −0.194512
\(189\) 0 0
\(190\) 10.2250 0.741797
\(191\) 13.3183 0.963678 0.481839 0.876260i \(-0.339969\pi\)
0.481839 + 0.876260i \(0.339969\pi\)
\(192\) −10.3265 −0.745254
\(193\) −2.35578 −0.169573 −0.0847864 0.996399i \(-0.527021\pi\)
−0.0847864 + 0.996399i \(0.527021\pi\)
\(194\) −7.89771 −0.567022
\(195\) 7.81534 0.559668
\(196\) 0 0
\(197\) −6.23870 −0.444489 −0.222244 0.974991i \(-0.571338\pi\)
−0.222244 + 0.974991i \(0.571338\pi\)
\(198\) −9.23550 −0.656338
\(199\) 0.842027 0.0596897 0.0298449 0.999555i \(-0.490499\pi\)
0.0298449 + 0.999555i \(0.490499\pi\)
\(200\) 2.29331 0.162162
\(201\) 0.866299 0.0611040
\(202\) −2.84777 −0.200368
\(203\) 0 0
\(204\) −2.59914 −0.181976
\(205\) −4.95006 −0.345727
\(206\) 28.8157 2.00769
\(207\) 7.28203 0.506136
\(208\) −16.8016 −1.16498
\(209\) 18.2382 1.26156
\(210\) 0 0
\(211\) 4.55754 0.313754 0.156877 0.987618i \(-0.449857\pi\)
0.156877 + 0.987618i \(0.449857\pi\)
\(212\) −7.86415 −0.540112
\(213\) −21.8976 −1.50040
\(214\) 28.1696 1.92564
\(215\) 0.192899 0.0131556
\(216\) 5.05745 0.344116
\(217\) 0 0
\(218\) −1.90251 −0.128854
\(219\) 18.0532 1.21992
\(220\) −1.62758 −0.109731
\(221\) 7.11485 0.478597
\(222\) 3.58964 0.240921
\(223\) −13.6964 −0.917178 −0.458589 0.888649i \(-0.651645\pi\)
−0.458589 + 0.888649i \(0.651645\pi\)
\(224\) 0 0
\(225\) 2.01526 0.134351
\(226\) 13.4020 0.891489
\(227\) 15.9331 1.05752 0.528759 0.848772i \(-0.322657\pi\)
0.528759 + 0.848772i \(0.322657\pi\)
\(228\) −8.13244 −0.538584
\(229\) 12.9268 0.854230 0.427115 0.904197i \(-0.359530\pi\)
0.427115 + 0.904197i \(0.359530\pi\)
\(230\) 5.79197 0.381911
\(231\) 0 0
\(232\) −7.65067 −0.502291
\(233\) −15.5125 −1.01625 −0.508127 0.861282i \(-0.669662\pi\)
−0.508127 + 0.861282i \(0.669662\pi\)
\(234\) −11.2729 −0.736934
\(235\) 4.68499 0.305615
\(236\) −4.80335 −0.312671
\(237\) 26.6993 1.73430
\(238\) 0 0
\(239\) −20.4475 −1.32264 −0.661318 0.750106i \(-0.730003\pi\)
−0.661318 + 0.750106i \(0.730003\pi\)
\(240\) −10.7819 −0.695968
\(241\) 13.0544 0.840909 0.420454 0.907314i \(-0.361871\pi\)
0.420454 + 0.907314i \(0.361871\pi\)
\(242\) 4.52933 0.291156
\(243\) 17.9836 1.15365
\(244\) −2.50645 −0.160459
\(245\) 0 0
\(246\) 17.7690 1.13291
\(247\) 22.2617 1.41648
\(248\) −8.55651 −0.543339
\(249\) −11.6027 −0.735292
\(250\) 1.60289 0.101376
\(251\) −8.50092 −0.536573 −0.268287 0.963339i \(-0.586457\pi\)
−0.268287 + 0.963339i \(0.586457\pi\)
\(252\) 0 0
\(253\) 10.3311 0.649511
\(254\) −5.77742 −0.362508
\(255\) 4.56574 0.285918
\(256\) 12.6606 0.791287
\(257\) −7.24488 −0.451923 −0.225962 0.974136i \(-0.572552\pi\)
−0.225962 + 0.974136i \(0.572552\pi\)
\(258\) −0.692440 −0.0431094
\(259\) 0 0
\(260\) −1.98664 −0.123206
\(261\) −6.72306 −0.416147
\(262\) −10.6577 −0.658436
\(263\) 28.4112 1.75191 0.875955 0.482394i \(-0.160233\pi\)
0.875955 + 0.482394i \(0.160233\pi\)
\(264\) −14.6837 −0.903717
\(265\) 13.8145 0.848617
\(266\) 0 0
\(267\) −34.2756 −2.09763
\(268\) −0.220211 −0.0134515
\(269\) −23.1812 −1.41338 −0.706690 0.707523i \(-0.749812\pi\)
−0.706690 + 0.707523i \(0.749812\pi\)
\(270\) 3.53487 0.215125
\(271\) 12.4396 0.755653 0.377826 0.925877i \(-0.376672\pi\)
0.377826 + 0.925877i \(0.376672\pi\)
\(272\) −9.81552 −0.595153
\(273\) 0 0
\(274\) 19.1954 1.15964
\(275\) 2.85907 0.172408
\(276\) −4.60666 −0.277288
\(277\) 14.3135 0.860017 0.430009 0.902825i \(-0.358511\pi\)
0.430009 + 0.902825i \(0.358511\pi\)
\(278\) −9.18602 −0.550941
\(279\) −7.51908 −0.450156
\(280\) 0 0
\(281\) 2.65928 0.158639 0.0793197 0.996849i \(-0.474725\pi\)
0.0793197 + 0.996849i \(0.474725\pi\)
\(282\) −16.8174 −1.00146
\(283\) −24.2458 −1.44126 −0.720632 0.693318i \(-0.756148\pi\)
