Properties

Label 1295.2.j.a.186.14
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.14
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.801447 + 1.38815i) q^{2} +(-1.11974 + 1.93944i) q^{3} +(-0.284634 + 0.493001i) q^{4} +(-0.500000 - 0.866025i) q^{5} -3.58964 q^{6} +(-0.281235 + 2.63076i) q^{7} +2.29331 q^{8} +(-1.00763 - 1.74526i) q^{9} +(0.801447 - 1.38815i) q^{10} +(-1.42953 + 2.47603i) q^{11} +(-0.637432 - 1.10407i) q^{12} -3.48980 q^{13} +(-3.87728 + 1.71802i) q^{14} +2.23948 q^{15} +(2.40724 + 4.16945i) q^{16} +(1.01938 - 1.76561i) q^{17} +(1.61512 - 2.79747i) q^{18} +(3.18953 + 5.52443i) q^{19} +0.569269 q^{20} +(-4.78731 - 3.49120i) q^{21} -4.58279 q^{22} +(-1.80672 - 3.12934i) q^{23} +(-2.56791 + 4.44775i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-2.79689 - 4.84436i) q^{26} -2.20531 q^{27} +(-1.21692 - 0.887454i) q^{28} -3.33608 q^{29} +(1.79482 + 3.10872i) q^{30} +(-1.86554 + 3.23121i) q^{31} +(-1.56523 + 2.71106i) q^{32} +(-3.20141 - 5.54501i) q^{33} +3.26791 q^{34} +(2.41892 - 1.07182i) q^{35} +1.14722 q^{36} +(-0.500000 - 0.866025i) q^{37} +(-5.11248 + 8.85508i) q^{38} +(3.90767 - 6.76828i) q^{39} +(-1.14666 - 1.98606i) q^{40} -4.95006 q^{41} +(1.00953 - 9.44350i) q^{42} -0.192899 q^{43} +(-0.813790 - 1.40953i) q^{44} +(-1.00763 + 1.74526i) q^{45} +(2.89599 - 5.01600i) q^{46} +(-2.34249 - 4.05732i) q^{47} -10.7819 q^{48} +(-6.84181 - 1.47972i) q^{49} -1.60289 q^{50} +(2.28287 + 3.95405i) q^{51} +(0.993318 - 1.72048i) q^{52} +(6.90724 - 11.9637i) q^{53} +(-1.76744 - 3.06129i) q^{54} +2.85907 q^{55} +(-0.644959 + 6.03315i) q^{56} -14.2858 q^{57} +(-2.67369 - 4.63097i) q^{58} +(-4.21887 + 7.30730i) q^{59} +(-0.637432 + 1.10407i) q^{60} +(-2.20147 - 3.81305i) q^{61} -5.98052 q^{62} +(4.87476 - 2.16000i) q^{63} +4.61114 q^{64} +(1.74490 + 3.02226i) q^{65} +(5.13152 - 8.88806i) q^{66} +(0.193415 - 0.335005i) q^{67} +(0.580300 + 1.00511i) q^{68} +8.09223 q^{69} +(3.42649 + 2.49881i) q^{70} +9.77799 q^{71} +(-2.31081 - 4.00243i) q^{72} +(-4.03067 + 6.98132i) q^{73} +(0.801447 - 1.38815i) q^{74} +(-1.11974 - 1.93944i) q^{75} -3.63140 q^{76} +(-6.11180 - 4.45711i) q^{77} +12.5272 q^{78} +(5.96105 + 10.3248i) q^{79} +(2.40724 - 4.16945i) q^{80} +(5.49225 - 9.51286i) q^{81} +(-3.96721 - 6.87141i) q^{82} -5.18099 q^{83} +(3.08380 - 1.36643i) q^{84} -2.03875 q^{85} +(-0.154599 - 0.267773i) q^{86} +(3.73554 - 6.47014i) q^{87} +(-3.27837 + 5.67830i) q^{88} +(7.65258 + 13.2547i) q^{89} -3.23025 q^{90} +(0.981454 - 9.18084i) q^{91} +2.05702 q^{92} +(-4.17783 - 7.23621i) q^{93} +(3.75477 - 6.50345i) q^{94} +(3.18953 - 5.52443i) q^{95} +(-3.50530 - 6.07136i) q^{96} -4.92715 q^{97} +(-3.42928 - 10.6834i) q^{98} +5.76176 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.801447 + 1.38815i 0.566709 + 0.981568i 0.996888 + 0.0788249i \(0.0251168\pi\)
−0.430180 + 0.902743i \(0.641550\pi\)
\(3\) −1.11974 + 1.93944i −0.646481 + 1.11974i 0.337476 + 0.941334i \(0.390427\pi\)
−0.983957 + 0.178404i \(0.942906\pi\)
\(4\) −0.284634 + 0.493001i −0.142317 + 0.246501i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −3.58964 −1.46547
\(7\) −0.281235 + 2.63076i −0.106297 + 0.994334i
\(8\) 2.29331 0.810808
\(9\) −1.00763 1.74526i −0.335876 0.581755i
\(10\) 0.801447 1.38815i 0.253440 0.438971i
\(11\) −1.42953 + 2.47603i −0.431021 + 0.746550i −0.996962 0.0778958i \(-0.975180\pi\)
0.565941 + 0.824446i \(0.308513\pi\)
\(12\) −0.637432 1.10407i −0.184011 0.318716i
\(13\) −3.48980 −0.967897 −0.483949 0.875096i \(-0.660798\pi\)
−0.483949 + 0.875096i \(0.660798\pi\)
\(14\) −3.87728 + 1.71802i −1.03625 + 0.459160i
\(15\) 2.23948 0.578231
\(16\) 2.40724 + 4.16945i 0.601809 + 1.04236i
\(17\) 1.01938 1.76561i 0.247235 0.428224i −0.715522 0.698590i \(-0.753811\pi\)
0.962758 + 0.270366i \(0.0871446\pi\)
\(18\) 1.61512 2.79747i 0.380688 0.659371i
\(19\) 3.18953 + 5.52443i 0.731729 + 1.26739i 0.956144 + 0.292898i \(0.0946195\pi\)
−0.224415 + 0.974494i \(0.572047\pi\)
\(20\) 0.569269 0.127292
\(21\) −4.78731 3.49120i −1.04468 0.761843i
\(22\) −4.58279 −0.977053
\(23\) −1.80672 3.12934i −0.376728 0.652512i 0.613856 0.789418i \(-0.289618\pi\)
−0.990584 + 0.136906i \(0.956284\pi\)
\(24\) −2.56791 + 4.44775i −0.524172 + 0.907893i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.79689 4.84436i −0.548516 0.950057i
\(27\) −2.20531 −0.424411
\(28\) −1.21692 0.887454i −0.229976 0.167713i
\(29\) −3.33608 −0.619495 −0.309747 0.950819i \(-0.600244\pi\)
−0.309747 + 0.950819i \(0.600244\pi\)
\(30\) 1.79482 + 3.10872i 0.327688 + 0.567573i
\(31\) −1.86554 + 3.23121i −0.335061 + 0.580342i −0.983496 0.180927i \(-0.942090\pi\)
0.648436 + 0.761269i \(0.275423\pi\)
\(32\) −1.56523 + 2.71106i −0.276697 + 0.479253i
\(33\) −3.20141 5.54501i −0.557294 0.965262i
\(34\) 3.26791 0.560441
\(35\) 2.41892 1.07182i 0.408873 0.181171i
\(36\) 1.14722 0.191204
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) −5.11248 + 8.85508i −0.829354 + 1.43648i
\(39\) 3.90767 6.76828i 0.625728 1.08379i
\(40\) −1.14666 1.98606i −0.181302 0.314024i
\(41\) −4.95006 −0.773070 −0.386535 0.922275i \(-0.626328\pi\)
−0.386535 + 0.922275i \(0.626328\pi\)
\(42\) 1.00953 9.44350i 0.155774 1.45716i
\(43\) −0.192899 −0.0294169 −0.0147084 0.999892i \(-0.504682\pi\)
−0.0147084 + 0.999892i \(0.504682\pi\)
\(44\) −0.813790 1.40953i −0.122683 0.212494i
\(45\) −1.00763 + 1.74526i −0.150208 + 0.260169i
\(46\) 2.89599 5.01600i 0.426990 0.739568i
\(47\) −2.34249 4.05732i −0.341688 0.591820i 0.643059 0.765817i \(-0.277665\pi\)
−0.984746 + 0.173997i \(0.944332\pi\)
\(48\) −10.7819 −1.55623
\(49\) −6.84181 1.47972i −0.977402 0.211389i
\(50\) −1.60289 −0.226683
\(51\) 2.28287 + 3.95405i 0.319666 + 0.553678i
\(52\) 0.993318 1.72048i 0.137748 0.238587i
\(53\) 6.90724 11.9637i 0.948782 1.64334i 0.200788 0.979635i \(-0.435650\pi\)
0.747995 0.663705i \(-0.231017\pi\)
\(54\) −1.76744 3.06129i −0.240518 0.416589i
\(55\) 2.85907 0.385517
\(56\) −0.644959 + 6.03315i −0.0861862 + 0.806214i
\(57\) −14.2858 −1.89220
\(58\) −2.67369 4.63097i −0.351073 0.608076i
\(59\) −4.21887 + 7.30730i −0.549250 + 0.951330i 0.449076 + 0.893494i \(0.351753\pi\)
−0.998326 + 0.0578360i \(0.981580\pi\)
\(60\) −0.637432 + 1.10407i −0.0822922 + 0.142534i
\(61\) −2.20147 3.81305i −0.281869 0.488211i 0.689976 0.723832i \(-0.257621\pi\)
−0.971845 + 0.235621i \(0.924288\pi\)
\(62\) −5.98052 −0.759527
\(63\) 4.87476 2.16000i 0.614162 0.272135i
\(64\) 4.61114 0.576392
\(65\) 1.74490 + 3.02226i 0.216428 + 0.374865i
\(66\) 5.13152 8.88806i 0.631647 1.09404i
\(67\) 0.193415 0.335005i 0.0236295 0.0409274i −0.853969 0.520324i \(-0.825811\pi\)
0.877598 + 0.479397i \(0.159144\pi\)
\(68\) 0.580300 + 1.00511i 0.0703717 + 0.121887i
\(69\) 8.09223 0.974191
\(70\) 3.42649 + 2.49881i 0.409544 + 0.298665i
\(71\) 9.77799 1.16043 0.580217 0.814462i \(-0.302968\pi\)
0.580217 + 0.814462i \(0.302968\pi\)
\(72\) −2.31081 4.00243i −0.272331 0.471691i
\(73\) −4.03067 + 6.98132i −0.471754 + 0.817102i −0.999478 0.0323140i \(-0.989712\pi\)
0.527724 + 0.849416i \(0.323046\pi\)
\(74\) 0.801447 1.38815i 0.0931663 0.161369i
\(75\) −1.11974 1.93944i −0.129296 0.223948i
