Properties

Label 9065.2.a.o.1.13
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-1,1,23,15,-6,0,-3,30,-1,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 26 x^{13} + 24 x^{12} + 266 x^{11} - 222 x^{10} - 1368 x^{9} + 998 x^{8} + 3770 x^{7} + \cdots - 158 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-2.37325\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37325 q^{2} -3.18420 q^{3} +3.63232 q^{4} +1.00000 q^{5} -7.55690 q^{6} +3.87391 q^{8} +7.13912 q^{9} +2.37325 q^{10} +3.49997 q^{11} -11.5660 q^{12} +6.91394 q^{13} -3.18420 q^{15} +1.92912 q^{16} +1.52255 q^{17} +16.9429 q^{18} +6.63261 q^{19} +3.63232 q^{20} +8.30631 q^{22} +8.57518 q^{23} -12.3353 q^{24} +1.00000 q^{25} +16.4085 q^{26} -13.1798 q^{27} +0.503093 q^{29} -7.55690 q^{30} +4.42021 q^{31} -3.16953 q^{32} -11.1446 q^{33} +3.61340 q^{34} +25.9316 q^{36} +1.00000 q^{37} +15.7409 q^{38} -22.0154 q^{39} +3.87391 q^{40} -5.21974 q^{41} -6.10336 q^{43} +12.7130 q^{44} +7.13912 q^{45} +20.3511 q^{46} -0.975847 q^{47} -6.14270 q^{48} +2.37325 q^{50} -4.84811 q^{51} +25.1137 q^{52} -10.9329 q^{53} -31.2789 q^{54} +3.49997 q^{55} -21.1196 q^{57} +1.19397 q^{58} -6.64903 q^{59} -11.5660 q^{60} +5.63846 q^{61} +10.4903 q^{62} -11.3803 q^{64} +6.91394 q^{65} -26.4489 q^{66} +12.7317 q^{67} +5.53040 q^{68} -27.3051 q^{69} +4.14221 q^{71} +27.6563 q^{72} +12.1214 q^{73} +2.37325 q^{74} -3.18420 q^{75} +24.0918 q^{76} -52.2480 q^{78} -1.02367 q^{79} +1.92912 q^{80} +20.5497 q^{81} -12.3877 q^{82} -14.4374 q^{83} +1.52255 q^{85} -14.4848 q^{86} -1.60195 q^{87} +13.5586 q^{88} -7.52820 q^{89} +16.9429 q^{90} +31.1478 q^{92} -14.0748 q^{93} -2.31593 q^{94} +6.63261 q^{95} +10.0924 q^{96} -12.9860 q^{97} +24.9867 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - q^{2} + q^{3} + 23 q^{4} + 15 q^{5} - 6 q^{6} - 3 q^{8} + 30 q^{9} - q^{10} + 17 q^{11} - 8 q^{12} + 5 q^{13} + q^{15} + 39 q^{16} + 7 q^{17} + 12 q^{18} - 6 q^{19} + 23 q^{20} + 18 q^{22} - 2 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37325 1.67814 0.839071 0.544022i \(-0.183099\pi\)
0.839071 + 0.544022i \(0.183099\pi\)
\(3\) −3.18420 −1.83840 −0.919199 0.393794i \(-0.871162\pi\)
−0.919199 + 0.393794i \(0.871162\pi\)
\(4\) 3.63232 1.81616
\(5\) 1.00000 0.447214
\(6\) −7.55690 −3.08509
\(7\) 0 0
\(8\) 3.87391 1.36963
\(9\) 7.13912 2.37971
\(10\) 2.37325 0.750488
\(11\) 3.49997 1.05528 0.527640 0.849468i \(-0.323077\pi\)
0.527640 + 0.849468i \(0.323077\pi\)
\(12\) −11.5660 −3.33883
\(13\) 6.91394 1.91758 0.958791 0.284111i \(-0.0916984\pi\)
0.958791 + 0.284111i \(0.0916984\pi\)
\(14\) 0 0
\(15\) −3.18420 −0.822156
\(16\) 1.92912 0.482280
\(17\) 1.52255 0.369273 0.184636 0.982807i \(-0.440889\pi\)
0.184636 + 0.982807i \(0.440889\pi\)
\(18\) 16.9429 3.99349
\(19\) 6.63261 1.52163 0.760813 0.648971i \(-0.224801\pi\)
0.760813 + 0.648971i \(0.224801\pi\)
\(20\) 3.63232 0.812212
\(21\) 0 0
\(22\) 8.30631 1.77091
\(23\) 8.57518 1.78805 0.894025 0.448018i \(-0.147870\pi\)
0.894025 + 0.448018i \(0.147870\pi\)
\(24\) −12.3353 −2.51793
\(25\) 1.00000 0.200000
\(26\) 16.4085 3.21798
\(27\) −13.1798 −2.53645
\(28\) 0 0
\(29\) 0.503093 0.0934220 0.0467110 0.998908i \(-0.485126\pi\)
0.0467110 + 0.998908i \(0.485126\pi\)
\(30\) −7.55690 −1.37970
\(31\) 4.42021 0.793892 0.396946 0.917842i \(-0.370070\pi\)
0.396946 + 0.917842i \(0.370070\pi\)
\(32\) −3.16953 −0.560300
\(33\) −11.1446 −1.94002
\(34\) 3.61340 0.619692
\(35\) 0 0
\(36\) 25.9316 4.32193
\(37\) 1.00000 0.164399
\(38\) 15.7409 2.55350
\(39\) −22.0154 −3.52528
\(40\) 3.87391 0.612519
\(41\) −5.21974 −0.815186 −0.407593 0.913164i \(-0.633632\pi\)
−0.407593 + 0.913164i \(0.633632\pi\)
\(42\) 0 0
\(43\) −6.10336 −0.930753 −0.465377 0.885113i \(-0.654081\pi\)
−0.465377 + 0.885113i \(0.654081\pi\)
\(44\) 12.7130 1.91656
\(45\) 7.13912 1.06424
\(46\) 20.3511 3.00060
\(47\) −0.975847 −0.142342 −0.0711709 0.997464i \(-0.522674\pi\)
−0.0711709 + 0.997464i \(0.522674\pi\)
\(48\) −6.14270 −0.886622
\(49\) 0 0
\(50\) 2.37325 0.335628
\(51\) −4.84811 −0.678871
\(52\) 25.1137 3.48264
\(53\) −10.9329 −1.50175 −0.750877 0.660442i \(-0.770369\pi\)
−0.750877 + 0.660442i \(0.770369\pi\)
\(54\) −31.2789 −4.25652
\(55\) 3.49997 0.471936
\(56\) 0 0
\(57\) −21.1196 −2.79735
\(58\) 1.19397 0.156775
\(59\) −6.64903 −0.865630 −0.432815 0.901483i \(-0.642480\pi\)
−0.432815 + 0.901483i \(0.642480\pi\)
\(60\) −11.5660 −1.49317
\(61\) 5.63846 0.721931 0.360966 0.932579i \(-0.382447\pi\)
0.360966 + 0.932579i \(0.382447\pi\)
\(62\) 10.4903 1.33226
\(63\) 0 0
\(64\) −11.3803 −1.42254
\(65\) 6.91394 0.857569
\(66\) −26.4489 −3.25564