−0.720632 + 0.693318i \(0.756148\pi\)
\(284\) 5.56630 0.330299
\(285\) 14.2858 0.846216
\(286\) −15.9930 −0.945687
\(287\) 0 0
\(288\) 6.30870 0.371743
\(289\) −12.8435 −0.755499
\(290\) −5.34738 −0.314009
\(291\) −11.0342 −0.646839
\(292\) −4.58907 −0.268555
\(293\) −7.56345 −0.441861 −0.220931 0.975290i \(-0.570909\pi\)
−0.220931 + 0.975290i \(0.570909\pi\)
\(294\) 0 0
\(295\) 8.43775 0.491265
\(296\) 2.29331 0.133296
\(297\) 6.30513 0.365861
\(298\) 25.2533 1.46289
\(299\) 12.6102 0.729268
\(300\) −1.27486 −0.0736043
\(301\) 0 0
\(302\) 7.75980 0.446526
\(303\) −3.97875 −0.228573
\(304\) −30.7118 −1.76144
\(305\) 4.40293 0.252111
\(306\) −6.58567 −0.376478
\(307\) −1.32000 −0.0753365 −0.0376682 0.999290i \(-0.511993\pi\)
−0.0376682 + 0.999290i \(0.511993\pi\)
\(308\) 0 0
\(309\) 40.2598 2.29030
\(310\) −5.98052 −0.339671
\(311\) −9.23174 −0.523484 −0.261742 0.965138i \(-0.584297\pi\)
−0.261742 + 0.965138i \(0.584297\pi\)
\(312\) −17.9230 −1.01469
\(313\) −6.04079 −0.341446 −0.170723 0.985319i \(-0.554610\pi\)
−0.170723 + 0.985319i \(0.554610\pi\)
\(314\) 5.38715 0.304014
\(315\) 0 0
\(316\) −6.78688 −0.381792
\(317\) −30.7175 −1.72527 −0.862633 0.505830i \(-0.831186\pi\)
−0.862633 + 0.505830i \(0.831186\pi\)
\(318\) −49.5891 −2.78082
\(319\) −9.53809 −0.534030
\(320\) −4.61114 −0.257770
\(321\) 39.3571 2.19670
\(322\) 0 0
\(323\) 13.0053 0.723636
\(324\) −6.25314 −0.347397
\(325\) 3.48980 0.193579
\(326\) 34.6501 1.91909
\(327\) −2.65809 −0.146993
\(328\) 11.3520 0.626811
\(329\) 0 0
\(330\) −10.2630 −0.564962
\(331\) 22.9595 1.26197 0.630985 0.775795i \(-0.282651\pi\)
0.630985 + 0.775795i \(0.282651\pi\)
\(332\) 2.94938 0.161868
\(333\) 2.01526 0.110435
\(334\) 20.1523 1.10268
\(335\) 0.386831 0.0211348
\(336\) 0 0
\(337\) −11.7466 −0.639880 −0.319940 0.947438i \(-0.603663\pi\)
−0.319940 + 0.947438i \(0.603663\pi\)
\(338\) 1.31641 0.0716032
\(339\) 18.7246 1.01698
\(340\) −1.16060 −0.0629423
\(341\) −10.6674 −0.577672
\(342\) −20.6059 −1.11424
\(343\) 0 0
\(344\) −0.442378 −0.0238514
\(345\) 8.09223 0.435671
\(346\) −15.9674 −0.858410
\(347\) −23.8659 −1.28119 −0.640594 0.767880i \(-0.721312\pi\)
−0.640594 + 0.767880i \(0.721312\pi\)
\(348\) 4.25305 0.227987
\(349\) 7.11217 0.380706 0.190353 0.981716i \(-0.439037\pi\)
0.190353 + 0.981716i \(0.439037\pi\)
\(350\) 0 0
\(351\) 7.69609 0.410787
\(352\) 8.95022 0.477048
\(353\) 33.2898 1.77184 0.885920 0.463838i \(-0.153528\pi\)
0.885920 + 0.463838i \(0.153528\pi\)
\(354\) −30.2885 −1.60982
\(355\) −9.77799 −0.518962
\(356\) 8.71276 0.461775
\(357\) 0 0
\(358\) −30.4010 −1.60674
\(359\) 0.210848 0.0111281 0.00556406 0.999985i \(-0.498229\pi\)
0.00556406 + 0.999985i \(0.498229\pi\)
\(360\) −4.62161 −0.243580
\(361\) 21.6924 1.14171
\(362\) −11.5534 −0.607232
\(363\) 6.32814 0.332141
\(364\) 0 0
\(365\) 8.06134 0.421950
\(366\) −15.8050 −0.826139
\(367\) 25.9454 1.35434 0.677168 0.735828i \(-0.263207\pi\)
0.677168 + 0.735828i \(0.263207\pi\)
\(368\) −17.3968 −0.906873
\(369\) 9.97565 0.519312
\(370\) 1.60289 0.0833305
\(371\) 0 0
\(372\) 4.75662 0.246619
\(373\) −26.2016 −1.35667 −0.678334 0.734754i \(-0.737298\pi\)
−0.678334 + 0.734754i \(0.737298\pi\)
\(374\) −9.34317 −0.483124
\(375\) 2.23948 0.115646
\(376\) −10.7441 −0.554086
\(377\) −11.6423 −0.599607
\(378\) 0 0
\(379\) −21.9297 −1.12645 −0.563227 0.826302i \(-0.690440\pi\)
−0.563227 + 0.826302i \(0.690440\pi\)
\(380\) −3.63140 −0.186287
\(381\) −8.07190 −0.413536
\(382\) −21.3478 −1.09225
\(383\) 22.0037 1.12433 0.562167 0.827023i \(-0.309968\pi\)
0.562167 + 0.827023i \(0.309968\pi\)
\(384\) 30.5736 1.56020
\(385\) 0 0
\(386\) 3.77607 0.192197
\(387\) −0.388742 −0.0197609