\(76\) −3.63140 −0.416550
\(77\) −6.11180 4.45711i −0.696504 0.507935i
\(78\) 12.5272 1.41842
\(79\) 5.96105 + 10.3248i 0.670670 + 1.16164i 0.977714 + 0.209940i \(0.0673268\pi\)
−0.307044 + 0.951695i \(0.599340\pi\)
\(80\) 2.40724 4.16945i 0.269137 0.466159i
\(81\) 5.49225 9.51286i 0.610250 1.05698i
\(82\) −3.96721 6.87141i −0.438105 0.758820i
\(83\) −5.18099 −0.568688 −0.284344 0.958722i \(-0.591776\pi\)
−0.284344 + 0.958722i \(0.591776\pi\)
\(84\) 3.08380 1.36643i 0.336470 0.149090i
\(85\) −2.03875 −0.221134
\(86\) −0.154599 0.267773i −0.0166708 0.0288747i
\(87\) 3.73554 6.47014i 0.400492 0.693672i
\(88\) −3.27837 + 5.67830i −0.349475 + 0.605309i
\(89\) 7.65258 + 13.2547i 0.811172 + 1.40499i 0.912044 + 0.410092i \(0.134504\pi\)
−0.100872 + 0.994899i \(0.532163\pi\)
\(90\) −3.23025 −0.340498
\(91\) 0.981454 9.18084i 0.102884 0.962414i
\(92\) 2.05702 0.214460
\(93\) −4.17783 7.23621i −0.433221 0.750360i
\(94\) 3.75477 6.50345i 0.387275 0.670779i
\(95\) 3.18953 5.52443i 0.327239 0.566795i
\(96\) −3.50530 6.07136i −0.357758 0.619656i
\(97\) −4.92715 −0.500277 −0.250138 0.968210i \(-0.580476\pi\)
−0.250138 + 0.968210i \(0.580476\pi\)
\(98\) −3.42928 10.6834i −0.346409 1.07918i
\(99\) 5.76176 0.579079
\(100\) −0.284634 0.493001i −0.0284634 0.0493001i
\(101\) 0.888321 1.53862i 0.0883913 0.153098i −0.818440 0.574592i \(-0.805161\pi\)
0.906831 + 0.421494i \(0.138494\pi\)
\(102\) −3.65920 + 6.33792i −0.362315 + 0.627548i
\(103\) −8.98865 15.5688i −0.885678 1.53404i −0.844935 0.534870i \(-0.820361\pi\)
−0.0407435 0.999170i \(-0.512973\pi\)
\(104\) −8.00320 −0.784779
\(105\) −0.629819 + 5.89153i −0.0614640 + 0.574955i
\(106\) 22.1431 2.15073
\(107\) 8.78712 + 15.2197i 0.849483 + 1.47135i 0.881670 + 0.471866i \(0.156419\pi\)
−0.0321870 + 0.999482i \(0.510247\pi\)
\(108\) 0.627706 1.08722i 0.0604011 0.104618i
\(109\) −0.593461 + 1.02791i −0.0568433 + 0.0984555i −0.893047 0.449964i \(-0.851437\pi\)
0.836203 + 0.548419i \(0.184770\pi\)
\(110\) 2.29139 + 3.96881i 0.218476 + 0.378411i
\(111\) 2.23948 0.212562
\(112\) −11.6458 + 5.16027i −1.10043 + 0.487599i
\(113\) −8.36114 −0.786550 −0.393275 0.919421i \(-0.628658\pi\)
−0.393275 + 0.919421i \(0.628658\pi\)
\(114\) −11.4493 19.8307i −1.07232 1.85732i
\(115\) −1.80672 + 3.12934i −0.168478 + 0.291812i
\(116\) 0.949563 1.64469i 0.0881647 0.152706i
\(117\) 3.51643 + 6.09063i 0.325094 + 0.563079i
\(118\) −13.5248 −1.24506
\(119\) 4.35822 + 3.17829i 0.399518 + 0.291353i
\(120\) 5.13582 0.468834
\(121\) 1.41286 + 2.44715i 0.128442 + 0.222468i
\(122\) 3.52872 6.11192i 0.319475 0.553347i
\(123\) 5.54277 9.60037i 0.499775 0.865636i
\(124\) −1.06199 1.83943i −0.0953698 0.165185i
\(125\) 1.00000 0.0894427
\(126\) 6.90526 + 5.03575i 0.615169 + 0.448620i
\(127\) 3.60437 0.319836 0.159918 0.987130i \(-0.448877\pi\)
0.159918 + 0.987130i \(0.448877\pi\)
\(128\) 6.82605 + 11.8231i 0.603343 + 1.04502i
\(129\) 0.215997 0.374117i 0.0190175 0.0329392i
\(130\) −2.79689 + 4.84436i −0.245304 + 0.424878i
\(131\) 3.32452 + 5.75824i 0.290465 + 0.503100i 0.973920 0.226893i \(-0.0728568\pi\)
−0.683455 + 0.729993i \(0.739523\pi\)
\(132\) 3.64493 0.317250
\(133\) −15.4305 + 6.83723i −1.33799 + 0.592863i
\(134\) 0.620049 0.0535641
\(135\) 1.10265 + 1.90985i 0.0949013 + 0.164374i
\(136\) 2.33775 4.04910i 0.200460 0.347207i
\(137\) 5.98775 10.3711i 0.511568 0.886061i −0.488342 0.872652i \(-0.662398\pi\)
0.999910 0.0134093i \(-0.00426844\pi\)
\(138\) 6.48550 + 11.2332i 0.552082 + 0.956234i
\(139\) −5.73090 −0.486088 −0.243044 0.970015i \(-0.578146\pi\)
−0.243044 + 0.970015i \(0.578146\pi\)
\(140\) −0.160098 + 1.49761i −0.0135308 + 0.126571i
\(141\) 10.4919 0.883579
\(142\) 7.83654 + 13.5733i 0.657628 + 1.13904i
\(143\) 4.98880 8.64085i 0.417184 0.722584i
\(144\) 4.85120 8.40253i 0.404267 0.700211i
\(145\) 1.66804 + 2.88913i 0.138523 + 0.239929i
\(146\) −12.9215 −1.06939
\(147\) 10.5309 11.6124i 0.868573 0.957776i
\(148\) 0.569269 0.0467936
\(149\) 7.87742 + 13.6441i 0.645343 + 1.11777i 0.984222 + 0.176938i \(0.0566191\pi\)
−0.338879 + 0.940830i \(0.610048\pi\)
\(150\) 1.79482 3.10872i 0.146547 0.253826i
\(151\) 2.42056 4.19253i 0.196982 0.341183i −0.750566 0.660795i \(-0.770219\pi\)
0.947549 + 0.319612i \(0.103552\pi\)
\(152\) 7.31458 + 12.6692i 0.593291 + 1.02761i
\(153\) −4.10862 −0.332162
\(154\) 1.28884 12.0562i 0.103858 0.971518i
\(155\) 3.73108 0.299687
\(156\) 2.22451 + 3.85297i 0.178104 + 0.308485i
\(157\) −1.68044 + 2.91061i −0.134114 + 0.232292i −0.925259 0.379337i \(-0.876152\pi\)
0.791145 + 0.611629i \(0.209486\pi\)
\(158\) −9.55493 + 16.5496i −0.760149 + 1.31662i
\(159\) 15.4686 + 26.7924i 1.22674 + 2.12478i
\(160\) 3.13047 0.247485
\(161\) 8.74066 3.87298i 0.688860 0.305234i
\(162\) 17.6070 1.38334
\(163\) 10.8086 + 18.7210i 0.846595 + 1.46635i 0.884229 + 0.467054i \(0.154685\pi\)
−0.0376340 + 0.999292i \(0.511982\pi\)
\(164\) 1.40896 2.44039i 0.110021 0.190562i
\(165\) −3.20141 + 5.54501i −0.249229 + 0.431678i
\(166\) −4.15229 7.19197i −0.322280 0.558205i
\(167\) 12.5724 0.972883 0.486442 0.873713i \(-0.338295\pi\)
0.486442 + 0.873713i \(0.338295\pi\)
\(168\) −10.9788 8.00642i −0.847031 0.617708i
\(169\) −0.821270 −0.0631746
\(170\) −1.63395 2.83009i −0.125318 0.217058i
\(171\) 6.42773 11.1332i 0.491541 0.851373i
\(172\) 0.0549058 0.0950996i 0.00418653 0.00725128i
\(173\) 4.98079 + 8.62698i 0.378682 + 0.655897i 0.990871 0.134815i \(-0.0430439\pi\)
−0.612188 + 0.790712i \(0.709711\pi\)
\(174\) 11.9753 0.907848
\(175\) −2.13769 1.55894i −0.161594 0.117845i
\(176\) −13.7649 −1.03757
\(177\) −9.44807 16.3645i −0.710160 1.23003i
\(178\) −12.2663 + 21.2458i −0.919397 + 1.59244i
\(179\) −9.48315 + 16.4253i −0.708804 + 1.22768i 0.256497 + 0.966545i \(0.417432\pi\)
−0.965301 + 0.261140i \(0.915902\pi\)
\(180\) −0.573612 0.993525i −0.0427545 0.0740530i
\(181\) −7.20783 −0.535754 −0.267877 0.963453i \(-0.586322\pi\)
−0.267877 + 0.963453i \(0.586322\pi\)
\(182\) 13.5309 5.99555i 1.00298 0.444420i
\(183\) 9.86027 0.728892
\(184\) −4.14338 7.17654i −0.305454 0.529062i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 6.69662 11.5989i 0.491020 0.850471i
\(187\) 2.91447 + 5.04801i 0.213127 + 0.369147i
\(188\) 2.66702 0.194512
\(189\) 0.620209 5.80164i 0.0451136 0.422007i
\(190\) 10.2250 0.741797
\(191\) −6.65915 11.5340i −0.481839 0.834569i 0.517944 0.855415i \(-0.326698\pi\)
−0.999783 + 0.0208452i \(0.993364\pi\)
\(192\) −5.16327 + 8.94304i −0.372627 + 0.645409i
\(193\) 1.17789 2.04017i 0.0847864 0.146854i −0.820514 0.571627i \(-0.806313\pi\)
0.905300 + 0.424772i \(0.139646\pi\)
\(194\) −3.94885 6.83961i −0.283511 0.491056i
\(195\) −7.81534 −0.559668
\(196\) 2.67692 2.95184i 0.191209 0.210846i
\(197\) −6.23870 −0.444489 −0.222244 0.974991i \(-0.571338\pi\)
−0.222244 + 0.974991i \(0.571338\pi\)
\(198\) 4.61775 + 7.99817i 0.328169 + 0.568406i
\(199\) 0.421013 0.729217i 0.0298449 0.0516928i −0.850717 0.525624i \(-0.823832\pi\)
0.880562 + 0.473931i \(0.157165\pi\)
\(200\) −1.14666 + 1.98606i −0.0810808 + 0.140436i
\(201\) 0.433149 + 0.750237i 0.0305520 + 0.0529176i
\(202\) 2.84777 0.200368
\(203\) 0.938222 8.77643i 0.0658503 0.615985i