\(67\) 12.7317 1.55542 0.777710 0.628623i \(-0.216381\pi\)
0.777710 + 0.628623i \(0.216381\pi\)
\(68\) 5.53040 0.670659
\(69\) −27.3051 −3.28715
\(70\) 0 0
\(71\) 4.14221 0.491589 0.245795 0.969322i \(-0.420951\pi\)
0.245795 + 0.969322i \(0.420951\pi\)
\(72\) 27.6563 3.25933
\(73\) 12.1214 1.41870 0.709349 0.704858i \(-0.248989\pi\)
0.709349 + 0.704858i \(0.248989\pi\)
\(74\) 2.37325 0.275885
\(75\) −3.18420 −0.367680
\(76\) 24.0918 2.76352
\(77\) 0 0
\(78\) −52.2480 −5.91592
\(79\) −1.02367 −0.115172 −0.0575861 0.998341i \(-0.518340\pi\)
−0.0575861 + 0.998341i \(0.518340\pi\)
\(80\) 1.92912 0.215682
\(81\) 20.5497 2.28330
\(82\) −12.3877 −1.36800
\(83\) −14.4374 −1.58471 −0.792354 0.610062i \(-0.791145\pi\)
−0.792354 + 0.610062i \(0.791145\pi\)
\(84\) 0 0
\(85\) 1.52255 0.165144
\(86\) −14.4848 −1.56194
\(87\) −1.60195 −0.171747
\(88\) 13.5586 1.44535
\(89\) −7.52820 −0.797988 −0.398994 0.916954i \(-0.630641\pi\)
−0.398994 + 0.916954i \(0.630641\pi\)
\(90\) 16.9429 1.78594
\(91\) 0 0
\(92\) 31.1478 3.24739
\(93\) −14.0748 −1.45949
\(94\) −2.31593 −0.238870
\(95\) 6.63261 0.680492
\(96\) 10.0924 1.03005
\(97\) −12.9860 −1.31853 −0.659265 0.751911i \(-0.729132\pi\)
−0.659265 + 0.751911i \(0.729132\pi\)
\(98\) 0 0
\(99\) 24.9867 2.51126
\(100\) 3.63232 0.363232
\(101\) −11.7610 −1.17027 −0.585134 0.810937i \(-0.698958\pi\)
−0.585134 + 0.810937i \(0.698958\pi\)
\(102\) −11.5058 −1.13924
\(103\) 7.05670 0.695317 0.347659 0.937621i \(-0.386977\pi\)
0.347659 + 0.937621i \(0.386977\pi\)
\(104\) 26.7840 2.62639
\(105\) 0 0
\(106\) −25.9466 −2.52016
\(107\) −6.38327 −0.617094 −0.308547 0.951209i \(-0.599843\pi\)
−0.308547 + 0.951209i \(0.599843\pi\)
\(108\) −47.8732 −4.60660
\(109\) −15.2987 −1.46535 −0.732676 0.680578i \(-0.761729\pi\)
−0.732676 + 0.680578i \(0.761729\pi\)
\(110\) 8.30631 0.791975
\(111\) −3.18420 −0.302231
\(112\) 0 0
\(113\) 1.86234 0.175194 0.0875972 0.996156i \(-0.472081\pi\)
0.0875972 + 0.996156i \(0.472081\pi\)
\(114\) −50.1220 −4.69436
\(115\) 8.57518 0.799640
\(116\) 1.82739 0.169669
\(117\) 49.3595 4.56328
\(118\) −15.7798 −1.45265
\(119\) 0 0
\(120\) −12.3353 −1.12605
\(121\) 1.24978 0.113616
\(122\) 13.3815 1.21150
\(123\) 16.6207 1.49864
\(124\) 16.0556 1.44184
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.03777 0.0920873 0.0460436 0.998939i \(-0.485339\pi\)
0.0460436 + 0.998939i \(0.485339\pi\)
\(128\) −20.6693 −1.82693
\(129\) 19.4343 1.71109
\(130\) 16.4085 1.43912
\(131\) −9.18844 −0.802798 −0.401399 0.915903i \(-0.631476\pi\)
−0.401399 + 0.915903i \(0.631476\pi\)
\(132\) −40.4808 −3.52340
\(133\) 0 0
\(134\) 30.2155 2.61022
\(135\) −13.1798 −1.13433
\(136\) 5.89823 0.505769
\(137\) −11.1697 −0.954288 −0.477144 0.878825i \(-0.658328\pi\)
−0.477144 + 0.878825i \(0.658328\pi\)
\(138\) −64.8018 −5.51630
\(139\) 14.1571 1.20079 0.600395 0.799704i \(-0.295010\pi\)
0.600395 + 0.799704i \(0.295010\pi\)
\(140\) 0 0
\(141\) 3.10729 0.261681
\(142\) 9.83050 0.824957
\(143\) 24.1986 2.02359
\(144\) 13.7722 1.14768
\(145\) 0.503093 0.0417796
\(146\) 28.7670 2.38078
\(147\) 0 0
\(148\) 3.63232 0.298575
\(149\) 1.17907 0.0965931 0.0482966 0.998833i \(-0.484621\pi\)
0.0482966 + 0.998833i \(0.484621\pi\)
\(150\) −7.55690 −0.617019
\(151\) 21.4683 1.74707 0.873533 0.486765i \(-0.161823\pi\)
0.873533 + 0.486765i \(0.161823\pi\)
\(152\) 25.6942 2.08407
\(153\) 10.8697 0.878761
\(154\) 0 0
\(155\) 4.42021 0.355039
\(156\) −79.9669 −6.40248
\(157\) 11.4933 0.917264 0.458632 0.888626i \(-0.348340\pi\)
0.458632 + 0.888626i \(0.348340\pi\)
\(158\) −2.42943 −0.193275
\(159\) 34.8126 2.76082
\(160\) −3.16953 −0.250574
\(161\) 0 0
\(162\) 48.7695 3.83169
\(163\) −14.4986 −1.13562 −0.567808 0.823161i \(-0.692208\pi\)
−0.567808 + 0.823161i \(0.692208\pi\)
\(164\) −18.9598 −1.48051
\(165\) −11.1446 −0.867605
\(166\) −34.2635 −2.65936
\(167\) −17.4815 −1.35276 −0.676378 0.736554i \(-0.736452\pi\)
−0.676378 + 0.736554i \(0.736452\pi\)
\(168\) 0 0
\(169\) 34.8026 2.67712
\(170\) 3.61340 0.277135
\(171\) 47.3510 3.62102
\(172\) −22.1694 −1.69040
\(173\) −18.6424 −1.41736 −0.708679 0.705531i \(-0.750708\pi\)
−0.708679 + 0.705531i \(0.750708\pi\)
\(174\) −3.80182 −0.288215
\(175\) 0 0
\(176\) 6.75186 0.508941
\(177\) 21.1718 1.59137
\(178\) −17.8663 −1.33914
\(179\) 11.8371 0.884744 0.442372 0.896832i \(-0.354137\pi\)
0.442372 + 0.896832i \(0.354137\pi\)
\(180\) 25.9316 1.93283
\(181\) 1.23510 0.0918042 0.0459021 0.998946i \(-0.485384\pi\)
0.0459021 + 0.998946i \(0.485384\pi\)
\(182\) 0 0
\(183\) −17.9540 −1.32720
\(184\) 33.2195 2.44897
\(185\) 1.00000 0.0735215
\(186\) −33.4031 −2.44923
\(187\) 5.32888 0.389686
\(188\) −3.54459 −0.258516