\(388\) 2.80488 0.142396
\(389\) −25.7853 −1.30737 −0.653684 0.756768i \(-0.726777\pi\)
−0.653684 + 0.756768i \(0.726777\pi\)
\(390\) −12.5272 −0.634337
\(391\) 7.36693 0.372562
\(392\) 0 0
\(393\) −14.8904 −0.751120
\(394\) 9.99997 0.503791
\(395\) 11.9221 0.599866
\(396\) 3.27999 0.164826
\(397\) 15.4717 0.776503 0.388251 0.921554i \(-0.373079\pi\)
0.388251 + 0.921554i \(0.373079\pi\)
\(398\) −1.34968 −0.0676533
\(399\) 0 0
\(400\) −4.81447 −0.240724
\(401\) 22.2553 1.11138 0.555688 0.831391i \(-0.312455\pi\)
0.555688 + 0.831391i \(0.312455\pi\)
\(402\) −1.38859 −0.0692563
\(403\) −13.0207 −0.648608
\(404\) 1.01139 0.0503184
\(405\) 10.9845 0.545825
\(406\) 0 0
\(407\) 2.85907 0.141719
\(408\) −10.4707 −0.518375
\(409\) −20.7264 −1.02485 −0.512427 0.858731i \(-0.671254\pi\)
−0.512427 + 0.858731i \(0.671254\pi\)
\(410\) 7.93442 0.391853
\(411\) 26.8189 1.32288
\(412\) −10.2339 −0.504189
\(413\) 0 0
\(414\) −11.6723 −0.573663
\(415\) −5.18099 −0.254325
\(416\) 10.9247 0.535628
\(417\) −12.8342 −0.628494
\(418\) −29.2339 −1.42988
\(419\) −20.6748 −1.01003 −0.505016 0.863110i \(-0.668513\pi\)
−0.505016 + 0.863110i \(0.668513\pi\)
\(420\) 0 0
\(421\) 4.43614 0.216204 0.108102 0.994140i \(-0.465523\pi\)
0.108102 + 0.994140i \(0.465523\pi\)
\(422\) −7.30526 −0.355615
\(423\) −9.44145 −0.459059
\(424\) −31.6809 −1.53856
\(425\) 2.03875 0.0988941
\(426\) 35.0995 1.70058
\(427\) 0 0
\(428\) −10.0045 −0.483584
\(429\) −22.3446 −1.07881
\(430\) −0.309197 −0.0149108
\(431\) −23.1769 −1.11639 −0.558195 0.829710i \(-0.688506\pi\)
−0.558195 + 0.829710i \(0.688506\pi\)
\(432\) −10.6174 −0.510829
\(433\) −14.2985 −0.687144 −0.343572 0.939126i \(-0.611637\pi\)
−0.343572 + 0.939126i \(0.611637\pi\)
\(434\) 0 0
\(435\) −7.47108 −0.358211
\(436\) 0.675678 0.0323591
\(437\) 23.0504 1.10265
\(438\) −28.9373 −1.38268
\(439\) 17.5275 0.836541 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(440\) −6.55673 −0.312580
\(441\) 0 0
\(442\) −11.4044 −0.542450
\(443\) 38.2514 1.81738 0.908689 0.417473i \(-0.137084\pi\)
0.908689 + 0.417473i \(0.137084\pi\)
\(444\) −1.27486 −0.0605024
\(445\) −15.3052 −0.725535
\(446\) 21.9538 1.03954
\(447\) 35.2826 1.66881
\(448\) 0 0
\(449\) 32.4281 1.53038 0.765189 0.643805i \(-0.222645\pi\)
0.765189 + 0.643805i \(0.222645\pi\)
\(450\) −3.23025 −0.152275
\(451\) 14.1526 0.666418
\(452\) −4.75973 −0.223879
\(453\) 10.8416 0.509382
\(454\) −25.5391 −1.19861
\(455\) 0 0
\(456\) −32.7617 −1.53421
\(457\) 11.8807 0.555758 0.277879 0.960616i \(-0.410369\pi\)
0.277879 + 0.960616i \(0.410369\pi\)
\(458\) −20.7204 −0.968199
\(459\) 4.49608 0.209859
\(460\) −2.05702 −0.0959092
\(461\) −34.9849 −1.62941 −0.814703 0.579878i \(-0.803100\pi\)
−0.814703 + 0.579878i \(0.803100\pi\)
\(462\) 0 0
\(463\) 3.31346 0.153989 0.0769947 0.997032i \(-0.475468\pi\)
0.0769947 + 0.997032i \(0.475468\pi\)
\(464\) 16.0615 0.745635
\(465\) −8.35566 −0.387484
\(466\) 24.8648 1.15184
\(467\) 20.1826 0.933939 0.466970 0.884273i \(-0.345346\pi\)
0.466970 + 0.884273i \(0.345346\pi\)
\(468\) 4.00359 0.185066
\(469\) 0 0
\(470\) −7.50953 −0.346389
\(471\) 7.52663 0.346809
\(472\) −19.3504 −0.890673
\(473\) −0.551513 −0.0253586
\(474\) −42.7961 −1.96569
\(475\) 6.37906 0.292691
\(476\) 0 0
\(477\) −27.8397 −1.27469
\(478\) 32.7751 1.49910
\(479\) 12.6547 0.578210 0.289105 0.957297i \(-0.406642\pi\)
0.289105 + 0.957297i \(0.406642\pi\)
\(480\) 7.01061 0.319989
\(481\) 3.48980 0.159121
\(482\) −20.9248 −0.953100
\(483\) 0 0
\(484\) −1.60859 −0.0731179
\(485\) −4.92715 −0.223731
\(486\) −28.8259 −1.30757
\(487\) −30.1404 −1.36579 −0.682895 0.730516i \(-0.739279\pi\)
−0.682895 + 0.730516i \(0.739279\pi\)