\(204\) −2.59914 −0.181976
\(205\) 2.47503 + 4.28688i 0.172864 + 0.299409i
\(206\) 14.4079 24.9551i 1.00384 1.73871i
\(207\) −3.64102 + 6.30642i −0.253068 + 0.438327i
\(208\) −8.40078 14.5506i −0.582489 1.00890i
\(209\) −18.2382 −1.26156
\(210\) −8.68308 + 3.84747i −0.599189 + 0.265501i
\(211\) 4.55754 0.313754 0.156877 0.987618i \(-0.449857\pi\)
0.156877 + 0.987618i \(0.449857\pi\)
\(212\) 3.93208 + 6.81056i 0.270056 + 0.467751i
\(213\) −10.9488 + 18.9639i −0.750199 + 1.29938i
\(214\) −14.0848 + 24.3956i −0.962819 + 1.66765i
\(215\) 0.0964497 + 0.167056i 0.00657781 + 0.0113931i
\(216\) −5.05745 −0.344116
\(217\) −7.97588 5.81651i −0.541438 0.394851i
\(218\) −1.90251 −0.128854
\(219\) −9.02659 15.6345i −0.609961 1.05648i
\(220\) −0.813790 + 1.40953i −0.0548657 + 0.0950302i
\(221\) −3.55743 + 6.16164i −0.239298 + 0.414477i
\(222\) 1.79482 + 3.10872i 0.120461 + 0.208644i
\(223\) 13.6964 0.917178 0.458589 0.888649i \(-0.348355\pi\)
0.458589 + 0.888649i \(0.348355\pi\)
\(224\) −6.69196 4.88020i −0.447125 0.326072i
\(225\) 2.01526 0.134351
\(226\) −6.70101 11.6065i −0.445744 0.772052i
\(227\) 7.96656 13.7985i 0.528759 0.915838i −0.470678 0.882305i \(-0.655991\pi\)
0.999438 0.0335331i \(-0.0106759\pi\)
\(228\) 4.06622 7.04290i 0.269292 0.466427i
\(229\) 6.46342 + 11.1950i 0.427115 + 0.739785i 0.996615 0.0822062i \(-0.0261966\pi\)
−0.569500 + 0.821991i \(0.692863\pi\)
\(230\) −5.79197 −0.381911
\(231\) 15.4879 6.86270i 1.01903 0.451533i
\(232\) −7.65067 −0.502291
\(233\) 7.75623 + 13.4342i 0.508127 + 0.880102i 0.999956 + 0.00941025i \(0.00299542\pi\)
−0.491828 + 0.870692i \(0.663671\pi\)
\(234\) −5.63646 + 9.76264i −0.368467 + 0.638204i
\(235\) −2.34249 + 4.05732i −0.152807 + 0.264670i
\(236\) −2.40167 4.15982i −0.156336 0.270781i
\(237\) −26.6993 −1.73430
\(238\) −0.919049 + 8.59708i −0.0595731 + 0.557266i
\(239\) −20.4475 −1.32264 −0.661318 0.750106i \(-0.730003\pi\)
−0.661318 + 0.750106i \(0.730003\pi\)
\(240\) 5.39095 + 9.33740i 0.347984 + 0.602726i
\(241\) 6.52721 11.3055i 0.420454 0.728248i −0.575530 0.817781i \(-0.695204\pi\)
0.995984 + 0.0895327i \(0.0285374\pi\)
\(242\) −2.26466 + 3.92251i −0.145578 + 0.252149i
\(243\) 8.99182 + 15.5743i 0.576825 + 0.999091i
\(244\) 2.50645 0.160459
\(245\) 2.13943 + 6.66505i 0.136683 + 0.425814i
\(246\) 17.7690 1.13291
\(247\) −11.1308 19.2792i −0.708238 1.22670i
\(248\) −4.27826 + 7.41016i −0.271670 + 0.470546i
\(249\) 5.80135 10.0482i 0.367646 0.636781i
\(250\) 0.801447 + 1.38815i 0.0506880 + 0.0877941i
\(251\) 8.50092 0.536573 0.268287 0.963339i \(-0.413543\pi\)
0.268287 + 0.963339i \(0.413543\pi\)
\(252\) −0.322639 + 3.01807i −0.0203244 + 0.190121i
\(253\) 10.3311 0.649511
\(254\) 2.88871 + 5.00339i 0.181254 + 0.313941i
\(255\) 2.28287 3.95405i 0.142959 0.247612i
\(256\) −6.33029 + 10.9644i −0.395643 + 0.685274i
\(257\) −3.62244 6.27425i −0.225962 0.391377i 0.730646 0.682757i \(-0.239219\pi\)
−0.956608 + 0.291380i \(0.905886\pi\)
\(258\) 0.692440 0.0431094
\(259\) 2.41892 1.07182i 0.150305 0.0665999i
\(260\) −1.98664 −0.123206
\(261\) 3.36153 + 5.82234i 0.208074 + 0.360394i
\(262\) −5.32886 + 9.22985i −0.329218 + 0.570222i
\(263\) −14.2056 + 24.6048i −0.875955 + 1.51720i −0.0202121 + 0.999796i \(0.506434\pi\)
−0.855742 + 0.517402i \(0.826899\pi\)
\(264\) −7.34183 12.7164i −0.451858 0.782642i
\(265\) −13.8145 −0.848617
\(266\) −21.8578 15.9401i −1.34019 0.977349i
\(267\) −34.2756 −2.09763
\(268\) 0.110105 + 0.190708i 0.00672576 + 0.0116494i
\(269\) −11.5906 + 20.0755i −0.706690 + 1.22402i 0.259388 + 0.965773i \(0.416479\pi\)
−0.966078 + 0.258250i \(0.916854\pi\)
\(270\) −1.76744 + 3.06129i −0.107563 + 0.186304i
\(271\) 6.21981 + 10.7730i 0.377826 + 0.654414i 0.990746 0.135731i \(-0.0433383\pi\)
−0.612919 + 0.790145i \(0.710005\pi\)
\(272\) 9.81552 0.595153
\(273\) 16.7068 + 12.1836i 1.01114 + 0.737386i
\(274\) 19.1954 1.15964
\(275\) −1.42953 2.47603i −0.0862042 0.149310i
\(276\) −2.30333 + 3.98948i −0.138644 + 0.240139i
\(277\) −7.15677 + 12.3959i −0.430009 + 0.744797i −0.996874 0.0790141i \(-0.974823\pi\)
0.566865 + 0.823811i \(0.308156\pi\)
\(278\) −4.59301 7.95532i −0.275470 0.477129i
\(279\) 7.51908 0.450156
\(280\) 5.54734 2.45803i 0.331517 0.146895i
\(281\) 2.65928 0.158639 0.0793197 0.996849i \(-0.474725\pi\)
0.0793197 + 0.996849i \(0.474725\pi\)
\(282\) 8.40872 + 14.5643i 0.500732 + 0.867293i
\(283\) −12.1229 + 20.9975i −0.720632 + 1.24817i 0.240115 + 0.970745i \(0.422815\pi\)
−0.960747 + 0.277427i \(0.910518\pi\)
\(284\) −2.78315 + 4.82056i −0.165150 + 0.286048i
\(285\) 7.14288 + 12.3718i 0.423108 + 0.732844i
\(286\) 15.9930 0.945687
\(287\) 1.39213 13.0224i 0.0821748 0.768690i
\(288\) 6.30870 0.371743
\(289\) 6.42174 + 11.1228i 0.377749 + 0.654281i
\(290\) −2.67369 + 4.63097i −0.157005 + 0.271940i
\(291\) 5.51712 9.55594i 0.323420 0.560179i
\(292\) −2.29453 3.97425i −0.134277 0.232575i
\(293\) 7.56345 0.441861 0.220931 0.975290i \(-0.429091\pi\)
0.220931 + 0.975290i \(0.429091\pi\)
\(294\) 24.5597 + 5.31168i 1.43235 + 0.309784i
\(295\) 8.43775 0.491265
\(296\) −1.14666 1.98606i −0.0666480 0.115438i
\(297\) 3.15256 5.46040i 0.182930 0.316844i
\(298\) −12.6267 + 21.8700i −0.731443 + 1.26690i
\(299\) 6.30511 + 10.9208i 0.364634 + 0.631565i
\(300\) 1.27486 0.0736043
\(301\) 0.0542500 0.507472i 0.00312692 0.0292502i
\(302\) 7.75980 0.446526
\(303\) 1.98937 + 3.44570i 0.114287 + 0.197950i
\(304\) −15.3559 + 26.5972i −0.880721 + 1.52545i
\(305\) −2.20147 + 3.81305i −0.126056 + 0.218335i
\(306\) −3.29284 5.70336i −0.188239 0.326039i
\(307\) 1.32000 0.0753365 0.0376682 0.999290i \(-0.488007\pi\)
0.0376682 + 0.999290i \(0.488007\pi\)
\(308\) 3.93699 1.74448i 0.224331 0.0994009i
\(309\) 40.2598 2.29030
\(310\) 2.99026 + 5.17928i 0.169835 + 0.294163i
\(311\) −4.61587 + 7.99492i −0.261742 + 0.453350i −0.966705 0.255894i \(-0.917630\pi\)
0.704963 + 0.709244i \(0.250964\pi\)
\(312\) 8.96149 15.5218i 0.507345 0.878747i
\(313\) −3.02040 5.23148i −0.170723 0.295701i 0.767950 0.640510i \(-0.221277\pi\)
−0.938673 + 0.344809i \(0.887944\pi\)
\(314\) −5.38715 −0.304014
\(315\) −4.30800 3.14166i −0.242728 0.177013i
\(316\) −6.78688 −0.381792
\(317\) 15.3587 + 26.6021i 0.862633 + 1.49412i 0.869378 + 0.494147i \(0.164519\pi\)
−0.00674551 + 0.999977i \(0.502147\pi\)
\(318\) −24.7945 + 42.9454i −1.39041 + 2.40826i
\(319\) 4.76904 8.26023i 0.267015 0.462484i
\(320\) −2.30557 3.99336i −0.128885 0.223236i
\(321\) −39.3571 −2.19670
\(322\) 12.3814 + 9.02932i 0.689991 + 0.503185i
\(323\) 13.0053 0.723636
\(324\) 3.12657 + 5.41538i 0.173698 + 0.300854i
\(325\) 1.74490 3.02226i 0.0967897 0.167645i
\(326\) −17.3250 + 30.0078i −0.959545 + 1.66198i
\(327\) −1.32904 2.30197i −0.0734963 0.127299i
\(328\) −11.3520 −0.626811
\(329\) 11.3326 5.02148i 0.624788 0.276843i
\(330\) −10.2630 −0.564962
\(331\) −11.4798 19.8835i −0.630985 1.09290i −0.987351 0.158551i \(-0.949318\pi\)
0.356366 0.934346i \(-0.384016\pi\)
\(332\) 1.47469 2.55423i 0.0809340 0.140182i
\(333\) −1.00763 + 1.74526i −0.0552177 + 0.0956399i
\(334\) 10.0761 + 17.4524i 0.551341 + 0.954951i
\(335\) −0.386831 −0.0211348