\(189\) 0 0
\(190\) 15.7409 1.14196
\(191\) 9.42006 0.681611 0.340806 0.940134i \(-0.389300\pi\)
0.340806 + 0.940134i \(0.389300\pi\)
\(192\) 36.2373 2.61520
\(193\) 6.27210 0.451476 0.225738 0.974188i \(-0.427521\pi\)
0.225738 + 0.974188i \(0.427521\pi\)
\(194\) −30.8191 −2.21268
\(195\) −22.0154 −1.57655
\(196\) 0 0
\(197\) −9.11416 −0.649357 −0.324679 0.945824i \(-0.605256\pi\)
−0.324679 + 0.945824i \(0.605256\pi\)
\(198\) 59.2997 4.21425
\(199\) 9.94184 0.704758 0.352379 0.935857i \(-0.385373\pi\)
0.352379 + 0.935857i \(0.385373\pi\)
\(200\) 3.87391 0.273927
\(201\) −40.5402 −2.85948
\(202\) −27.9119 −1.96388
\(203\) 0 0
\(204\) −17.6099 −1.23294
\(205\) −5.21974 −0.364562
\(206\) 16.7473 1.16684
\(207\) 61.2193 4.25503
\(208\) 13.3378 0.924812
\(209\) 23.2139 1.60574
\(210\) 0 0
\(211\) 7.93915 0.546554 0.273277 0.961935i \(-0.411892\pi\)
0.273277 + 0.961935i \(0.411892\pi\)
\(212\) −39.7120 −2.72743
\(213\) −13.1896 −0.903737
\(214\) −15.1491 −1.03557
\(215\) −6.10336 −0.416245
\(216\) −51.0573 −3.47401
\(217\) 0 0
\(218\) −36.3077 −2.45907
\(219\) −38.5968 −2.60813
\(220\) 12.7130 0.857111
\(221\) 10.5268 0.708111
\(222\) −7.55690 −0.507186
\(223\) −5.70280 −0.381888 −0.190944 0.981601i \(-0.561155\pi\)
−0.190944 + 0.981601i \(0.561155\pi\)
\(224\) 0 0
\(225\) 7.13912 0.475941
\(226\) 4.41981 0.294001
\(227\) 1.47436 0.0978565 0.0489283 0.998802i \(-0.484419\pi\)
0.0489283 + 0.998802i \(0.484419\pi\)
\(228\) −76.7130 −5.08044
\(229\) 5.80227 0.383425 0.191713 0.981451i \(-0.438596\pi\)
0.191713 + 0.981451i \(0.438596\pi\)
\(230\) 20.3511 1.34191
\(231\) 0 0
\(232\) 1.94894 0.127954
\(233\) −19.3814 −1.26972 −0.634860 0.772627i \(-0.718942\pi\)
−0.634860 + 0.772627i \(0.718942\pi\)
\(234\) 117.142 7.65784
\(235\) −0.975847 −0.0636572
\(236\) −24.1514 −1.57212
\(237\) 3.25958 0.211732
\(238\) 0 0
\(239\) −4.83338 −0.312645 −0.156323 0.987706i \(-0.549964\pi\)
−0.156323 + 0.987706i \(0.549964\pi\)
\(240\) −6.14270 −0.396510
\(241\) −10.6196 −0.684071 −0.342036 0.939687i \(-0.611116\pi\)
−0.342036 + 0.939687i \(0.611116\pi\)
\(242\) 2.96604 0.190664
\(243\) −25.8949 −1.66116
\(244\) 20.4807 1.31114
\(245\) 0 0
\(246\) 39.4450 2.51492
\(247\) 45.8575 2.91784
\(248\) 17.1235 1.08734
\(249\) 45.9715 2.91332
\(250\) 2.37325 0.150098
\(251\) −0.370128 −0.0233623 −0.0116812 0.999932i \(-0.503718\pi\)
−0.0116812 + 0.999932i \(0.503718\pi\)
\(252\) 0 0
\(253\) 30.0129 1.88689
\(254\) 2.46289 0.154536
\(255\) −4.84811 −0.303600
\(256\) −26.2929 −1.64330
\(257\) 9.98570 0.622891 0.311446 0.950264i \(-0.399187\pi\)
0.311446 + 0.950264i \(0.399187\pi\)
\(258\) 46.1225 2.87146
\(259\) 0 0
\(260\) 25.1137 1.55748
\(261\) 3.59164 0.222317
\(262\) −21.8065 −1.34721
\(263\) −12.7295 −0.784934 −0.392467 0.919766i \(-0.628378\pi\)
−0.392467 + 0.919766i \(0.628378\pi\)
\(264\) −43.1732 −2.65712
\(265\) −10.9329 −0.671605
\(266\) 0 0
\(267\) 23.9713 1.46702
\(268\) 46.2455 2.82489
\(269\) 27.2708 1.66273 0.831364 0.555729i \(-0.187561\pi\)
0.831364 + 0.555729i \(0.187561\pi\)
\(270\) −31.2789 −1.90357
\(271\) −13.9946 −0.850113 −0.425056 0.905167i \(-0.639746\pi\)
−0.425056 + 0.905167i \(0.639746\pi\)
\(272\) 2.93718 0.178093
\(273\) 0 0
\(274\) −26.5084 −1.60143
\(275\) 3.49997 0.211056
\(276\) −99.1809 −5.96999
\(277\) −18.5423 −1.11410 −0.557050 0.830479i \(-0.688067\pi\)
−0.557050 + 0.830479i \(0.688067\pi\)
\(278\) 33.5984 2.01510
\(279\) 31.5564 1.88923
\(280\) 0 0
\(281\) 6.01847 0.359032 0.179516 0.983755i \(-0.442547\pi\)
0.179516 + 0.983755i \(0.442547\pi\)
\(282\) 7.37438 0.439138
\(283\) −4.14590 −0.246448 −0.123224 0.992379i \(-0.539323\pi\)
−0.123224 + 0.992379i \(0.539323\pi\)
\(284\) 15.0458 0.892806
\(285\) −21.1196 −1.25101
\(286\) 57.4293 3.39587
\(287\) 0 0
\(288\) −22.6277 −1.33335
\(289\) −14.6818 −0.863637
\(290\) 1.19397 0.0701121
\(291\) 41.3500 2.42398
\(292\) 44.0287 2.57658
\(293\) 17.1686 1.00300 0.501499 0.865158i \(-0.332782\pi\)
0.501499 + 0.865158i \(0.332782\pi\)
\(294\) 0 0
\(295\) −6.64903 −0.387122
\(296\) 3.87391 0.225166
\(297\) −46.1288 −2.67666
\(298\) 2.79823 0.162097
\(299\) 59.2883 3.42873
\(300\) −11.5660 −0.667765
\(301\) 0 0
\(302\) 50.9497 2.93182
\(303\) 37.4495 2.15142
\(304\) 12.7951 0.733850
\(305\) 5.63846 0.322857
\(306\) 25.7965 1.47469
\(307\) −4.55808 −0.260143 −0.130072 0.991505i \(-0.541521\pi\)
−0.130072 + 0.991505i \(0.541521\pi\)
\(308\) 0 0
\(309\) −22.4699 −1.27827
\(310\) 10.4903 0.595807
\(311\) −30.9809 −1.75676 −0.878382 0.477959i \(-0.841377\pi\)
−0.878382 + 0.477959i \(0.841377\pi\)
\(312\) −85.2856 −4.82834
\(313\) −25.3720 −1.43411 −0.717055 0.697017i \(-0.754510\pi\)