\(488\) −10.0973 −0.457083
\(489\) 48.4112 2.18923
\(490\) 0 0
\(491\) 31.4494 1.41929 0.709647 0.704558i \(-0.248855\pi\)
0.709647 + 0.704558i \(0.248855\pi\)
\(492\) −6.31066 −0.284506
\(493\) −6.80145 −0.306322
\(494\) −35.6831 −1.60546
\(495\) −5.76176 −0.258972
\(496\) 17.9632 0.806570
\(497\) 0 0
\(498\) 18.5979 0.833392
\(499\) −38.0575 −1.70369 −0.851843 0.523797i \(-0.824515\pi\)
−0.851843 + 0.523797i \(0.824515\pi\)
\(500\) −0.569269 −0.0254585
\(501\) 28.1557 1.25790
\(502\) 13.6261 0.608161
\(503\) −32.9900 −1.47095 −0.735476 0.677550i \(-0.763042\pi\)
−0.735476 + 0.677550i \(0.763042\pi\)
\(504\) 0 0
\(505\) −1.77664 −0.0790595
\(506\) −16.5597 −0.736167
\(507\) 1.83922 0.0816825
\(508\) 2.05186 0.0910364
\(509\) −0.0354764 −0.00157246 −0.000786231 1.00000i \(-0.500250\pi\)
−0.000786231 1.00000i \(0.500250\pi\)
\(510\) −7.31840 −0.324064
\(511\) 0 0
\(512\) 7.01062 0.309828
\(513\) 14.0678 0.621108
\(514\) 11.6128 0.512218
\(515\) 17.9773 0.792175
\(516\) 0.245921 0.0108260
\(517\) −13.3947 −0.589098
\(518\) 0 0
\(519\) −22.3087 −0.979244
\(520\) −8.00320 −0.350964
\(521\) 32.0262 1.40310 0.701548 0.712623i \(-0.252493\pi\)
0.701548 + 0.712623i \(0.252493\pi\)
\(522\) 10.7764 0.471668
\(523\) −41.6254 −1.82015 −0.910076 0.414441i \(-0.863977\pi\)
−0.910076 + 0.414441i \(0.863977\pi\)
\(524\) 3.78509 0.165353
\(525\) 0 0
\(526\) −45.5401 −1.98564
\(527\) −7.60675 −0.331355
\(528\) 30.8262 1.34154
\(529\) −9.94300 −0.432304
\(530\) −22.1431 −0.961837
\(531\) −17.0042 −0.737921
\(532\) 0 0
\(533\) 17.2747 0.748252
\(534\) 54.9401 2.37749
\(535\) 17.5742 0.759801
\(536\) −0.887123 −0.0383179
\(537\) −42.4746 −1.83291
\(538\) 37.1569 1.60195
\(539\) 0 0
\(540\) −1.25541 −0.0540243
\(541\) 10.6005 0.455753 0.227876 0.973690i \(-0.426822\pi\)
0.227876 + 0.973690i \(0.426822\pi\)
\(542\) −19.9394 −0.856470
\(543\) −16.1418 −0.692709
\(544\) 6.38225 0.273637
\(545\) −1.18692 −0.0508422
\(546\) 0 0
\(547\) −42.8221 −1.83094 −0.915471 0.402385i \(-0.868181\pi\)
−0.915471 + 0.402385i \(0.868181\pi\)
\(548\) −6.81728 −0.291220
\(549\) −8.87305 −0.378693
\(550\) −4.58279 −0.195411
\(551\) −21.2811 −0.906604
\(552\) −18.5580 −0.789881
\(553\) 0 0
\(554\) −22.9431 −0.974758
\(555\) 2.23948 0.0950605
\(556\) 3.26242 0.138357
\(557\) −10.4032 −0.440797 −0.220399 0.975410i \(-0.570736\pi\)
−0.220399 + 0.975410i \(0.570736\pi\)
\(558\) 12.0523 0.510214
\(559\) −0.673181 −0.0284725
\(560\) 0 0
\(561\) −13.0538 −0.551131
\(562\) −4.26254 −0.179805
\(563\) 0.921851 0.0388514 0.0194257 0.999811i \(-0.493816\pi\)
0.0194257 + 0.999811i \(0.493816\pi\)
\(564\) 5.97272 0.251497
\(565\) 8.36114 0.351756
\(566\) 38.8635 1.63355
\(567\) 0 0
\(568\) 22.4240 0.940888
\(569\) −10.4255 −0.437061 −0.218530 0.975830i \(-0.570126\pi\)
−0.218530 + 0.975830i \(0.570126\pi\)
\(570\) −22.8986 −0.959115
\(571\) 33.0601 1.38352 0.691761 0.722126i \(-0.256835\pi\)
0.691761 + 0.722126i \(0.256835\pi\)
\(572\) 5.67993 0.237490
\(573\) −29.8260 −1.24600
\(574\) 0 0
\(575\) 3.61345 0.150691
\(576\) 9.29263 0.387193
\(577\) −37.7066 −1.56975 −0.784874 0.619656i \(-0.787272\pi\)
−0.784874 + 0.619656i \(0.787272\pi\)
\(578\) 20.5867 0.856296
\(579\) 5.27572 0.219251
\(580\) 1.89913 0.0788569
\(581\) 0 0
\(582\) 17.6867 0.733139
\(583\) −39.4966 −1.63578
\(584\) −18.4871 −0.765004
\(585\) −7.03286 −0.290773
\(586\) 12.1234 0.500813
\(587\) −43.2908 −1.78680 −0.893400 0.449261i \(-0.851687\pi\)
−0.893400 + 0.449261i \(0.851687\pi\)
\(588\) 0 0
\(589\) −23.8008 −0.980693
\(590\) −13.5248 −0.556808
\(591\) 13.9714 0.574707
\(592\) −4.81447 −0.197874
\(593\) 4.24435 0.174295 0.0871473 0.996195i \(-0.472225\pi\)