\(336\) 3.03225 28.3646i 0.165423 1.54742i
\(337\) −11.7466 −0.639880 −0.319940 0.947438i \(-0.603663\pi\)
−0.319940 + 0.947438i \(0.603663\pi\)
\(338\) −0.658205 1.14004i −0.0358016 0.0620102i
\(339\) 9.36229 16.2160i 0.508490 0.880730i
\(340\) 0.580300 1.00511i 0.0314712 0.0545097i
\(341\) −5.33370 9.23825i −0.288836 0.500279i
\(342\) 20.6059 1.11424
\(343\) 5.81696 17.5830i 0.314086 0.949394i
\(344\) −0.442378 −0.0238514
\(345\) −4.04612 7.00808i −0.217836 0.377302i
\(346\) −7.98368 + 13.8281i −0.429205 + 0.743405i
\(347\) 11.9329 20.6685i 0.640594 1.10954i −0.344707 0.938710i \(-0.612022\pi\)
0.985300 0.170830i \(-0.0546450\pi\)
\(348\) 2.12653 + 3.68325i 0.113994 + 0.197443i
\(349\) −7.11217 −0.380706 −0.190353 0.981716i \(-0.560963\pi\)
−0.190353 + 0.981716i \(0.560963\pi\)
\(350\) 0.450790 4.21683i 0.0240957 0.225399i
\(351\) 7.69609 0.410787
\(352\) −4.47511 7.75112i −0.238524 0.413136i
\(353\) 16.6449 28.8299i 0.885920 1.53446i 0.0412642 0.999148i \(-0.486861\pi\)
0.844656 0.535310i \(-0.179805\pi\)
\(354\) 15.1443 26.2306i 0.804908 1.39414i
\(355\) −4.88899 8.46799i −0.259481 0.449434i
\(356\) −8.71276 −0.461775
\(357\) −11.0442 + 4.89367i −0.584520 + 0.259001i
\(358\) −30.4010 −1.60674
\(359\) −0.105424 0.182600i −0.00556406 0.00963724i 0.863230 0.504811i \(-0.168438\pi\)
−0.868794 + 0.495174i \(0.835104\pi\)
\(360\) −2.31081 + 4.00243i −0.121790 + 0.210947i
\(361\) −10.8462 + 18.7862i −0.570854 + 0.988747i
\(362\) −5.77669 10.0055i −0.303616 0.525879i
\(363\) −6.32814 −0.332141
\(364\) 4.24681 + 3.09704i 0.222593 + 0.162329i
\(365\) 8.06134 0.421950
\(366\) 7.90248 + 13.6875i 0.413069 + 0.715457i
\(367\) 12.9727 22.4693i 0.677168 1.17289i −0.298662 0.954359i \(-0.596540\pi\)
0.975830 0.218531i \(-0.0701264\pi\)
\(368\) 8.69842 15.0661i 0.453436 0.785375i
\(369\) 4.98782 + 8.63917i 0.259656 + 0.449737i
\(370\) −1.60289 −0.0833305
\(371\) 29.5311 + 21.5359i 1.53318 + 1.11809i
\(372\) 4.75662 0.246619
\(373\) 13.1008 + 22.6913i 0.678334 + 1.17491i 0.975482 + 0.220077i \(0.0706309\pi\)
−0.297149 + 0.954831i \(0.596036\pi\)
\(374\) −4.67159 + 8.09142i −0.241562 + 0.418398i
\(375\) −1.11974 + 1.93944i −0.0578231 + 0.100152i
\(376\) −5.37206 9.30468i −0.277043 0.479852i
\(377\) 11.6423 0.599607
\(378\) 8.55059 3.78876i 0.439795 0.194873i
\(379\) −21.9297 −1.12645 −0.563227 0.826302i \(-0.690440\pi\)
−0.563227 + 0.826302i \(0.690440\pi\)
\(380\) 1.81570 + 3.14489i 0.0931435 + 0.161329i
\(381\) −4.03595 + 6.99047i −0.206768 + 0.358133i
\(382\) 10.6739 18.4877i 0.546124 0.945915i
\(383\) 11.0018 + 19.0557i 0.562167 + 0.973702i 0.997307 + 0.0733395i \(0.0233657\pi\)
−0.435140 + 0.900363i \(0.643301\pi\)
\(384\) −30.5736 −1.56020
\(385\) −0.804070 + 7.52153i −0.0409792 + 0.383333i
\(386\) 3.77607 0.192197
\(387\) 0.194371 + 0.336660i 0.00988043 + 0.0171134i
\(388\) 1.40244 2.42909i 0.0711980 0.123319i
\(389\) 12.8927 22.3307i 0.653684 1.13221i −0.328538 0.944491i \(-0.606556\pi\)
0.982222 0.187723i \(-0.0601107\pi\)
\(390\) −6.26358 10.8488i −0.317169 0.549352i
\(391\) −7.36693 −0.372562
\(392\) −15.6904 3.39347i −0.792485 0.171396i
\(393\) −14.8904 −0.751120
\(394\) −4.99998 8.66023i −0.251896 0.436296i
\(395\) 5.96105 10.3248i 0.299933 0.519499i
\(396\) −1.64000 + 2.84056i −0.0824129 + 0.142743i
\(397\) 7.73585 + 13.3989i 0.388251 + 0.672471i 0.992214 0.124541i \(-0.0397459\pi\)
−0.603963 + 0.797012i \(0.706413\pi\)
\(398\) 1.34968 0.0676533
\(399\) 4.01765 37.5824i 0.201134 1.88148i
\(400\) −4.81447 −0.240724
\(401\) −11.1276 19.2736i −0.555688 0.962480i −0.997850 0.0655444i \(-0.979122\pi\)
0.442162 0.896935i \(-0.354212\pi\)
\(402\) −0.694293 + 1.20255i −0.0346282 + 0.0599777i
\(403\) 6.51036 11.2763i 0.324304 0.561711i
\(404\) 0.505694 + 0.875887i 0.0251592 + 0.0435770i
\(405\) −10.9845 −0.545825
\(406\) 12.9349 5.73146i 0.641949 0.284447i
\(407\) 2.85907 0.141719
\(408\) 5.23533 + 9.06786i 0.259188 + 0.448926i
\(409\) −10.3632 + 17.9496i −0.512427 + 0.887550i 0.487469 + 0.873140i \(0.337920\pi\)
−0.999896 + 0.0144097i \(0.995413\pi\)
\(410\) −3.96721 + 6.87141i −0.195927 + 0.339355i
\(411\) 13.4094 + 23.2258i 0.661438 + 1.14564i
\(412\) 10.2339 0.504189
\(413\) −18.0373 13.1539i −0.887556 0.647262i
\(414\) −11.6723 −0.573663
\(415\) 2.59049 + 4.48687i 0.127162 + 0.220252i
\(416\) 5.46235 9.46108i 0.267814 0.463867i
\(417\) 6.41710 11.1148i 0.314247 0.544292i
\(418\) −14.6169 25.3173i −0.714938 1.23831i
\(419\) 20.6748 1.01003 0.505016 0.863110i \(-0.331487\pi\)
0.505016 + 0.863110i \(0.331487\pi\)
\(420\) −2.72526 1.98743i −0.132979 0.0969769i
\(421\) 4.43614 0.216204 0.108102 0.994140i \(-0.465523\pi\)
0.108102 + 0.994140i \(0.465523\pi\)
\(422\) 3.65263 + 6.32654i 0.177807 + 0.307971i
\(423\) −4.72073 + 8.17654i −0.229530 + 0.397557i
\(424\) 15.8404 27.4365i 0.769280 1.33243i
\(425\) 1.01938 + 1.76561i 0.0494470 + 0.0856448i
\(426\) −35.0995 −1.70058
\(427\) 10.6504 4.71917i 0.515407 0.228377i
\(428\) −10.0045 −0.483584
\(429\) 11.1723 + 19.3510i 0.539404 + 0.934274i
\(430\) −0.154599 + 0.267773i −0.00745541 + 0.0129131i
\(431\) 11.5884 20.0717i 0.558195 0.966822i −0.439452 0.898266i \(-0.644827\pi\)
0.997647 0.0685560i \(-0.0218392\pi\)
\(432\) −5.30869 9.19492i −0.255415 0.442391i
\(433\) 14.2985 0.687144 0.343572 0.939126i \(-0.388363\pi\)
0.343572 + 0.939126i \(0.388363\pi\)
\(434\) 1.68193 15.7333i 0.0807352 0.755224i
\(435\) −7.47108 −0.358211
\(436\) −0.337839 0.585154i −0.0161796 0.0280238i
\(437\) 11.5252 19.9622i 0.551325 0.954923i
\(438\) 14.4687 25.0605i 0.691340 1.19744i
\(439\) 8.76374 + 15.1793i 0.418271 + 0.724466i 0.995766 0.0919281i \(-0.0293030\pi\)
−0.577495 + 0.816394i \(0.695970\pi\)
\(440\) 6.55673 0.312580
\(441\) 4.31150 + 13.4318i 0.205310 + 0.639609i
\(442\) −11.4044 −0.542450
\(443\) −19.1257 33.1267i −0.908689 1.57390i −0.815887 0.578211i \(-0.803751\pi\)
−0.0928022 0.995685i \(-0.529582\pi\)
\(444\) −0.637432 + 1.10407i −0.0302512 + 0.0523966i
\(445\) 7.65258 13.2547i 0.362767 0.628331i
\(446\) 10.9769 + 19.0126i 0.519772 + 0.900272i
\(447\) −35.2826 −1.66881
\(448\) −1.29681 + 12.1308i −0.0612686 + 0.573127i
\(449\) 32.4281 1.53038 0.765189 0.643805i \(-0.222645\pi\)
0.765189 + 0.643805i \(0.222645\pi\)
\(450\) 1.61512 + 2.79747i 0.0761376 + 0.131874i
\(451\) 7.07628 12.2565i 0.333209 0.577135i
\(452\) 2.37987 4.12205i 0.111940 0.193885i
\(453\) 5.42079 + 9.38908i 0.254691 + 0.441138i
\(454\) 25.5391 1.19861
\(455\) −8.44157 + 3.74046i −0.395747 + 0.175355i
\(456\) −32.7617 −1.53421
\(457\) −5.94037 10.2890i −0.277879 0.481300i 0.692979 0.720958i \(-0.256298\pi\)
−0.970857 + 0.239658i \(0.922965\pi\)
\(458\) −10.3602 + 17.9444i −0.484099 + 0.838485i
\(459\) −2.24804 + 3.89372i −0.104929 + 0.181743i
\(460\) −1.02851 1.78143i −0.0479546 0.0830598i
\(461\) 34.9849 1.62941 0.814703 0.579878i \(-0.196900\pi\)
0.814703 + 0.579878i \(0.196900\pi\)
\(462\) 21.9392 + 15.9994i 1.02070 + 0.744361i
\(463\) 3.31346 0.153989 0.0769947 0.997032i \(-0.475468\pi\)
0.0769947 + 0.997032i \(0.475468\pi\)
\(464\) −8.03073 13.9096i −0.372817 0.645739i
\(465\) −4.17783 + 7.23621i −0.193742 + 0.335571i