−0.717055 + 0.697017i \(0.754510\pi\)
\(314\) 27.2765 1.53930
\(315\) 0 0
\(316\) −3.71831 −0.209171
\(317\) 17.9251 1.00677 0.503386 0.864062i \(-0.332087\pi\)
0.503386 + 0.864062i \(0.332087\pi\)
\(318\) 82.6192 4.63305
\(319\) 1.76081 0.0985864
\(320\) −11.3803 −0.636181
\(321\) 20.3256 1.13446
\(322\) 0 0
\(323\) 10.0985 0.561895
\(324\) 74.6430 4.14683
\(325\) 6.91394 0.383517
\(326\) −34.4088 −1.90573
\(327\) 48.7141 2.69390
\(328\) −20.2208 −1.11651
\(329\) 0 0
\(330\) −26.4489 −1.45597
\(331\) 15.3376 0.843032 0.421516 0.906821i \(-0.361498\pi\)
0.421516 + 0.906821i \(0.361498\pi\)
\(332\) −52.4412 −2.87808
\(333\) 7.13912 0.391221
\(334\) −41.4879 −2.27012
\(335\) 12.7317 0.695605
\(336\) 0 0
\(337\) −13.9485 −0.759821 −0.379910 0.925023i \(-0.624045\pi\)
−0.379910 + 0.925023i \(0.624045\pi\)
\(338\) 82.5953 4.49259
\(339\) −5.93007 −0.322077
\(340\) 5.53040 0.299928
\(341\) 15.4706 0.837779
\(342\) 112.376 6.07659
\(343\) 0 0
\(344\) −23.6439 −1.27479
\(345\) −27.3051 −1.47006
\(346\) −44.2432 −2.37853
\(347\) 12.6597 0.679609 0.339805 0.940496i \(-0.389639\pi\)
0.339805 + 0.940496i \(0.389639\pi\)
\(348\) −5.81879 −0.311920
\(349\) −5.86107 −0.313736 −0.156868 0.987620i \(-0.550140\pi\)
−0.156868 + 0.987620i \(0.550140\pi\)
\(350\) 0 0
\(351\) −91.1242 −4.86385
\(352\) −11.0933 −0.591273
\(353\) −16.1780 −0.861067 −0.430533 0.902575i \(-0.641674\pi\)
−0.430533 + 0.902575i \(0.641674\pi\)
\(354\) 50.2461 2.67055
\(355\) 4.14221 0.219845
\(356\) −27.3448 −1.44927
\(357\) 0 0
\(358\) 28.0923 1.48473
\(359\) 22.7126 1.19873 0.599363 0.800478i \(-0.295421\pi\)
0.599363 + 0.800478i \(0.295421\pi\)
\(360\) 27.6563 1.45762
\(361\) 24.9916 1.31534
\(362\) 2.93120 0.154061
\(363\) −3.97955 −0.208872
\(364\) 0 0
\(365\) 12.1214 0.634461
\(366\) −42.6093 −2.22722
\(367\) 9.08738 0.474357 0.237179 0.971466i \(-0.423777\pi\)
0.237179 + 0.971466i \(0.423777\pi\)
\(368\) 16.5426 0.862340
\(369\) −37.2643 −1.93990
\(370\) 2.37325 0.123379
\(371\) 0 0
\(372\) −51.1243 −2.65067
\(373\) −8.98414 −0.465181 −0.232591 0.972575i \(-0.574720\pi\)
−0.232591 + 0.972575i \(0.574720\pi\)
\(374\) 12.6468 0.653949
\(375\) −3.18420 −0.164431
\(376\) −3.78034 −0.194956
\(377\) 3.47835 0.179144
\(378\) 0 0
\(379\) 1.50404 0.0772576 0.0386288 0.999254i \(-0.487701\pi\)
0.0386288 + 0.999254i \(0.487701\pi\)
\(380\) 24.0918 1.23588
\(381\) −3.30447 −0.169293
\(382\) 22.3562 1.14384
\(383\) 6.47324 0.330767 0.165384 0.986229i \(-0.447114\pi\)
0.165384 + 0.986229i \(0.447114\pi\)
\(384\) 65.8153 3.35862
\(385\) 0 0
\(386\) 14.8853 0.757640
\(387\) −43.5726 −2.21492
\(388\) −47.1694 −2.39466
\(389\) −33.5422 −1.70066 −0.850328 0.526253i \(-0.823597\pi\)
−0.850328 + 0.526253i \(0.823597\pi\)
\(390\) −52.2480 −2.64568
\(391\) 13.0562 0.660278
\(392\) 0 0
\(393\) 29.2578 1.47586
\(394\) −21.6302 −1.08971
\(395\) −1.02367 −0.0515066
\(396\) 90.7597 4.56085
\(397\) −7.68199 −0.385548 −0.192774 0.981243i \(-0.561748\pi\)
−0.192774 + 0.981243i \(0.561748\pi\)
\(398\) 23.5945 1.18268
\(399\) 0 0
\(400\) 1.92912 0.0964560
\(401\) −2.91491 −0.145564 −0.0727818 0.997348i \(-0.523188\pi\)
−0.0727818 + 0.997348i \(0.523188\pi\)
\(402\) −96.2120 −4.79862
\(403\) 30.5611 1.52235
\(404\) −42.7199 −2.12540
\(405\) 20.5497 1.02112
\(406\) 0 0
\(407\) 3.49997 0.173487
\(408\) −18.7811 −0.929804
\(409\) 24.4302 1.20800 0.603999 0.796985i \(-0.293573\pi\)
0.603999 + 0.796985i \(0.293573\pi\)
\(410\) −12.3877 −0.611787
\(411\) 35.5664 1.75436
\(412\) 25.6322 1.26281
\(413\) 0 0
\(414\) 145.289 7.14055
\(415\) −14.4374 −0.708703
\(416\) −21.9140 −1.07442
\(417\) −45.0790 −2.20753
\(418\) 55.0925 2.69466
\(419\) −13.9295 −0.680501 −0.340250 0.940335i \(-0.610512\pi\)
−0.340250 + 0.940335i \(0.610512\pi\)
\(420\) 0 0
\(421\) −11.3830 −0.554772 −0.277386 0.960759i \(-0.589468\pi\)
−0.277386 + 0.960759i \(0.589468\pi\)
\(422\) 18.8416 0.917195
\(423\) −6.96669 −0.338732
\(424\) −42.3532 −2.05685
\(425\) 1.52255 0.0738546
\(426\) −31.3022 −1.51660
\(427\) 0 0
\(428\) −23.1861 −1.12074
\(429\) −77.0531 −3.72016
\(430\) −14.4848 −0.698519
\(431\) −3.97735 −0.191582 −0.0957911 0.995401i \(-0.530538\pi\)
−0.0957911 + 0.995401i \(0.530538\pi\)
\(432\) −25.4254 −1.22328
\(433\) −9.41302 −0.452361 −0.226181 0.974085i \(-0.572624\pi\)
−0.226181 + 0.974085i \(0.572624\pi\)
\(434\) 0 0
\(435\) −1.60195 −0.0768075
\(436\) −55.5699 −2.66131
\(437\) 56.8759 2.72074
\(438\) −91.5999 −4.37681
\(439\) 4.22300 0.201553 0.100776 0.994909i \(-0.467867\pi\)
0.100776 + 0.994909i \(0.467867\pi\)
\(440\) 13.5586 0.646379
\(441\) 0 0
\(442\) 24.9828 1.18831