0.0871473 + 0.996195i \(0.472225\pi\)
\(594\) −10.1064 −0.414673
\(595\) 0 0
\(596\) −8.96874 −0.367374
\(597\) −1.88570 −0.0771766
\(598\) −20.2129 −0.826565
\(599\) −4.99932 −0.204267 −0.102133 0.994771i \(-0.532567\pi\)
−0.102133 + 0.994771i \(0.532567\pi\)
\(600\) −5.13582 −0.209669
\(601\) 16.8399 0.686913 0.343456 0.939169i \(-0.388402\pi\)
0.343456 + 0.939169i \(0.388402\pi\)
\(602\) 0 0
\(603\) −0.779564 −0.0317463
\(604\) −2.75590 −0.112136
\(605\) 2.82572 0.114882
\(606\) 6.37751 0.259069
\(607\) −16.2375 −0.659058 −0.329529 0.944145i \(-0.606890\pi\)
−0.329529 + 0.944145i \(0.606890\pi\)
\(608\) 19.9694 0.809867
\(609\) 0 0
\(610\) −7.05744 −0.285747
\(611\) −16.3497 −0.661437
\(612\) 2.33891 0.0945447
\(613\) −22.6446 −0.914605 −0.457303 0.889311i \(-0.651184\pi\)
−0.457303 + 0.889311i \(0.651184\pi\)
\(614\) 2.11582 0.0853877
\(615\) 11.0855 0.447012
\(616\) 0 0
\(617\) −1.88719 −0.0759756 −0.0379878 0.999278i \(-0.512095\pi\)
−0.0379878 + 0.999278i \(0.512095\pi\)
\(618\) −64.5321 −2.59586
\(619\) −7.55489 −0.303657 −0.151828 0.988407i \(-0.548516\pi\)
−0.151828 + 0.988407i \(0.548516\pi\)
\(620\) 2.12399 0.0853013
\(621\) 7.96876 0.319775
\(622\) 14.7975 0.593326
\(623\) 0 0
\(624\) 37.6267 1.50627
\(625\) 1.00000 0.0400000
\(626\) 9.68275 0.387000
\(627\) −40.8440 −1.63115
\(628\) −1.91325 −0.0763469
\(629\) 2.03875 0.0812904
\(630\) 0 0
\(631\) −27.3098 −1.08718 −0.543592 0.839349i \(-0.682936\pi\)
−0.543592 + 0.839349i \(0.682936\pi\)
\(632\) −27.3411 −1.08757
\(633\) −10.2065 −0.405673
\(634\) 49.2369 1.95545
\(635\) −3.60437 −0.143035
\(636\) 17.6116 0.698345
\(637\) 0 0
\(638\) 15.2885 0.605279
\(639\) 19.7052 0.779525
\(640\) 13.6521 0.539646
\(641\) −9.50094 −0.375265 −0.187632 0.982239i \(-0.560081\pi\)
−0.187632 + 0.982239i \(0.560081\pi\)
\(642\) −63.0853 −2.48978
\(643\) −23.4592 −0.925142 −0.462571 0.886582i \(-0.653073\pi\)
−0.462571 + 0.886582i \(0.653073\pi\)
\(644\) 0 0
\(645\) −0.431994 −0.0170097
\(646\) −20.8462 −0.820182
\(647\) −26.3195 −1.03473 −0.517363 0.855766i \(-0.673086\pi\)
−0.517363 + 0.855766i \(0.673086\pi\)
\(648\) −25.1909 −0.989591
\(649\) −24.1241 −0.946954
\(650\) −5.59379 −0.219406
\(651\) 0 0
\(652\) −12.3060 −0.481940
\(653\) 32.1357 1.25757 0.628784 0.777580i \(-0.283553\pi\)
0.628784 + 0.777580i \(0.283553\pi\)
\(654\) 4.26063 0.166604
\(655\) −6.64904 −0.259800
\(656\) −23.8319 −0.930480
\(657\) −16.2457 −0.633804
\(658\) 0 0
\(659\) 0.428155 0.0166785 0.00833927 0.999965i \(-0.497345\pi\)
0.00833927 + 0.999965i \(0.497345\pi\)
\(660\) 3.64493 0.141879
\(661\) 30.2319 1.17589 0.587943 0.808903i \(-0.299938\pi\)
0.587943 + 0.808903i \(0.299938\pi\)
\(662\) −36.8017 −1.43034
\(663\) −15.9335 −0.618808
\(664\) 11.8816 0.461096
\(665\) 0 0
\(666\) −3.23025 −0.125169
\(667\) −12.0548 −0.466762
\(668\) −7.15709 −0.276916
\(669\) 30.6727 1.18588
\(670\) −0.620049 −0.0239546
\(671\) −12.5883 −0.485966
\(672\) 0 0
\(673\) 35.7646 1.37862 0.689311 0.724465i \(-0.257913\pi\)
0.689311 + 0.724465i \(0.257913\pi\)
\(674\) 18.8286 0.725251
\(675\) 2.20531 0.0848823
\(676\) −0.467524 −0.0179817
\(677\) 31.7418 1.21994 0.609969 0.792425i \(-0.291182\pi\)
0.609969 + 0.792425i \(0.291182\pi\)
\(678\) −30.0135 −1.15266
\(679\) 0 0
\(680\) −4.67550 −0.179297
\(681\) −35.6819 −1.36733
\(682\) 17.0987 0.654744
\(683\) 32.7872 1.25457 0.627284 0.778790i \(-0.284166\pi\)
0.627284 + 0.778790i \(0.284166\pi\)
\(684\) 7.31821 0.279819
\(685\) 11.9755 0.457560
\(686\) 0 0
\(687\) −28.9494 −1.10449
\(688\) 0.928708 0.0354067
\(689\) −48.2098 −1.83665
\(690\) −12.9710 −0.493797
\(691\) −21.8484 −0.831151 −0.415576 0.909559i \(-0.636420\pi\)