\(466\) −12.4324 + 21.5336i −0.575920 + 0.997523i
\(467\) 10.0913 + 17.4786i 0.466970 + 0.808815i 0.999288 0.0377290i \(-0.0120124\pi\)
−0.532318 + 0.846544i \(0.678679\pi\)
\(468\) −4.00359 −0.185066
\(469\) 0.826924 + 0.603045i 0.0381838 + 0.0278460i
\(470\) −7.50953 −0.346389
\(471\) −3.76332 6.51825i −0.173404 0.300345i
\(472\) −9.67518 + 16.7579i −0.445336 + 0.771345i
\(473\) 0.275756 0.477624i 0.0126793 0.0219612i
\(474\) −21.3980 37.0625i −0.982845 1.70234i
\(475\) −6.37906 −0.292691
\(476\) −2.80740 + 1.24396i −0.128677 + 0.0570167i
\(477\) −27.8397 −1.27469
\(478\) −16.3876 28.3841i −0.749549 1.29826i
\(479\) 6.32737 10.9593i 0.289105 0.500744i −0.684491 0.729021i \(-0.739976\pi\)
0.973596 + 0.228276i \(0.0733090\pi\)
\(480\) −3.50530 + 6.07136i −0.159994 + 0.277119i
\(481\) 1.74490 + 3.02226i 0.0795607 + 0.137803i
\(482\) 20.9248 0.953100
\(483\) −2.27582 + 21.2887i −0.103553 + 0.968671i
\(484\) −1.60859 −0.0731179
\(485\) 2.46358 + 4.26704i 0.111865 + 0.193756i
\(486\) −14.4129 + 24.9639i −0.653784 + 1.13239i
\(487\) 15.0702 26.1023i 0.682895 1.18281i −0.291198 0.956663i \(-0.594054\pi\)
0.974093 0.226146i \(-0.0726127\pi\)
\(488\) −5.04865 8.74451i −0.228541 0.395845i
\(489\) −48.4112 −2.18923
\(490\) −7.53742 + 8.31152i −0.340506 + 0.375476i
\(491\) 31.4494 1.41929 0.709647 0.704558i \(-0.248855\pi\)
0.709647 + 0.704558i \(0.248855\pi\)
\(492\) 3.15533 + 5.46519i 0.142253 + 0.246390i
\(493\) −3.40072 + 5.89023i −0.153161 + 0.265282i
\(494\) 17.8416 30.9025i 0.802729 1.39037i
\(495\) −2.88088 4.98983i −0.129486 0.224276i
\(496\) −17.9632 −0.806570
\(497\) −2.74991 + 25.7236i −0.123350 + 1.15386i
\(498\) 18.5979 0.833392
\(499\) 19.0287 + 32.9587i 0.851843 + 1.47544i 0.879543 + 0.475819i \(0.157848\pi\)
−0.0276999 + 0.999616i \(0.508818\pi\)
\(500\) −0.284634 + 0.493001i −0.0127292 + 0.0220477i
\(501\) −14.0778 + 24.3835i −0.628951 + 1.08938i
\(502\) 6.81303 + 11.8005i 0.304081 + 0.526683i
\(503\) 32.9900 1.47095 0.735476 0.677550i \(-0.236958\pi\)
0.735476 + 0.677550i \(0.236958\pi\)
\(504\) 11.1793 4.95356i 0.497967 0.220649i
\(505\) −1.77664 −0.0790595
\(506\) 8.27983 + 14.3411i 0.368083 + 0.637539i
\(507\) 0.919608 1.59281i 0.0408412 0.0707391i
\(508\) −1.02593 + 1.77696i −0.0455182 + 0.0788398i
\(509\) −0.0177382 0.0307234i −0.000786231 0.00136179i 0.865632 0.500681i \(-0.166917\pi\)
−0.866418 + 0.499319i \(0.833584\pi\)
\(510\) 7.31840 0.324064
\(511\) −17.2326 12.5671i −0.762327 0.555937i
\(512\) 7.01062 0.309828
\(513\) −7.03389 12.1831i −0.310554 0.537895i
\(514\) 5.80639 10.0570i 0.256109 0.443593i
\(515\) −8.98865 + 15.5688i −0.396087 + 0.686043i
\(516\) 0.122960 + 0.212973i 0.00541302 + 0.00937563i
\(517\) 13.3947 0.589098
\(518\) 3.42649 + 2.49881i 0.150551 + 0.109791i
\(519\) −22.3087 −0.979244
\(520\) 4.00160 + 6.93098i 0.175482 + 0.303943i
\(521\) 16.0131 27.7355i 0.701548 1.21512i −0.266375 0.963869i \(-0.585826\pi\)
0.967923 0.251247i \(-0.0808406\pi\)
\(522\) −5.38818 + 9.33260i −0.235834 + 0.408477i
\(523\) −20.8127 36.0487i −0.910076 1.57630i −0.813955 0.580928i \(-0.802690\pi\)
−0.0961213 0.995370i \(-0.530644\pi\)
\(524\) −3.78509 −0.165353
\(525\) 5.41712 2.40033i 0.236423 0.104759i
\(526\) −45.5401 −1.98564
\(527\) 3.80337 + 6.58763i 0.165678 + 0.286962i
\(528\) 15.4131 26.6963i 0.670769 1.16181i
\(529\) 4.97150 8.61089i 0.216152 0.374386i
\(530\) −11.0716 19.1765i −0.480918 0.832975i
\(531\) 17.0042 0.737921
\(532\) 1.02128 9.55335i 0.0442780 0.414190i
\(533\) 17.2747 0.748252
\(534\) −27.4701 47.5795i −1.18875 2.05897i
\(535\) 8.78712 15.2197i 0.379900 0.658007i
\(536\) 0.443562 0.768271i 0.0191589 0.0331843i
\(537\) −21.2373 36.7841i −0.916457 1.58735i
\(538\) −37.1569 −1.60195
\(539\) 13.4444 14.8252i 0.579093 0.638567i
\(540\) −1.25541 −0.0540243
\(541\) −5.30027 9.18033i −0.227876 0.394693i 0.729302 0.684192i \(-0.239845\pi\)
−0.957178 + 0.289498i \(0.906512\pi\)
\(542\) −9.96969 + 17.2680i −0.428235 + 0.741724i
\(543\) 8.07088 13.9792i 0.346355 0.599904i
\(544\) 3.19112 + 5.52719i 0.136818 + 0.236976i
\(545\) 1.18692 0.0508422
\(546\) −3.52307 + 32.9560i −0.150774 + 1.41038i
\(547\) −42.8221 −1.83094 −0.915471 0.402385i \(-0.868181\pi\)
−0.915471 + 0.402385i \(0.868181\pi\)
\(548\) 3.40864 + 5.90393i 0.145610 + 0.252204i
\(549\) −4.43652 + 7.68429i −0.189346 + 0.327957i
\(550\) 2.29139 3.96881i 0.0977053 0.169231i
\(551\) −10.6405 18.4299i −0.453302 0.785142i
\(552\) 18.5580 0.789881
\(553\) −28.8386 + 12.7784i −1.22634 + 0.543393i
\(554\) −22.9431 −0.974758
\(555\) −1.11974 1.93944i −0.0475303 0.0823248i
\(556\) 1.63121 2.82534i 0.0691787 0.119821i
\(557\) 5.20160 9.00943i 0.220399 0.381742i −0.734530 0.678576i \(-0.762597\pi\)
0.954929 + 0.296834i \(0.0959308\pi\)
\(558\) 6.02615 + 10.4376i 0.255107 + 0.441858i
\(559\) 0.673181 0.0284725
\(560\) 10.2918 + 7.50546i 0.434910 + 0.317163i
\(561\) −13.0538 −0.551131
\(562\) 2.13127 + 3.69147i 0.0899023 + 0.155715i
\(563\) 0.460926 0.798347i 0.0194257 0.0336463i −0.856149 0.516729i \(-0.827150\pi\)
0.875575 + 0.483083i \(0.160483\pi\)
\(564\) −2.98636 + 5.17253i −0.125748 + 0.217803i
\(565\) 4.18057 + 7.24096i 0.175878 + 0.304629i
\(566\) −38.8635 −1.63355
\(567\) 23.4815 + 17.1242i 0.986129 + 0.719147i
\(568\) 22.4240 0.940888
\(569\) 5.21276 + 9.02877i 0.218530 + 0.378506i 0.954359 0.298662i \(-0.0965404\pi\)
−0.735829 + 0.677168i \(0.763207\pi\)
\(570\) −11.4493 + 19.8307i −0.479558 + 0.830618i
\(571\) −16.5301 + 28.6309i −0.691761 + 1.19817i 0.279499 + 0.960146i \(0.409832\pi\)
−0.971260 + 0.238020i \(0.923502\pi\)
\(572\) 2.83997 + 4.91897i 0.118745 + 0.205672i
\(573\) 29.8260 1.24600
\(574\) 19.1928 8.50431i 0.801090 0.354963i
\(575\) 3.61345 0.150691
\(576\) −4.64632 8.04766i −0.193597 0.335319i
\(577\) −18.8533 + 32.6549i −0.784874 + 1.35944i 0.144201 + 0.989548i \(0.453939\pi\)
−0.929075 + 0.369893i \(0.879395\pi\)
\(578\) −10.2934 + 17.8286i −0.428148 + 0.741574i
\(579\) 2.63786 + 4.56891i 0.109626 + 0.189877i
\(580\) −1.89913 −0.0788569
\(581\) 1.45707 13.6299i 0.0604496 0.565466i
\(582\) 17.6867 0.733139
\(583\) 19.7483 + 34.2050i 0.817890 + 1.41663i
\(584\) −9.24357 + 16.0103i −0.382502 + 0.662513i
\(585\) 3.51643 6.09063i 0.145386 0.251817i
\(586\) 6.06170 + 10.4992i 0.250407 + 0.433717i
\(587\) 43.2908 1.78680 0.893400 0.449261i \(-0.148313\pi\)
0.893400 + 0.449261i \(0.148313\pi\)
\(588\) 2.72748 + 8.49703i 0.112479 + 0.350412i
\(589\) −23.8008 −0.980693
\(590\) 6.76241 + 11.7128i 0.278404 + 0.482210i
\(591\) 6.98571 12.0996i 0.287354 0.497711i
\(592\) 2.40724 4.16945i 0.0989368 0.171364i
\(593\) 2.12218 + 3.67572i 0.0871473 + 0.150944i 0.906304 0.422626i \(-0.138892\pi\)
−0.819157 + 0.573570i \(0.805558\pi\)
\(594\) 10.1064 0.414673
\(595\) 0.573369 5.36348i 0.0235058 0.219881i
\(596\) −8.96874 −0.367374
\(597\) 0.942850 + 1.63306i 0.0385883 + 0.0668369i
\(598\) −10.1064 + 17.5048i −0.413282 + 0.715826i
\(599\) 2.49966 4.32954i 0.102133 0.176900i −0.810430 0.585835i \(-0.800766\pi\)
0.912563 + 0.408935i \(0.134100\pi\)
\(600\) −2.56791 4.44775i −0.104834 0.181579i
\(601\) −16.8399 −0.686913 −0.343456 0.939169i \(-0.611598\pi\)