\(443\) −18.0837 −0.859185 −0.429592 0.903023i \(-0.641343\pi\)
−0.429592 + 0.903023i \(0.641343\pi\)
\(444\) −11.5660 −0.548900
\(445\) −7.52820 −0.356871
\(446\) −13.5342 −0.640862
\(447\) −3.75439 −0.177577
\(448\) 0 0
\(449\) −32.6153 −1.53921 −0.769607 0.638518i \(-0.779548\pi\)
−0.769607 + 0.638518i \(0.779548\pi\)
\(450\) 16.9429 0.798697
\(451\) −18.2689 −0.860250
\(452\) 6.76463 0.318181
\(453\) −68.3593 −3.21180
\(454\) 3.49902 0.164217
\(455\) 0 0
\(456\) −81.8153 −3.83135
\(457\) 9.18611 0.429708 0.214854 0.976646i \(-0.431072\pi\)
0.214854 + 0.976646i \(0.431072\pi\)
\(458\) 13.7703 0.643442
\(459\) −20.0669 −0.936642
\(460\) 31.1478 1.45228
\(461\) −6.85424 −0.319234 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(462\) 0 0
\(463\) −21.7528 −1.01094 −0.505470 0.862844i \(-0.668681\pi\)
−0.505470 + 0.862844i \(0.668681\pi\)
\(464\) 0.970526 0.0450555
\(465\) −14.0748 −0.652704
\(466\) −45.9970 −2.13077
\(467\) −1.77003 −0.0819072 −0.0409536 0.999161i \(-0.513040\pi\)
−0.0409536 + 0.999161i \(0.513040\pi\)
\(468\) 179.289 8.28766
\(469\) 0 0
\(470\) −2.31593 −0.106826
\(471\) −36.5969 −1.68630
\(472\) −25.7578 −1.18560
\(473\) −21.3616 −0.982205
\(474\) 7.73580 0.355317
\(475\) 6.63261 0.304325
\(476\) 0 0
\(477\) −78.0516 −3.57374
\(478\) −11.4708 −0.524663
\(479\) −13.6174 −0.622196 −0.311098 0.950378i \(-0.600697\pi\)
−0.311098 + 0.950378i \(0.600697\pi\)
\(480\) 10.0924 0.460654
\(481\) 6.91394 0.315249
\(482\) −25.2031 −1.14797
\(483\) 0 0
\(484\) 4.53960 0.206346
\(485\) −12.9860 −0.589664
\(486\) −61.4550 −2.78766
\(487\) 37.5416 1.70117 0.850585 0.525837i \(-0.176248\pi\)
0.850585 + 0.525837i \(0.176248\pi\)
\(488\) 21.8429 0.988782
\(489\) 46.1663 2.08771
\(490\) 0 0
\(491\) 35.1288 1.58534 0.792669 0.609652i \(-0.208691\pi\)
0.792669 + 0.609652i \(0.208691\pi\)
\(492\) 60.3717 2.72176
\(493\) 0.765984 0.0344982
\(494\) 108.831 4.89656
\(495\) 24.9867 1.12307
\(496\) 8.52711 0.382878
\(497\) 0 0
\(498\) 109.102 4.88897
\(499\) 18.6646 0.835541 0.417770 0.908553i \(-0.362812\pi\)
0.417770 + 0.908553i \(0.362812\pi\)
\(500\) 3.63232 0.162442
\(501\) 55.6645 2.48691
\(502\) −0.878408 −0.0392053
\(503\) −12.9220 −0.576163 −0.288081 0.957606i \(-0.593017\pi\)
−0.288081 + 0.957606i \(0.593017\pi\)
\(504\) 0 0
\(505\) −11.7610 −0.523360
\(506\) 71.2281 3.16647
\(507\) −110.818 −4.92162
\(508\) 3.76952 0.167245
\(509\) −1.26772 −0.0561908 −0.0280954 0.999605i \(-0.508944\pi\)
−0.0280954 + 0.999605i \(0.508944\pi\)
\(510\) −11.5058 −0.509484
\(511\) 0 0
\(512\) −21.0609 −0.930769
\(513\) −87.4163 −3.85953
\(514\) 23.6986 1.04530
\(515\) 7.05670 0.310955
\(516\) 70.5916 3.10762
\(517\) −3.41543 −0.150211
\(518\) 0 0
\(519\) 59.3612 2.60567
\(520\) 26.7840 1.17456
\(521\) −2.89326 −0.126756 −0.0633779 0.997990i \(-0.520187\pi\)
−0.0633779 + 0.997990i \(0.520187\pi\)
\(522\) 8.52386 0.373079
\(523\) 17.7639 0.776762 0.388381 0.921499i \(-0.373035\pi\)
0.388381 + 0.921499i \(0.373035\pi\)
\(524\) −33.3754 −1.45801
\(525\) 0 0
\(526\) −30.2103 −1.31723
\(527\) 6.72999 0.293163
\(528\) −21.4993 −0.935635
\(529\) 50.5338 2.19712
\(530\) −25.9466 −1.12705
\(531\) −47.4682 −2.05995
\(532\) 0 0
\(533\) −36.0890 −1.56319
\(534\) 56.8899 2.46187
\(535\) −6.38327 −0.275973
\(536\) 49.3214 2.13036
\(537\) −37.6916 −1.62651
\(538\) 64.7204 2.79029
\(539\) 0 0
\(540\) −47.8732 −2.06013
\(541\) 3.59778 0.154681 0.0773404 0.997005i \(-0.475357\pi\)
0.0773404 + 0.997005i \(0.475357\pi\)
\(542\) −33.2128 −1.42661
\(543\) −3.93280 −0.168773
\(544\) −4.82578 −0.206904
\(545\) −15.2987 −0.655325
\(546\) 0 0
\(547\) −35.5831 −1.52142 −0.760712 0.649090i \(-0.775150\pi\)
−0.760712 + 0.649090i \(0.775150\pi\)
\(548\) −40.5718 −1.73314
\(549\) 40.2537 1.71798
\(550\) 8.30631 0.354182
\(551\) 3.33682 0.142153
\(552\) −105.777 −4.50219
\(553\) 0 0
\(554\) −44.0056 −1.86962
\(555\) −3.18420 −0.135162
\(556\) 51.4232 2.18083
\(557\) −33.5378 −1.42104 −0.710521 0.703676i \(-0.751540\pi\)
−0.710521 + 0.703676i \(0.751540\pi\)
\(558\) 74.8912 3.17040
\(559\) −42.1983 −1.78480
\(560\) 0 0
\(561\) −16.9682 −0.716399
\(562\) 14.2833 0.602507
\(563\) 18.3460 0.773190 0.386595 0.922250i \(-0.373651\pi\)
0.386595 + 0.922250i \(0.373651\pi\)
\(564\) 11.2867 0.475255
\(565\) 1.86234 0.0783493
\(566\) −9.83926 −0.413575
\(567\) 0 0
\(568\) 16.0465 0.673298
\(569\) −0.941599 −0.0394739 −0.0197369 0.999805i \(-0.506283\pi\)
−0.0197369 + 0.999805i \(0.506283\pi\)
\(570\) −50.1220 −2.09938
\(571\) −25.1787 −1.05370 −0.526848 0.849960i \(-0.676626\pi\)
−0.526848 + 0.849960i \(0.676626\pi\)
\(572\) 87.8971 3.67516
\(573\) −29.9953 −1.25307
\(574\) 0 0