−0.415576 + 0.909559i \(0.636420\pi\)
\(692\) 5.67082 0.215572
\(693\) 0 0
\(694\) 38.2545 1.45212
\(695\) −5.73090 −0.217385
\(696\) 17.1335 0.649443
\(697\) 10.0920 0.382260
\(698\) −11.4001 −0.431499
\(699\) 34.7398 1.31398
\(700\) 0 0
\(701\) −32.6578 −1.23347 −0.616734 0.787172i \(-0.711544\pi\)
−0.616734 + 0.787172i \(0.711544\pi\)
\(702\) −12.3360 −0.465593
\(703\) 6.37906 0.240591
\(704\) 13.1836 0.496874
\(705\) −10.4919 −0.395148
\(706\) −53.3601 −2.00823
\(707\) 0 0
\(708\) 10.7570 0.404272
\(709\) 27.5489 1.03462 0.517310 0.855798i \(-0.326933\pi\)
0.517310 + 0.855798i \(0.326933\pi\)
\(710\) 15.6731 0.588200
\(711\) −24.0261 −0.901049
\(712\) 35.0995 1.31541
\(713\) −13.4820 −0.504907
\(714\) 0 0
\(715\) −9.97759 −0.373141
\(716\) 10.7969 0.403500
\(717\) 45.7916 1.71012
\(718\) −0.337967 −0.0126128
\(719\) −28.1569 −1.05007 −0.525037 0.851079i \(-0.675949\pi\)
−0.525037 + 0.851079i \(0.675949\pi\)
\(720\) 9.70240 0.361587
\(721\) 0 0
\(722\) −34.7707 −1.29403
\(723\) −29.2351 −1.08726
\(724\) 4.10319 0.152494
\(725\) −3.33608 −0.123899
\(726\) −10.1433 −0.376454
\(727\) −0.418224 −0.0155111 −0.00775553 0.999970i \(-0.502469\pi\)
−0.00775553 + 0.999970i \(0.502469\pi\)
\(728\) 0 0
\(729\) −7.32042 −0.271127
\(730\) −12.9215 −0.478245
\(731\) −0.393274 −0.0145458
\(732\) 5.61314 0.207468
\(733\) −8.62347 −0.318515 −0.159258 0.987237i \(-0.550910\pi\)
−0.159258 + 0.987237i \(0.550910\pi\)
\(734\) −41.5876 −1.53503
\(735\) 0 0
\(736\) 11.3118 0.416957
\(737\) −1.10598 −0.0407392
\(738\) −15.9899 −0.588597
\(739\) −13.9653 −0.513723 −0.256861 0.966448i \(-0.582688\pi\)
−0.256861 + 0.966448i \(0.582688\pi\)
\(740\) −0.569269 −0.0209267
\(741\) −49.8545 −1.83145
\(742\) 0 0
\(743\) −48.7950 −1.79012 −0.895058 0.445951i \(-0.852866\pi\)
−0.895058 + 0.445951i \(0.852866\pi\)
\(744\) 19.1621 0.702517
\(745\) 15.7548 0.577213
\(746\) 41.9984 1.53767
\(747\) 10.4410 0.382017
\(748\) 3.31823 0.121327
\(749\) 0 0
\(750\) −3.58964 −0.131075
\(751\) −1.11789 −0.0407924 −0.0203962 0.999792i \(-0.506493\pi\)
−0.0203962 + 0.999792i \(0.506493\pi\)
\(752\) 22.5557 0.822523
\(753\) 19.0376 0.693769
\(754\) 18.6613 0.679605
\(755\) 4.84112 0.176186
\(756\) 0 0
\(757\) −33.7927 −1.22822 −0.614108 0.789222i \(-0.710484\pi\)
−0.614108 + 0.789222i \(0.710484\pi\)
\(758\) 35.1510 1.27674
\(759\) −23.1363 −0.839793
\(760\) −14.6292 −0.530656
\(761\) 50.6643 1.83658 0.918289 0.395910i \(-0.129571\pi\)
0.918289 + 0.395910i \(0.129571\pi\)
\(762\) 12.9384 0.468709
\(763\) 0 0
\(764\) 7.58169 0.274296
\(765\) −4.10862 −0.148547
\(766\) −35.2695 −1.27434
\(767\) −29.4461 −1.06324
\(768\) −28.3531 −1.02310
\(769\) 12.1028 0.436437 0.218219 0.975900i \(-0.429975\pi\)
0.218219 + 0.975900i \(0.429975\pi\)
\(770\) 0 0
\(771\) 16.2247 0.584320
\(772\) −1.34107 −0.0482663
\(773\) 28.9009 1.03949 0.519747 0.854320i \(-0.326026\pi\)
0.519747 + 0.854320i \(0.326026\pi\)
\(774\) 0.623112 0.0223973
\(775\) −3.73108 −0.134024
\(776\) 11.2995 0.405628
\(777\) 0 0
\(778\) 41.3311 1.48179
\(779\) 31.5767 1.13135
\(780\) 4.44903 0.159301
\(781\) 27.9560 1.00034
\(782\) −11.8084 −0.422268
\(783\) −7.35708 −0.262921
\(784\) 0 0
\(785\) 3.36089 0.119955
\(786\) 23.8677 0.851333
\(787\) −46.5897 −1.66075 −0.830373 0.557209i \(-0.811872\pi\)
−0.830373 + 0.557209i \(0.811872\pi\)
\(788\) −3.55149 −0.126517
\(789\) −63.6262 −2.26515
\(790\) −19.1099 −0.679898
\(791\) 0 0
\(792\) 13.2135 0.469522
\(793\) −15.3654 −0.545640
\(794\) −24.7995 −0.880101
\(795\) −30.9372 −1.09723
\(796\) 0.479340 0.0169897
\(797\) 18.9933 0.672777 0.336389 0.941723i \(-0.390794\pi\)
0.336389 + 0.941723i \(0.390794\pi\)
\(798\) 0 0
\(799\) −9.55153 −0.337909