−0.343456 + 0.939169i \(0.611598\pi\)
\(602\) 0.747924 0.331405i 0.0304831 0.0135071i
\(603\) −0.779564 −0.0317463
\(604\) 1.37795 + 2.38668i 0.0560680 + 0.0971126i
\(605\) 1.41286 2.44715i 0.0574409 0.0994906i
\(606\) −3.18876 + 5.52309i −0.129534 + 0.224360i
\(607\) −8.11873 14.0621i −0.329529 0.570761i 0.652889 0.757453i \(-0.273557\pi\)
−0.982418 + 0.186692i \(0.940223\pi\)
\(608\) −19.9694 −0.809867
\(609\) 15.9708 + 11.6469i 0.647171 + 0.471958i
\(610\) −7.05744 −0.285747
\(611\) 8.17484 + 14.1592i 0.330719 + 0.572821i
\(612\) 1.16945 2.02555i 0.0472724 0.0818781i
\(613\) 11.3223 19.6108i 0.457303 0.792071i −0.541515 0.840691i \(-0.682149\pi\)
0.998817 + 0.0486198i \(0.0154823\pi\)
\(614\) 1.05791 + 1.83236i 0.0426938 + 0.0739479i
\(615\) −11.0855 −0.447012
\(616\) −14.0163 10.2215i −0.564731 0.411837i
\(617\) −1.88719 −0.0759756 −0.0379878 0.999278i \(-0.512095\pi\)
−0.0379878 + 0.999278i \(0.512095\pi\)
\(618\) 32.2661 + 55.8865i 1.29793 + 2.24808i
\(619\) −3.77745 + 6.54273i −0.151828 + 0.262974i −0.931900 0.362716i \(-0.881849\pi\)
0.780071 + 0.625691i \(0.215183\pi\)
\(620\) −1.06199 + 1.83943i −0.0426507 + 0.0738731i
\(621\) 3.98438 + 6.90115i 0.159888 + 0.276934i
\(622\) −14.7975 −0.593326
\(623\) −37.0220 + 16.4045i −1.48326 + 0.657231i
\(624\) 37.6267 1.50627
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 4.84137 8.38551i 0.193500 0.335152i
\(627\) 20.4220 35.3719i 0.815576 1.41262i
\(628\) −0.956624 1.65692i −0.0381735 0.0661184i
\(629\) −2.03875 −0.0812904
\(630\) 0.908457 8.49801i 0.0361938 0.338569i
\(631\) −27.3098 −1.08718 −0.543592 0.839349i \(-0.682936\pi\)
−0.543592 + 0.839349i \(0.682936\pi\)
\(632\) 13.6705 + 23.6781i 0.543785 + 0.941863i
\(633\) −5.10326 + 8.83910i −0.202836 + 0.351323i
\(634\) −24.6184 + 42.6404i −0.977723 + 1.69347i
\(635\) −1.80218 3.12148i −0.0715175 0.123872i
\(636\) −17.6116 −0.698345
\(637\) 23.8766 + 5.16394i 0.946025 + 0.204603i
\(638\) 15.2885 0.605279
\(639\) −9.85259 17.0652i −0.389762 0.675088i
\(640\) 6.82605 11.8231i 0.269823 0.467348i
\(641\) 4.75047 8.22806i 0.187632 0.324989i −0.756828 0.653614i \(-0.773252\pi\)
0.944460 + 0.328625i \(0.106585\pi\)
\(642\) −31.5426 54.6335i −1.24489 2.15621i
\(643\) 23.4592 0.925142 0.462571 0.886582i \(-0.346927\pi\)
0.462571 + 0.886582i \(0.346927\pi\)
\(644\) −0.578507 + 5.41154i −0.0227964 + 0.213244i
\(645\) −0.431994 −0.0170097
\(646\) 10.4231 + 18.0533i 0.410091 + 0.710298i
\(647\) −13.1598 + 22.7934i −0.517363 + 0.896099i 0.482433 + 0.875933i \(0.339753\pi\)
−0.999797 + 0.0201668i \(0.993580\pi\)
\(648\) 12.5954 21.8159i 0.494796 0.857011i
\(649\) −12.0621 20.8921i −0.473477 0.820086i
\(650\) 5.59379 0.219406
\(651\) 20.2117 8.95580i 0.792159 0.351005i
\(652\) −12.3060 −0.481940
\(653\) −16.0679 27.8303i −0.628784 1.08909i −0.987796 0.155753i \(-0.950220\pi\)
0.359012 0.933333i \(-0.383114\pi\)
\(654\) 2.13032 3.68981i 0.0833019 0.144283i
\(655\) 3.32452 5.75824i 0.129900 0.224993i
\(656\) −11.9160 20.6390i −0.465240 0.805819i
\(657\) 16.2457 0.633804
\(658\) 16.0530 + 11.7069i 0.625813 + 0.456382i
\(659\) 0.428155 0.0166785 0.00833927 0.999965i \(-0.497345\pi\)
0.00833927 + 0.999965i \(0.497345\pi\)
\(660\) −1.82246 3.15660i −0.0709393 0.122870i
\(661\) 15.1160 26.1816i 0.587943 1.01835i −0.406559 0.913625i \(-0.633271\pi\)
0.994502 0.104722i \(-0.0333952\pi\)
\(662\) 18.4008 31.8712i 0.715169 1.23871i
\(663\) −7.96677 13.7989i −0.309404 0.535903i
\(664\) −11.8816 −0.461096
\(665\) 13.6365 + 9.94456i 0.528799 + 0.385633i
\(666\) −3.23025 −0.125169
\(667\) 6.02738 + 10.4397i 0.233381 + 0.404228i
\(668\) −3.57855 + 6.19822i −0.138458 + 0.239816i
\(669\) −15.3364 + 26.5634i −0.592938 + 1.02700i
\(670\) −0.310024 0.536978i −0.0119773 0.0207453i
\(671\) 12.5883 0.485966
\(672\) 16.9581 7.51414i 0.654174 0.289864i
\(673\) 35.7646 1.37862 0.689311 0.724465i \(-0.257913\pi\)
0.689311 + 0.724465i \(0.257913\pi\)
\(674\) −9.41431 16.3061i −0.362626 0.628086i
\(675\) 1.10265 1.90985i 0.0424411 0.0735102i
\(676\) 0.233762 0.404887i 0.00899084 0.0155726i
\(677\) 15.8709 + 27.4892i 0.609969 + 1.05650i 0.991245 + 0.132036i \(0.0421515\pi\)
−0.381276 + 0.924461i \(0.624515\pi\)
\(678\) 30.0135 1.15266
\(679\) 1.38569 12.9622i 0.0531778 0.497442i
\(680\) −4.67550 −0.179297
\(681\) 17.8409 + 30.9014i 0.683666 + 1.18414i
\(682\) 8.54936 14.8079i 0.327372 0.567025i
\(683\) −16.3936 + 28.3946i −0.627284 + 1.08649i 0.360810 + 0.932639i \(0.382500\pi\)
−0.988094 + 0.153849i \(0.950833\pi\)
\(684\) 3.65911 + 6.33776i 0.139909 + 0.242330i
\(685\) −11.9755 −0.457560
\(686\) 29.0698 6.01708i 1.10989 0.229733i
\(687\) −28.9494 −1.10449
\(688\) −0.464354 0.804285i −0.0177033 0.0306631i
\(689\) −24.1049 + 41.7509i −0.918324 + 1.59058i
\(690\) 6.48550 11.2332i 0.246899 0.427641i
\(691\) −10.9242 18.9212i −0.415576 0.719798i 0.579913 0.814678i \(-0.303087\pi\)
−0.995489 + 0.0948803i \(0.969753\pi\)
\(692\) −5.67082 −0.215572
\(693\) −1.62041 + 15.1578i −0.0615542 + 0.575798i
\(694\) 38.2545 1.45212
\(695\) 2.86545 + 4.96310i 0.108693 + 0.188261i
\(696\) 8.56675 14.8380i 0.324722 0.562435i
\(697\) −5.04598 + 8.73989i −0.191130 + 0.331047i
\(698\) −5.70003 9.87274i −0.215749 0.373689i
\(699\) −34.7398 −1.31398
\(700\) 1.37702 0.610156i 0.0520464 0.0230617i
\(701\) −32.6578 −1.23347 −0.616734 0.787172i \(-0.711544\pi\)
−0.616734 + 0.787172i \(0.711544\pi\)
\(702\) 6.16801 + 10.6833i 0.232796 + 0.403215i
\(703\) 3.18953 5.52443i 0.120295 0.208358i
\(704\) −6.59178 + 11.4173i −0.248437 + 0.430306i
\(705\) −5.24596 9.08627i −0.197574 0.342209i
\(706\) 53.3601 2.00823
\(707\) 3.79791 + 2.76967i 0.142835 + 0.104164i
\(708\) 10.7570 0.404272
\(709\) −13.7745 23.8581i −0.517310 0.896008i −0.999798 0.0201050i \(-0.993600\pi\)
0.482487 0.875903i \(-0.339733\pi\)
\(710\) 7.83654 13.5733i 0.294100 0.509396i
\(711\) 12.0131 20.8072i 0.450525 0.780332i
\(712\) 17.5498 + 30.3971i 0.657705 + 1.13918i
\(713\) 13.4820 0.504907
\(714\) −15.6445 11.4089i −0.585479 0.426968i
\(715\) −9.97759 −0.373141
\(716\) −5.39846 9.35041i −0.201750 0.349441i
\(717\) 22.8958 39.6567i 0.855060 1.48101i
\(718\) 0.168983 0.292688i 0.00630641 0.0109230i
\(719\) −14.0784 24.3846i −0.525037 0.909391i −0.999575 0.0291558i \(-0.990718\pi\)
0.474538 0.880235i \(-0.342615\pi\)
\(720\) −9.70240 −0.361587
\(721\) 43.4857 19.2685i 1.61949 0.717597i
\(722\) −34.7707 −1.29403
\(723\) 14.6175 + 25.3183i 0.543632 + 0.941598i
\(724\) 2.05160 3.55347i 0.0762470 0.132064i
\(725\) 1.66804 2.88913i 0.0619495 0.107300i
\(726\) −5.07166 8.78438i −0.188227 0.326019i
\(727\) 0.418224 0.0155111 0.00775553 0.999970i \(-0.497531\pi\)
0.00775553 + 0.999970i \(0.497531\pi\)
\(728\) 2.25078 21.0545i 0.0834194 0.780332i
\(729\) −7.32042 −0.271127
\(730\) 6.46074 + 11.1903i 0.239123 + 0.414172i
\(731\) −0.196637 + 0.340585i −0.00727289 + 0.0125970i
\(732\) −2.80657 + 4.86113i −0.103734 + 0.179672i
\(733\) −4.31174 7.46814i −0.159258 0.275842i 0.775344 0.631540i \(-0.217577\pi\)
−0.934601 + 0.355697i \(0.884243\pi\)
\(734\) 41.5876 1.53503
\(735\) −15.3221 3.31381i −0.565164 0.122232i
\(736\) 11.3118 0.416957