\(575\) 8.57518 0.357610
\(576\) −81.2456 −3.38523
\(577\) −25.0899 −1.04451 −0.522253 0.852791i \(-0.674908\pi\)
−0.522253 + 0.852791i \(0.674908\pi\)
\(578\) −34.8437 −1.44931
\(579\) −19.9716 −0.829992
\(580\) 1.82739 0.0758784
\(581\) 0 0
\(582\) 98.1340 4.06779
\(583\) −38.2649 −1.58477
\(584\) 46.9571 1.94310
\(585\) 49.3595 2.04076
\(586\) 40.7453 1.68317
\(587\) −21.2093 −0.875401 −0.437700 0.899121i \(-0.644207\pi\)
−0.437700 + 0.899121i \(0.644207\pi\)
\(588\) 0 0
\(589\) 29.3175 1.20801
\(590\) −15.7798 −0.649645
\(591\) 29.0213 1.19378
\(592\) 1.92912 0.0792863
\(593\) −15.9503 −0.655001 −0.327501 0.944851i \(-0.606206\pi\)
−0.327501 + 0.944851i \(0.606206\pi\)
\(594\) −109.475 −4.49182
\(595\) 0 0
\(596\) 4.28276 0.175429
\(597\) −31.6568 −1.29563
\(598\) 140.706 5.75390
\(599\) 36.7056 1.49975 0.749876 0.661578i \(-0.230113\pi\)
0.749876 + 0.661578i \(0.230113\pi\)
\(600\) −12.3353 −0.503587
\(601\) 32.9738 1.34503 0.672514 0.740084i \(-0.265214\pi\)
0.672514 + 0.740084i \(0.265214\pi\)
\(602\) 0 0
\(603\) 90.8929 3.70144
\(604\) 77.9798 3.17295
\(605\) 1.24978 0.0508108
\(606\) 88.8771 3.61039
\(607\) −44.2623 −1.79655 −0.898276 0.439432i \(-0.855180\pi\)
−0.898276 + 0.439432i \(0.855180\pi\)
\(608\) −21.0223 −0.852567
\(609\) 0 0
\(610\) 13.3815 0.541801
\(611\) −6.74695 −0.272952
\(612\) 39.4822 1.59597
\(613\) 25.1406 1.01542 0.507710 0.861528i \(-0.330492\pi\)
0.507710 + 0.861528i \(0.330492\pi\)
\(614\) −10.8175 −0.436557
\(615\) 16.6207 0.670210
\(616\) 0 0
\(617\) 11.5779 0.466107 0.233053 0.972464i \(-0.425128\pi\)
0.233053 + 0.972464i \(0.425128\pi\)
\(618\) −53.3268 −2.14512
\(619\) 33.3134 1.33898 0.669490 0.742821i \(-0.266513\pi\)
0.669490 + 0.742821i \(0.266513\pi\)
\(620\) 16.0556 0.644809
\(621\) −113.019 −4.53530
\(622\) −73.5254 −2.94810
\(623\) 0 0
\(624\) −42.4703 −1.70017
\(625\) 1.00000 0.0400000
\(626\) −60.2141 −2.40664
\(627\) −73.9178 −2.95199
\(628\) 41.7473 1.66590
\(629\) 1.52255 0.0607081
\(630\) 0 0
\(631\) −9.59380 −0.381923 −0.190962 0.981597i \(-0.561161\pi\)
−0.190962 + 0.981597i \(0.561161\pi\)
\(632\) −3.96562 −0.157744
\(633\) −25.2798 −1.00478
\(634\) 42.5407 1.68951
\(635\) 1.03777 0.0411827
\(636\) 126.451 5.01410
\(637\) 0 0
\(638\) 4.17884 0.165442
\(639\) 29.5717 1.16984
\(640\) −20.6693 −0.817028
\(641\) −0.0694761 −0.00274414 −0.00137207 0.999999i \(-0.500437\pi\)
−0.00137207 + 0.999999i \(0.500437\pi\)
\(642\) 48.2377 1.90379
\(643\) 41.3636 1.63122 0.815610 0.578602i \(-0.196401\pi\)
0.815610 + 0.578602i \(0.196401\pi\)
\(644\) 0 0
\(645\) 19.4343 0.765225
\(646\) 23.9663 0.942940
\(647\) 32.3134 1.27037 0.635185 0.772360i \(-0.280924\pi\)
0.635185 + 0.772360i \(0.280924\pi\)
\(648\) 79.6076 3.12728
\(649\) −23.2714 −0.913483
\(650\) 16.4085 0.643595
\(651\) 0 0
\(652\) −52.6635 −2.06246
\(653\) −10.0609 −0.393713 −0.196857 0.980432i \(-0.563073\pi\)
−0.196857 + 0.980432i \(0.563073\pi\)
\(654\) 115.611 4.52074
\(655\) −9.18844 −0.359022
\(656\) −10.0695 −0.393148
\(657\) 86.5358 3.37608
\(658\) 0 0
\(659\) 18.1987 0.708921 0.354461 0.935071i \(-0.384665\pi\)
0.354461 + 0.935071i \(0.384665\pi\)
\(660\) −40.4808 −1.57571
\(661\) 2.55287 0.0992950 0.0496475 0.998767i \(-0.484190\pi\)
0.0496475 + 0.998767i \(0.484190\pi\)
\(662\) 36.4000 1.41473
\(663\) −33.5195 −1.30179
\(664\) −55.9291 −2.17047
\(665\) 0 0
\(666\) 16.9429 0.656525
\(667\) 4.31411 0.167043
\(668\) −63.4983 −2.45682
\(669\) 18.1589 0.702062
\(670\) 30.2155 1.16732
\(671\) 19.7344 0.761840
\(672\) 0 0
\(673\) −34.7725 −1.34038 −0.670191 0.742188i \(-0.733788\pi\)
−0.670191 + 0.742188i \(0.733788\pi\)
\(674\) −33.1032 −1.27509
\(675\) −13.1798 −0.507290
\(676\) 126.414 4.86209
\(677\) 43.3732 1.66697 0.833483 0.552545i \(-0.186343\pi\)
0.833483 + 0.552545i \(0.186343\pi\)
\(678\) −14.0735 −0.540491
\(679\) 0 0
\(680\) 5.89823 0.226187
\(681\) −4.69465 −0.179899
\(682\) 36.7156 1.40591
\(683\) 21.3140 0.815556 0.407778 0.913081i \(-0.366304\pi\)
0.407778 + 0.913081i \(0.366304\pi\)
\(684\) 171.994 6.57636
\(685\) −11.1697 −0.426770
\(686\) 0 0
\(687\) −18.4756 −0.704888
\(688\) −11.7741 −0.448884
\(689\) −75.5897 −2.87974
\(690\) −64.8018 −2.46696
\(691\) 30.4053 1.15667 0.578336 0.815799i \(-0.303702\pi\)
0.578336 + 0.815799i \(0.303702\pi\)
\(692\) −67.7153 −2.57415
\(693\) 0 0
\(694\) 30.0447 1.14048
\(695\) 14.1571 0.537010
\(696\) −6.20580 −0.235230
\(697\) −7.94732 −0.301026
\(698\) −13.9098 −0.526494
\(699\) 61.7144 2.33425
\(700\) 0 0
\(701\) 30.2055 1.14085 0.570423 0.821351i \(-0.306779\pi\)
0.570423 + 0.821351i \(0.306779\pi\)
\(702\) −216.261 −8.16223
\(703\) 6.63261 0.250154