\(800\) 3.13047 0.110679
\(801\) 30.8439 1.08981
\(802\) −35.6729 −1.25965
\(803\) −23.0479 −0.813344
\(804\) 0.493157 0.0173923
\(805\) 0 0
\(806\) 20.8708 0.735144
\(807\) 51.9137 1.82745
\(808\) 4.07439 0.143337
\(809\) 0.559396 0.0196673 0.00983366 0.999952i \(-0.496870\pi\)
0.00983366 + 0.999952i \(0.496870\pi\)
\(810\) −17.6070 −0.618647
\(811\) −6.79271 −0.238524 −0.119262 0.992863i \(-0.538053\pi\)
−0.119262 + 0.992863i \(0.538053\pi\)
\(812\) 0 0
\(813\) −27.8582 −0.977031
\(814\) −4.58279 −0.160627
\(815\) 21.6172 0.757218
\(816\) 21.9816 0.769511
\(817\) −1.23052 −0.0430503
\(818\) 33.2222 1.16159
\(819\) 0 0
\(820\) −2.81792 −0.0984059
\(821\) −6.54798 −0.228526 −0.114263 0.993451i \(-0.536451\pi\)
−0.114263 + 0.993451i \(0.536451\pi\)
\(822\) −42.9878 −1.49937
\(823\) 4.98040 0.173606 0.0868029 0.996226i \(-0.472335\pi\)
0.0868029 + 0.996226i \(0.472335\pi\)
\(824\) −41.2275 −1.43623
\(825\) −6.40282 −0.222918
\(826\) 0 0
\(827\) 10.5604 0.367223 0.183611 0.982999i \(-0.441221\pi\)
0.183611 + 0.982999i \(0.441221\pi\)
\(828\) 4.14543 0.144064
\(829\) −17.5093 −0.608125 −0.304062 0.952652i \(-0.598343\pi\)
−0.304062 + 0.952652i \(0.598343\pi\)
\(830\) 8.30458 0.288256
\(831\) −32.0548 −1.11197
\(832\) 16.0920 0.557889
\(833\) 0 0
\(834\) 20.5719 0.712346
\(835\) 12.5724 0.435087
\(836\) 10.3824 0.359084
\(837\) −8.22817 −0.284407
\(838\) 33.1395 1.14479
\(839\) −13.8473 −0.478061 −0.239031 0.971012i \(-0.576830\pi\)
−0.239031 + 0.971012i \(0.576830\pi\)
\(840\) 0 0
\(841\) −17.8706 −0.616226
\(842\) −7.11065 −0.245049
\(843\) −5.95540 −0.205115
\(844\) 2.59447 0.0893053
\(845\) 0.821270 0.0282526
\(846\) 15.1337 0.520306
\(847\) 0 0
\(848\) 66.5094 2.28394
\(849\) 54.2980 1.86350
\(850\) −3.26791 −0.112088
\(851\) 3.61345 0.123867
\(852\) −12.4656 −0.427065
\(853\) 47.1132 1.61312 0.806562 0.591149i \(-0.201325\pi\)
0.806562 + 0.591149i \(0.201325\pi\)
\(854\) 0 0
\(855\) −12.8555 −0.439647
\(856\) −40.3032 −1.37753
\(857\) 24.6386 0.841640 0.420820 0.907144i \(-0.361742\pi\)
0.420820 + 0.907144i \(0.361742\pi\)
\(858\) 35.8160 1.22274
\(859\) −28.6614 −0.977915 −0.488958 0.872308i \(-0.662623\pi\)
−0.488958 + 0.872308i \(0.662623\pi\)
\(860\) 0.109812 0.00374454
\(861\) 0 0
\(862\) 37.1500 1.26534
\(863\) 45.8232 1.55984 0.779919 0.625880i \(-0.215260\pi\)
0.779919 + 0.625880i \(0.215260\pi\)
\(864\) 6.90364 0.234866
\(865\) −9.96158 −0.338704
\(866\) 22.9190 0.778821
\(867\) 28.7627 0.976832
\(868\) 0 0
\(869\) −34.0861 −1.15629
\(870\) 11.9753 0.406002
\(871\) −1.34996 −0.0457418
\(872\) 2.72198 0.0921779
\(873\) 9.92949 0.336062
\(874\) −36.9474 −1.24976
\(875\) 0 0
\(876\) 10.2771 0.347232
\(877\) −10.1528 −0.342835 −0.171417 0.985198i \(-0.554835\pi\)
−0.171417 + 0.985198i \(0.554835\pi\)
\(878\) −28.0947 −0.948150
\(879\) 16.9382 0.571310
\(880\) 13.7649 0.464015
\(881\) 57.9134 1.95115 0.975576 0.219662i \(-0.0704955\pi\)
0.975576 + 0.219662i \(0.0704955\pi\)
\(882\) 0 0
\(883\) −21.7280 −0.731205 −0.365602 0.930771i \(-0.619137\pi\)
−0.365602 + 0.930771i \(0.619137\pi\)
\(884\) 4.05026 0.136225
\(885\) −18.8961 −0.635187
\(886\) −61.3129 −2.05985
\(887\) 8.42168 0.282772 0.141386 0.989955i \(-0.454844\pi\)
0.141386 + 0.989955i \(0.454844\pi\)
\(888\) −5.13582 −0.172347
\(889\) 0 0
\(890\) 24.5326 0.822333
\(891\) −31.4055 −1.05212
\(892\) −7.79692 −0.261060
\(893\) −29.8858 −1.00009
\(894\) −56.5543 −1.89146
\(895\) −18.9663 −0.633974
\(896\) 0 0
\(897\) −28.2403 −0.942916
\(898\) −51.9789 −1.73456
\(899\) 12.4472 0.415136
\(900\) 1.14722 0.0382408
\(901\) −28.1643 −0.938290
\(902\) −22.6851 −0.755330
\(903\) 0 0
\(904\) −19.1747 −0.637740