\(737\) 0.552988 + 0.957804i 0.0203696 + 0.0352811i
\(738\) −7.99495 + 13.8477i −0.294298 + 0.509740i
\(739\) 6.98266 12.0943i 0.256861 0.444897i −0.708538 0.705673i \(-0.750645\pi\)
0.965399 + 0.260776i \(0.0839783\pi\)
\(740\) −0.284634 0.493001i −0.0104634 0.0181231i
\(741\) 49.8545 1.83145
\(742\) −6.22742 + 58.2533i −0.228616 + 2.13855i
\(743\) −48.7950 −1.79012 −0.895058 0.445951i \(-0.852866\pi\)
−0.895058 + 0.445951i \(0.852866\pi\)
\(744\) −9.58106 16.5949i −0.351259 0.608398i
\(745\) 7.87742 13.6441i 0.288606 0.499881i
\(746\) −20.9992 + 36.3717i −0.768835 + 1.33166i
\(747\) 5.22052 + 9.04220i 0.191009 + 0.330837i
\(748\) −3.31823 −0.121327
\(749\) −42.5108 + 18.8365i −1.55331 + 0.688271i
\(750\) −3.58964 −0.131075
\(751\) 0.558946 + 0.968122i 0.0203962 + 0.0353273i 0.876043 0.482232i \(-0.160174\pi\)
−0.855647 + 0.517560i \(0.826841\pi\)
\(752\) 11.2779 19.5338i 0.411261 0.712325i
\(753\) −9.51880 + 16.4871i −0.346885 + 0.600822i
\(754\) 9.33066 + 16.1612i 0.339803 + 0.588555i
\(755\) −4.84112 −0.176186
\(756\) 2.68368 + 1.95711i 0.0976045 + 0.0711794i
\(757\) −33.7927 −1.22822 −0.614108 0.789222i \(-0.710484\pi\)
−0.614108 + 0.789222i \(0.710484\pi\)
\(758\) −17.5755 30.4417i −0.638372 1.10569i
\(759\) −11.5681 + 20.0366i −0.419897 + 0.727282i
\(760\) 7.31458 12.6692i 0.265328 0.459561i
\(761\) 25.3321 + 43.8766i 0.918289 + 1.59052i 0.802013 + 0.597307i \(0.203763\pi\)
0.116277 + 0.993217i \(0.462904\pi\)
\(762\) −12.9384 −0.468709
\(763\) −2.53727 1.85034i −0.0918554 0.0669867i
\(764\) 7.58169 0.274296
\(765\) 2.05431 + 3.55817i 0.0742737 + 0.128646i
\(766\) −17.6348 + 30.5443i −0.637170 + 1.10361i
\(767\) 14.7230 25.5011i 0.531618 0.920790i
\(768\) −14.1765 24.5545i −0.511552 0.886034i
\(769\) −12.1028 −0.436437 −0.218219 0.975900i \(-0.570025\pi\)
−0.218219 + 0.975900i \(0.570025\pi\)
\(770\) −11.0854 + 4.91194i −0.399490 + 0.177014i
\(771\) 16.2247 0.584320
\(772\) 0.670536 + 1.16140i 0.0241331 + 0.0417998i
\(773\) 14.4505 25.0289i 0.519747 0.900228i −0.479989 0.877274i \(-0.659359\pi\)
0.999737 0.0229541i \(-0.00730717\pi\)
\(774\) −0.311556 + 0.539631i −0.0111987 + 0.0193966i
\(775\) −1.86554 3.23121i −0.0670121 0.116068i
\(776\) −11.2995 −0.405628
\(777\) −0.629819 + 5.89153i −0.0225946 + 0.211357i
\(778\) 41.3311 1.48179
\(779\) −15.7884 27.3463i −0.565677 0.979781i
\(780\) 2.22451 3.85297i 0.0796504 0.137958i
\(781\) −13.9780 + 24.2106i −0.500171 + 0.866322i
\(782\) −5.90420 10.2264i −0.211134 0.365695i
\(783\) 7.35708 0.262921
\(784\) −10.3002 32.0887i −0.367865 1.14602i
\(785\) 3.36089 0.119955
\(786\) −11.9338 20.6700i −0.425666 0.737276i
\(787\) −23.2949 + 40.3479i −0.830373 + 1.43825i 0.0673705 + 0.997728i \(0.478539\pi\)
−0.897743 + 0.440519i \(0.854794\pi\)
\(788\) 1.77575 3.07568i 0.0632584 0.109567i
\(789\) −31.8131 55.1019i −1.13258 1.96168i
\(790\) 19.1099 0.679898
\(791\) 2.35144 21.9962i 0.0836077 0.782093i
\(792\) 13.2135 0.469522
\(793\) 7.68269 + 13.3068i 0.272820 + 0.472539i
\(794\) −12.3998 + 21.4770i −0.440051 + 0.762190i
\(795\) 15.4686 26.7924i 0.548615 0.950229i
\(796\) 0.239670 + 0.415120i 0.00849487 + 0.0147136i
\(797\) −18.9933 −0.672777 −0.336389 0.941723i \(-0.609206\pi\)
−0.336389 + 0.941723i \(0.609206\pi\)
\(798\) 55.3899 24.5432i 1.96078 0.868821i
\(799\) −9.55153 −0.337909
\(800\) −1.56523 2.71106i −0.0553393 0.0958505i
\(801\) 15.4219 26.7116i 0.544907 0.943807i
\(802\) 17.8364 30.8936i 0.629826 1.09089i
\(803\) −11.5240 19.9601i −0.406672 0.704376i
\(804\) −0.493157 −0.0173923
\(805\) −7.72443 5.63314i −0.272250 0.198542i
\(806\) 20.8708 0.735144
\(807\) −25.9568 44.9585i −0.913724 1.58262i
\(808\) 2.03720 3.52853i 0.0716683 0.124133i
\(809\) −0.279698 + 0.484451i −0.00983366 + 0.0170324i −0.870900 0.491460i \(-0.836464\pi\)
0.861067 + 0.508492i \(0.169797\pi\)
\(810\) −8.80350 15.2481i −0.309324 0.535764i
\(811\) 6.79271 0.238524 0.119262 0.992863i \(-0.461947\pi\)
0.119262 + 0.992863i \(0.461947\pi\)
\(812\) 4.05974 + 2.96062i 0.142469 + 0.103897i
\(813\) −27.8582 −0.977031
\(814\) 2.29139 + 3.96881i 0.0803133 + 0.139107i
\(815\) 10.8086 18.7210i 0.378609 0.655770i
\(816\) −10.9908 + 19.0367i −0.384756 + 0.666416i
\(817\) −0.615258 1.06566i −0.0215252 0.0372827i
\(818\) −33.2222 −1.16159
\(819\) −17.0119 + 7.53799i −0.594445 + 0.263399i
\(820\) −2.81792 −0.0984059
\(821\) 3.27399 + 5.67072i 0.114263 + 0.197909i 0.917485 0.397771i \(-0.130216\pi\)
−0.803222 + 0.595680i \(0.796883\pi\)
\(822\) −21.4939 + 37.2285i −0.749685 + 1.29849i
\(823\) −2.49020 + 4.31315i −0.0868029 + 0.150347i −0.906158 0.422939i \(-0.860998\pi\)
0.819355 + 0.573286i \(0.194332\pi\)
\(824\) −20.6138 35.7041i −0.718114 1.24381i
\(825\) 6.40282 0.222918
\(826\) 3.80365 35.5806i 0.132346 1.23801i
\(827\) 10.5604 0.367223 0.183611 0.982999i \(-0.441221\pi\)
0.183611 + 0.982999i \(0.441221\pi\)
\(828\) −2.07272 3.59005i −0.0720319 0.124763i
\(829\) −8.75467 + 15.1635i −0.304062 + 0.526651i −0.977052 0.213000i \(-0.931676\pi\)
0.672990 + 0.739652i \(0.265010\pi\)
\(830\) −4.15229 + 7.19197i −0.144128 + 0.249637i
\(831\) −16.0274 27.7603i −0.555985 0.962994i
\(832\) −16.0920 −0.557889
\(833\) −9.58701 + 10.5716i −0.332170 + 0.366284i
\(834\) 20.5719 0.712346
\(835\) −6.28621 10.8880i −0.217543 0.376796i
\(836\) 5.19122 8.99145i 0.179542 0.310976i
\(837\) 4.11408 7.12580i 0.142204 0.246304i
\(838\) 16.5698 + 28.6997i 0.572393 + 0.991414i
\(839\) 13.8473 0.478061 0.239031 0.971012i \(-0.423170\pi\)
0.239031 + 0.971012i \(0.423170\pi\)
\(840\) −1.44437 + 13.5111i −0.0498355 + 0.466178i
\(841\) −17.8706 −0.616226
\(842\) 3.55533 + 6.15801i 0.122525 + 0.212219i
\(843\) −2.97770 + 5.15752i −0.102557 + 0.177635i
\(844\) −1.29723 + 2.24688i −0.0446526 + 0.0773406i
\(845\) 0.410635 + 0.711241i 0.0141263 + 0.0244674i
\(846\) −15.1337 −0.520306
\(847\) −6.83520 + 3.02868i −0.234860 + 0.104067i
\(848\) 66.5094 2.28394
\(849\) −27.1490 47.0234i −0.931750 1.61384i
\(850\) −1.63395 + 2.83009i −0.0560441 + 0.0970713i
\(851\) −1.80672 + 3.12934i −0.0619337 + 0.107272i
\(852\) −6.23281 10.7955i −0.213532 0.369849i
\(853\) −47.1132 −1.61312 −0.806562 0.591149i \(-0.798675\pi\)
−0.806562 + 0.591149i \(0.798675\pi\)
\(854\) 15.0866 + 11.0021i 0.516253 + 0.376484i
\(855\) −12.8555 −0.439647
\(856\) 20.1516 + 34.9036i 0.688767 + 1.19298i
\(857\) 12.3193 21.3377i 0.420820 0.728881i −0.575200 0.818013i \(-0.695076\pi\)
0.996020 + 0.0891315i \(0.0284091\pi\)
\(858\) −17.9080 + 31.0176i −0.611369 + 1.05892i
\(859\) −14.3307 24.8215i −0.488958 0.846899i 0.510962 0.859603i \(-0.329289\pi\)
−0.999919 + 0.0127042i \(0.995956\pi\)
\(860\) −0.109812 −0.00374454
\(861\) 23.6975 + 17.2817i 0.807607 + 0.588958i
\(862\) 37.1500 1.26534
\(863\) −22.9116 39.6840i −0.779919 1.35086i −0.931988 0.362490i \(-0.881927\pi\)
0.152069 0.988370i \(-0.451407\pi\)
\(864\) 3.45182 5.97872i 0.117433 0.203400i
\(865\) 4.98079 8.62698i 0.169352 0.293326i
\(866\) 11.4595 + 19.8485i 0.389410 + 0.674479i
\(867\) −28.7627 −0.976832
\(868\) 5.13776 2.27654i 0.174387 0.0772708i
\(869\) −34.0861 −1.15629
\(870\) −5.98767 10.3710i −0.203001 0.351608i