\(704\) −39.8308 −1.50118
\(705\) 3.10729 0.117027
\(706\) −38.3944 −1.44499
\(707\) 0 0
\(708\) 76.9029 2.89019
\(709\) −20.2828 −0.761735 −0.380868 0.924630i \(-0.624375\pi\)
−0.380868 + 0.924630i \(0.624375\pi\)
\(710\) 9.83050 0.368932
\(711\) −7.30813 −0.274076
\(712\) −29.1636 −1.09295
\(713\) 37.9041 1.41952
\(714\) 0 0
\(715\) 24.1986 0.904976
\(716\) 42.9960 1.60684
\(717\) 15.3904 0.574767
\(718\) 53.9027 2.01163
\(719\) 28.6503 1.06847 0.534237 0.845334i \(-0.320599\pi\)
0.534237 + 0.845334i \(0.320599\pi\)
\(720\) 13.7722 0.513260
\(721\) 0 0
\(722\) 59.3112 2.20734
\(723\) 33.8150 1.25759
\(724\) 4.48628 0.166731
\(725\) 0.503093 0.0186844
\(726\) −9.44447 −0.350517
\(727\) 35.5428 1.31821 0.659105 0.752051i \(-0.270935\pi\)
0.659105 + 0.752051i \(0.270935\pi\)
\(728\) 0 0
\(729\) 20.8054 0.770571
\(730\) 28.7670 1.06472
\(731\) −9.29267 −0.343702
\(732\) −65.2146 −2.41040
\(733\) 39.3766 1.45441 0.727204 0.686422i \(-0.240819\pi\)
0.727204 + 0.686422i \(0.240819\pi\)
\(734\) 21.5666 0.796039
\(735\) 0 0
\(736\) −27.1793 −1.00184
\(737\) 44.5604 1.64140
\(738\) −88.4376 −3.25543
\(739\) 25.2704 0.929587 0.464793 0.885419i \(-0.346129\pi\)
0.464793 + 0.885419i \(0.346129\pi\)
\(740\) 3.63232 0.133527
\(741\) −146.019 −5.36416
\(742\) 0 0
\(743\) −28.0425 −1.02878 −0.514390 0.857556i \(-0.671982\pi\)
−0.514390 + 0.857556i \(0.671982\pi\)
\(744\) −54.5246 −1.99897
\(745\) 1.17907 0.0431978
\(746\) −21.3216 −0.780640
\(747\) −103.070 −3.77114
\(748\) 19.3562 0.707733
\(749\) 0 0
\(750\) −7.55690 −0.275939
\(751\) −35.0194 −1.27788 −0.638938 0.769258i \(-0.720626\pi\)
−0.638938 + 0.769258i \(0.720626\pi\)
\(752\) −1.88253 −0.0686486
\(753\) 1.17856 0.0429492
\(754\) 8.25501 0.300630
\(755\) 21.4683 0.781312
\(756\) 0 0
\(757\) −1.69731 −0.0616897 −0.0308448 0.999524i \(-0.509820\pi\)
−0.0308448 + 0.999524i \(0.509820\pi\)
\(758\) 3.56948 0.129649
\(759\) −95.5669 −3.46886
\(760\) 25.6942 0.932025
\(761\) 43.4145 1.57378 0.786888 0.617096i \(-0.211691\pi\)
0.786888 + 0.617096i \(0.211691\pi\)
\(762\) −7.84234 −0.284098
\(763\) 0 0
\(764\) 34.2167 1.23792
\(765\) 10.8697 0.392994
\(766\) 15.3626 0.555075
\(767\) −45.9710 −1.65992
\(768\) 83.7217 3.02105
\(769\) −32.8931 −1.18615 −0.593077 0.805146i \(-0.702087\pi\)
−0.593077 + 0.805146i \(0.702087\pi\)
\(770\) 0 0
\(771\) −31.7965 −1.14512
\(772\) 22.7823 0.819953
\(773\) −44.4645 −1.59928 −0.799638 0.600482i \(-0.794975\pi\)
−0.799638 + 0.600482i \(0.794975\pi\)
\(774\) −103.409 −3.71695
\(775\) 4.42021 0.158778
\(776\) −50.3067 −1.80590
\(777\) 0 0
\(778\) −79.6040 −2.85394
\(779\) −34.6205 −1.24041
\(780\) −79.9669 −2.86327
\(781\) 14.4976 0.518765
\(782\) 30.9855 1.10804
\(783\) −6.63065 −0.236960
\(784\) 0 0
\(785\) 11.4933 0.410213
\(786\) 69.4362 2.47671
\(787\) 9.22725 0.328916 0.164458 0.986384i \(-0.447413\pi\)
0.164458 + 0.986384i \(0.447413\pi\)
\(788\) −33.1056 −1.17934
\(789\) 40.5332 1.44302
\(790\) −2.42943 −0.0864354
\(791\) 0 0
\(792\) 96.7962 3.43950
\(793\) 38.9840 1.38436
\(794\) −18.2313 −0.647004
\(795\) 34.8126 1.23468
\(796\) 36.1120 1.27995
\(797\) −25.4924 −0.902986 −0.451493 0.892275i \(-0.649108\pi\)
−0.451493 + 0.892275i \(0.649108\pi\)
\(798\) 0 0
\(799\) −1.48578 −0.0525630
\(800\) −3.16953 −0.112060
\(801\) −53.7447 −1.89898
\(802\) −6.91781 −0.244276
\(803\) 42.4244 1.49712
\(804\) −147.255 −5.19328
\(805\) 0 0
\(806\) 72.5291 2.55473
\(807\) −86.8355 −3.05675
\(808\) −45.5613 −1.60284
\(809\) 31.6435 1.11253 0.556263 0.831006i \(-0.312235\pi\)
0.556263 + 0.831006i \(0.312235\pi\)
\(810\) 48.7695 1.71359
\(811\) −52.3379 −1.83783 −0.918916 0.394453i \(-0.870934\pi\)
−0.918916 + 0.394453i \(0.870934\pi\)
\(812\) 0 0
\(813\) 44.5617 1.56285
\(814\) 8.30631 0.291136
\(815\) −14.4986 −0.507863
\(816\) −9.35258 −0.327406
\(817\) −40.4812 −1.41626
\(818\) 57.9791 2.02719
\(819\) 0 0
\(820\) −18.9598 −0.662104
\(821\) 45.4358 1.58572 0.792860 0.609404i \(-0.208591\pi\)
0.792860 + 0.609404i \(0.208591\pi\)
\(822\) 84.4080 2.94407
\(823\) 26.1766 0.912457 0.456229 0.889863i \(-0.349200\pi\)
0.456229 + 0.889863i \(0.349200\pi\)
\(824\) 27.3370 0.952330
\(825\) −11.1446 −0.388005
\(826\) 0 0
\(827\) −41.1176 −1.42980 −0.714899 0.699228i \(-0.753527\pi\)
−0.714899 + 0.699228i \(0.753527\pi\)
\(828\) 222.368 7.72782
\(829\) −37.5994 −1.30588 −0.652941 0.757409i \(-0.726465\pi\)
−0.652941 + 0.757409i \(0.726465\pi\)
\(830\) −34.2635 −1.18930
\(831\) 59.0424 2.04816
\(832\) −78.6830 −2.72784
\(833\) 0 0
\(834\) −106.984 −3.70455
\(835\) −17.4815 −0.604971
\(836\) 84.3205 2.91629
\(837\) −58.2573 −2.01367
\(838\) −33.0582 −1.14198