\(905\) −7.20783 −0.239596
\(906\) −17.3779 −0.577342
\(907\) 45.4688 1.50977 0.754883 0.655859i \(-0.227694\pi\)
0.754883 + 0.655859i \(0.227694\pi\)
\(908\) 9.07023 0.301006
\(909\) 3.58039 0.118754
\(910\) 0 0
\(911\) −14.8633 −0.492443 −0.246221 0.969214i \(-0.579189\pi\)
−0.246221 + 0.969214i \(0.579189\pi\)
\(912\) 68.7784 2.27748
\(913\) 14.8128 0.490233
\(914\) −19.0436 −0.629905
\(915\) −9.86027 −0.325970
\(916\) 7.35885 0.243143
\(917\) 0 0
\(918\) −7.20674 −0.237858
\(919\) −41.1517 −1.35747 −0.678734 0.734384i \(-0.737471\pi\)
−0.678734 + 0.734384i \(0.737471\pi\)
\(920\) −8.28676 −0.273206
\(921\) 2.95611 0.0974073
\(922\) 56.0770 1.84680
\(923\) 34.1233 1.12318
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −5.31112 −0.174534
\(927\) −36.2289 −1.18991
\(928\) −10.4435 −0.342824
\(929\) 2.10190 0.0689610 0.0344805 0.999405i \(-0.489022\pi\)
0.0344805 + 0.999405i \(0.489022\pi\)
\(930\) 13.3932 0.439182
\(931\) 0 0
\(932\) −8.83076 −0.289261
\(933\) 20.6743 0.676845
\(934\) −32.3506 −1.05854
\(935\) −5.82894 −0.190627
\(936\) 16.1285 0.527177
\(937\) 26.0598 0.851335 0.425668 0.904880i \(-0.360039\pi\)
0.425668 + 0.904880i \(0.360039\pi\)
\(938\) 0 0
\(939\) 13.5282 0.441477
\(940\) 2.66702 0.0869885
\(941\) −3.06990 −0.100076 −0.0500380 0.998747i \(-0.515934\pi\)
−0.0500380 + 0.998747i \(0.515934\pi\)
\(942\) −12.0644 −0.393079
\(943\) 17.8868 0.582474
\(944\) 40.6233 1.32218
\(945\) 0 0
\(946\) 0.884016 0.0287418
\(947\) 48.6778 1.58182 0.790908 0.611935i \(-0.209608\pi\)
0.790908 + 0.611935i \(0.209608\pi\)
\(948\) 15.1991 0.493642
\(949\) −28.1325 −0.913219
\(950\) −10.2250 −0.331742
\(951\) 68.7911 2.23070
\(952\) 0 0
\(953\) 2.61312 0.0846472 0.0423236 0.999104i \(-0.486524\pi\)
0.0423236 + 0.999104i \(0.486524\pi\)
\(954\) 44.6242 1.44476
\(955\) −13.3183 −0.430970
\(956\) −11.6401 −0.376468
\(957\) 21.3603 0.690481
\(958\) −20.2842 −0.655353
\(959\) 0 0
\(960\) 10.3265 0.333288
\(961\) −17.0791 −0.550938
\(962\) −5.59379 −0.180351
\(963\) −35.4166 −1.14129
\(964\) 7.43147 0.239352
\(965\) 2.35578 0.0758353
\(966\) 0 0
\(967\) −30.5434 −0.982208 −0.491104 0.871101i \(-0.663407\pi\)
−0.491104 + 0.871101i \(0.663407\pi\)
\(968\) −6.48025 −0.208283
\(969\) −29.1252 −0.935635
\(970\) 7.89771 0.253580
\(971\) 36.7346 1.17887 0.589434 0.807816i \(-0.299351\pi\)
0.589434 + 0.807816i \(0.299351\pi\)
\(972\) 10.2375 0.328369
\(973\) 0 0
\(974\) 48.3118 1.54801
\(975\) −7.81534 −0.250291
\(976\) 21.1978 0.678525
\(977\) 5.52528 0.176769 0.0883847 0.996086i \(-0.471830\pi\)
0.0883847 + 0.996086i \(0.471830\pi\)
\(978\) −77.5981 −2.48131
\(979\) 43.7585 1.39853
\(980\) 0 0
\(981\) 2.39196 0.0763693
\(982\) −50.4101 −1.60865
\(983\) −49.0866 −1.56562 −0.782810 0.622260i \(-0.786214\pi\)
−0.782810 + 0.622260i \(0.786214\pi\)
\(984\) −25.4226 −0.810443
\(985\) 6.23870 0.198781
\(986\) 10.9020 0.347190
\(987\) 0 0
\(988\) 12.6729 0.403178
\(989\) −0.697032 −0.0221643
\(990\) 9.23550 0.293523
\(991\) −44.3847 −1.40993 −0.704963 0.709244i \(-0.749037\pi\)
−0.704963 + 0.709244i \(0.749037\pi\)
\(992\) −11.6800 −0.370840
\(993\) −51.4173 −1.63168
\(994\) 0 0
\(995\) −0.842027 −0.0266940
\(996\) −6.60506 −0.209289
\(997\) −22.1352 −0.701028 −0.350514 0.936557i \(-0.613993\pi\)
−0.350514 + 0.936557i \(0.613993\pi\)
\(998\) 61.0021 1.93099
\(999\) 2.20531 0.0697728
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.s.1.6 19
7.3 odd 6 1295.2.j.a.926.14 yes 38
7.5 odd 6 1295.2.j.a.186.14 38
7.6 odd 2 9065.2.a.r.1.6 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.14 38 7.5 odd 6
1295.2.j.a.926.14 yes 38 7.3 odd 6
9065.2.a.r.1.6 19 7.6 odd 2
9065.2.a.s.1.6 19 1.1 even 1 trivial