\(871\) −0.674982 + 1.16910i −0.0228709 + 0.0396135i
\(872\) −1.36099 + 2.35731i −0.0460890 + 0.0798284i
\(873\) 4.96474 + 8.59919i 0.168031 + 0.291038i
\(874\) 36.9474 1.24976
\(875\) −0.281235 + 2.63076i −0.00950747 + 0.0889360i
\(876\) 10.2771 0.347232
\(877\) 5.07639 + 8.79256i 0.171417 + 0.296904i 0.938916 0.344147i \(-0.111832\pi\)
−0.767498 + 0.641051i \(0.778499\pi\)
\(878\) −14.0474 + 24.3307i −0.474075 + 0.821122i
\(879\) −8.46909 + 14.6689i −0.285655 + 0.494769i
\(880\) 6.88245 + 11.9208i 0.232007 + 0.401849i
\(881\) −57.9134 −1.95115 −0.975576 0.219662i \(-0.929505\pi\)
−0.975576 + 0.219662i \(0.929505\pi\)
\(882\) −15.1899 + 16.7499i −0.511469 + 0.563997i
\(883\) −21.7280 −0.731205 −0.365602 0.930771i \(-0.619137\pi\)
−0.365602 + 0.930771i \(0.619137\pi\)
\(884\) −2.02513 3.50763i −0.0681125 0.117974i
\(885\) −9.44807 + 16.3645i −0.317593 + 0.550088i
\(886\) 30.6565 53.0985i 1.02992 1.78388i
\(887\) 4.21084 + 7.29339i 0.141386 + 0.244888i 0.928019 0.372533i \(-0.121511\pi\)
−0.786633 + 0.617421i \(0.788177\pi\)
\(888\) 5.13582 0.172347
\(889\) −1.01367 + 9.48224i −0.0339975 + 0.318024i
\(890\) 24.5326 0.822333
\(891\) 15.7027 + 27.1979i 0.526062 + 0.911165i
\(892\) −3.89846 + 6.75233i −0.130530 + 0.226085i
\(893\) 14.9429 25.8819i 0.500045 0.866104i
\(894\) −28.2771 48.9774i −0.945729 1.63805i
\(895\) 18.9663 0.633974
\(896\) −33.0234 + 14.6326i −1.10323 + 0.488842i
\(897\) −28.2403 −0.942916
\(898\) 25.9894 + 45.0150i 0.867279 + 1.50217i
\(899\) 6.22358 10.7796i 0.207568 0.359519i
\(900\) −0.573612 + 0.993525i −0.0191204 + 0.0331175i
\(901\) −14.0822 24.3910i −0.469145 0.812583i
\(902\) 22.6851 0.755330
\(903\) 0.923468 + 0.673451i 0.0307311 + 0.0224110i
\(904\) −19.1747 −0.637740
\(905\) 3.60391 + 6.24216i 0.119798 + 0.207496i
\(906\) −8.68895 + 15.0497i −0.288671 + 0.499993i
\(907\) −22.7344 + 39.3771i −0.754883 + 1.30750i 0.190549 + 0.981678i \(0.438973\pi\)
−0.945432 + 0.325818i \(0.894360\pi\)
\(908\) 4.53512 + 7.85505i 0.150503 + 0.260679i
\(909\) −3.58039 −0.118754
\(910\) −11.9578 8.72036i −0.396396 0.289077i
\(911\) −14.8633 −0.492443 −0.246221 0.969214i \(-0.579189\pi\)
−0.246221 + 0.969214i \(0.579189\pi\)
\(912\) −34.3892 59.5638i −1.13874 1.97236i
\(913\) 7.40641 12.8283i 0.245116 0.424554i
\(914\) 9.52178 16.4922i 0.314953 0.545514i
\(915\) −4.93014 8.53924i −0.162985 0.282299i
\(916\) −7.35885 −0.243143
\(917\) −16.0835 + 7.12661i −0.531125 + 0.235341i
\(918\) −7.20674 −0.237858
\(919\) 20.5758 + 35.6384i 0.678734 + 1.17560i 0.975362 + 0.220609i \(0.0708045\pi\)
−0.296628 + 0.954993i \(0.595862\pi\)
\(920\) −4.14338 + 7.17654i −0.136603 + 0.236604i
\(921\) −1.47806 + 2.56007i −0.0487036 + 0.0843572i
\(922\) 28.0385 + 48.5641i 0.923399 + 1.59937i
\(923\) −34.1233 −1.12318
\(924\) −1.02508 + 9.58893i −0.0337227 + 0.315453i
\(925\) 1.00000 0.0328798
\(926\) 2.65556 + 4.59957i 0.0872671 + 0.151151i
\(927\) −18.1145 + 31.3752i −0.594957 + 1.03050i
\(928\) 5.22174 9.04432i 0.171412 0.296894i
\(929\) 1.05095 + 1.82030i 0.0344805 + 0.0597219i 0.882751 0.469842i \(-0.155689\pi\)
−0.848270 + 0.529564i \(0.822356\pi\)
\(930\) −13.3932 −0.439182
\(931\) −13.6475 42.5167i −0.447280 1.39343i
\(932\) −8.83076 −0.289261
\(933\) −10.3371 17.9044i −0.338423 0.586165i
\(934\) −16.1753 + 28.0164i −0.529272 + 0.916725i
\(935\) 2.91447 5.04801i 0.0953134 0.165088i
\(936\) 8.06426 + 13.9677i 0.263589 + 0.456549i
\(937\) −26.0598 −0.851335 −0.425668 0.904880i \(-0.639961\pi\)
−0.425668 + 0.904880i \(0.639961\pi\)
\(938\) −0.174379 + 1.63120i −0.00569369 + 0.0532606i
\(939\) 13.5282 0.441477
\(940\) −1.33351 2.30970i −0.0434942 0.0753342i
\(941\) −1.53495 + 2.65861i −0.0500380 + 0.0866683i −0.889960 0.456040i \(-0.849268\pi\)
0.839922 + 0.542708i \(0.182601\pi\)
\(942\) 6.03220 10.4481i 0.196540 0.340416i
\(943\) 8.94339 + 15.4904i 0.291237 + 0.504437i
\(944\) −40.6233 −1.32218
\(945\) −5.33447 + 2.36370i −0.173530 + 0.0768912i
\(946\) 0.884016 0.0287418
\(947\) −24.3389 42.1562i −0.790908 1.36989i −0.925405 0.378979i \(-0.876275\pi\)
0.134497 0.990914i \(-0.457058\pi\)
\(948\) 7.59953 13.1628i 0.246821 0.427507i
\(949\) 14.0662 24.3634i 0.456610 0.790871i
\(950\) −5.11248 8.85508i −0.165871 0.287297i
\(951\) −68.7911 −2.23070
\(952\) 9.99475 + 7.28880i 0.323932 + 0.236231i
\(953\) 2.61312 0.0846472 0.0423236 0.999104i \(-0.486524\pi\)
0.0423236 + 0.999104i \(0.486524\pi\)
\(954\) −22.3121 38.6457i −0.722380 1.25120i
\(955\) −6.65915 + 11.5340i −0.215485 + 0.373231i
\(956\) 5.82005 10.0806i 0.188234 0.326031i
\(957\) 10.6802 + 18.4986i 0.345241 + 0.597974i
\(958\) 20.2842 0.655353
\(959\) 25.5999 + 18.6690i 0.826663 + 0.602855i
\(960\) 10.3265 0.333288
\(961\) 8.53954 + 14.7909i 0.275469 + 0.477126i
\(962\) −2.79689 + 4.84436i −0.0901754 + 0.156188i
\(963\) 17.7083 30.6717i 0.570643 0.988382i
\(964\) 3.71574 + 6.43584i 0.119676 + 0.207285i
\(965\) −2.35578 −0.0758353
\(966\) −31.3758 + 13.9026i −1.00950 + 0.447310i
\(967\) −30.5434 −0.982208 −0.491104 0.871101i \(-0.663407\pi\)
−0.491104 + 0.871101i \(0.663407\pi\)
\(968\) 3.24013 + 5.61206i 0.104142 + 0.180379i
\(969\) −14.5626 + 25.2231i −0.467817 + 0.810284i
\(970\) −3.94885 + 6.83961i −0.126790 + 0.219607i
\(971\) 18.3673 + 31.8131i 0.589434 + 1.02093i 0.994307 + 0.106557i \(0.0339826\pi\)
−0.404872 + 0.914373i \(0.632684\pi\)
\(972\) −10.2375 −0.328369
\(973\) 1.61173 15.0766i 0.0516696 0.483334i
\(974\) 48.3118 1.54801
\(975\) 3.90767 + 6.76828i 0.125146 + 0.216758i
\(976\) 10.5989 18.3578i 0.339262 0.587620i
\(977\) −2.76264 + 4.78503i −0.0883847 + 0.153087i −0.906828 0.421500i \(-0.861504\pi\)
0.818444 + 0.574587i \(0.194837\pi\)
\(978\) −38.7990 67.2019i −1.24066 2.14888i
\(979\) −43.7585 −1.39853
\(980\) −3.89483 0.842361i −0.124416 0.0269082i
\(981\) 2.39196 0.0763693
\(982\) 25.2051 + 43.6564i 0.804326 + 1.39313i
\(983\) −24.5433 + 42.5103i −0.782810 + 1.35587i 0.147488 + 0.989064i \(0.452881\pi\)
−0.930299 + 0.366803i \(0.880452\pi\)
\(984\) 12.7113 22.0166i 0.405221 0.701864i
\(985\) 3.11935 + 5.40287i 0.0993907 + 0.172150i
\(986\) −10.9020 −0.347190
\(987\) −2.95069 + 27.6017i −0.0939216 + 0.878573i
\(988\) 12.6729 0.403178
\(989\) 0.348516 + 0.603647i 0.0110822 + 0.0191949i
\(990\) 4.61775 7.99817i 0.146762 0.254199i
\(991\) 22.1924 38.4383i 0.704963 1.22103i −0.261741 0.965138i \(-0.584297\pi\)
0.966705 0.255895i \(-0.0823700\pi\)
\(992\) −5.84000 10.1152i −0.185420 0.321157i
\(993\) 51.4173 1.63168
\(994\) −37.9120 + 16.7988i −1.20250 + 0.532825i
\(995\) −0.842027 −0.0266940
\(996\) 3.30253 + 5.72015i 0.104645 + 0.181250i
\(997\) −11.0676 + 19.1696i −0.350514 + 0.607108i −0.986340 0.164724i \(-0.947327\pi\)
0.635825 + 0.771833i \(0.280660\pi\)
\(998\) −30.5010 + 52.8294i −0.965494 + 1.67228i
\(999\) 1.10265 + 1.90985i 0.0348864 + 0.0604250i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.14 38
7.2 even 3 inner 1295.2.j.a.926.14 yes 38
7.3 odd 6 9065.2.a.s.1.6 19
7.4 even 3 9065.2.a.r.1.6 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.14 38 1.1 even 1 trivial
1295.2.j.a.926.14 yes 38 7.2 even 3 inner
9065.2.a.r.1.6 19 7.4 even 3
9065.2.a.s.1.6 19 7.3 odd 6