\(839\) −0.179212 −0.00618708 −0.00309354 0.999995i \(-0.500985\pi\)
−0.00309354 + 0.999995i \(0.500985\pi\)
\(840\) 0 0
\(841\) −28.7469 −0.991272
\(842\) −27.0146 −0.930986
\(843\) −19.1640 −0.660044
\(844\) 28.8376 0.992630
\(845\) 34.8026 1.19725
\(846\) −16.5337 −0.568440
\(847\) 0 0
\(848\) −21.0910 −0.724266
\(849\) 13.2014 0.453069
\(850\) 3.61340 0.123938
\(851\) 8.57518 0.293954
\(852\) −47.9089 −1.64133
\(853\) 14.5685 0.498816 0.249408 0.968398i \(-0.419764\pi\)
0.249408 + 0.968398i \(0.419764\pi\)
\(854\) 0 0
\(855\) 47.3510 1.61937
\(856\) −24.7282 −0.845193
\(857\) −11.4981 −0.392767 −0.196384 0.980527i \(-0.562920\pi\)
−0.196384 + 0.980527i \(0.562920\pi\)
\(858\) −182.866 −6.24295
\(859\) 20.9960 0.716376 0.358188 0.933649i \(-0.383395\pi\)
0.358188 + 0.933649i \(0.383395\pi\)
\(860\) −22.1694 −0.755969
\(861\) 0 0
\(862\) −9.43925 −0.321502
\(863\) −22.4888 −0.765529 −0.382764 0.923846i \(-0.625028\pi\)
−0.382764 + 0.923846i \(0.625028\pi\)
\(864\) 41.7738 1.42117
\(865\) −18.6424 −0.633862
\(866\) −22.3395 −0.759126
\(867\) 46.7499 1.58771
\(868\) 0 0
\(869\) −3.58282 −0.121539
\(870\) −3.80182 −0.128894
\(871\) 88.0260 2.98265
\(872\) −59.2659 −2.00700
\(873\) −92.7087 −3.13771
\(874\) 134.981 4.56579
\(875\) 0 0
\(876\) −140.196 −4.73678
\(877\) 23.6933 0.800067 0.400033 0.916501i \(-0.368999\pi\)
0.400033 + 0.916501i \(0.368999\pi\)
\(878\) 10.0222 0.338234
\(879\) −54.6682 −1.84391
\(880\) 6.75186 0.227605
\(881\) −4.69148 −0.158060 −0.0790299 0.996872i \(-0.525182\pi\)
−0.0790299 + 0.996872i \(0.525182\pi\)
\(882\) 0 0
\(883\) 6.65954 0.224111 0.112056 0.993702i \(-0.464256\pi\)
0.112056 + 0.993702i \(0.464256\pi\)
\(884\) 38.2368 1.28604
\(885\) 21.1718 0.711684
\(886\) −42.9173 −1.44183
\(887\) −10.0059 −0.335965 −0.167982 0.985790i \(-0.553725\pi\)
−0.167982 + 0.985790i \(0.553725\pi\)
\(888\) −12.3353 −0.413946
\(889\) 0 0
\(890\) −17.8663 −0.598880
\(891\) 71.9232 2.40952
\(892\) −20.7144 −0.693570
\(893\) −6.47241 −0.216591
\(894\) −8.91011 −0.297999
\(895\) 11.8371 0.395670
\(896\) 0 0
\(897\) −188.786 −6.30337
\(898\) −77.4044 −2.58302
\(899\) 2.22377 0.0741670
\(900\) 25.9316 0.864386
\(901\) −16.6460 −0.554557
\(902\) −43.3567 −1.44362
\(903\) 0 0
\(904\) 7.21455 0.239952
\(905\) 1.23510 0.0410561
\(906\) −162.234 −5.38986
\(907\) 21.7136 0.720988 0.360494 0.932761i \(-0.382608\pi\)
0.360494 + 0.932761i \(0.382608\pi\)
\(908\) 5.35534 0.177723
\(909\) −83.9635 −2.78489
\(910\) 0 0
\(911\) 5.52661 0.183105 0.0915524 0.995800i \(-0.470817\pi\)
0.0915524 + 0.995800i \(0.470817\pi\)
\(912\) −40.7422 −1.34911
\(913\) −50.5304 −1.67231
\(914\) 21.8009 0.721111
\(915\) −17.9540 −0.593540
\(916\) 21.0757 0.696362
\(917\) 0 0
\(918\) −47.6238 −1.57182
\(919\) 16.0649 0.529932 0.264966 0.964258i \(-0.414639\pi\)
0.264966 + 0.964258i \(0.414639\pi\)
\(920\) 33.2195 1.09521
\(921\) 14.5138 0.478247
\(922\) −16.2668 −0.535719
\(923\) 28.6390 0.942663
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −51.6249 −1.69650
\(927\) 50.3786 1.65465
\(928\) −1.59457 −0.0523443
\(929\) 18.5488 0.608567 0.304284 0.952582i \(-0.401583\pi\)
0.304284 + 0.952582i \(0.401583\pi\)
\(930\) −33.4031 −1.09533
\(931\) 0 0
\(932\) −70.3996 −2.30602
\(933\) 98.6492 3.22963
\(934\) −4.20073 −0.137452
\(935\) 5.32888 0.174273
\(936\) 191.214 6.25003
\(937\) 35.8245 1.17034 0.585168 0.810912i \(-0.301029\pi\)
0.585168 + 0.810912i \(0.301029\pi\)
\(938\) 0 0
\(939\) 80.7895 2.63646
\(940\) −3.54459 −0.115612
\(941\) −35.9464 −1.17182 −0.585910 0.810376i \(-0.699263\pi\)
−0.585910 + 0.810376i \(0.699263\pi\)
\(942\) −86.8537 −2.82984
\(943\) −44.7602 −1.45759
\(944\) −12.8268 −0.417476
\(945\) 0 0
\(946\) −50.6963 −1.64828
\(947\) −38.2245 −1.24213 −0.621065 0.783759i \(-0.713300\pi\)
−0.621065 + 0.783759i \(0.713300\pi\)
\(948\) 11.8398 0.384540
\(949\) 83.8064 2.72047
\(950\) 15.7409 0.510701
\(951\) −57.0769 −1.85085
\(952\) 0 0
\(953\) 31.8773 1.03261 0.516304 0.856405i \(-0.327307\pi\)
0.516304 + 0.856405i \(0.327307\pi\)
\(954\) −185.236 −5.99724
\(955\) 9.42006 0.304826
\(956\) −17.5564 −0.567814
\(957\) −5.60676 −0.181241
\(958\) −32.3176 −1.04413
\(959\) 0 0
\(960\) 36.2373 1.16955
\(961\) −11.4618 −0.369735
\(962\) 16.4085 0.529032
\(963\) −45.5709 −1.46850
\(964\) −38.5740 −1.24238
\(965\) 6.27210 0.201906
\(966\) 0 0
\(967\) −2.52974 −0.0813510 −0.0406755 0.999172i \(-0.512951\pi\)
−0.0406755 + 0.999172i \(0.512951\pi\)
\(968\) 4.84154 0.155613
\(969\) −32.1556 −1.03299
\(970\) −30.8191 −0.989541
\(971\) 58.8714 1.88927 0.944637 0.328117i \(-0.106414\pi\)
0.944637 + 0.328117i \(0.106414\pi\)
\(972\) −94.0585 −3.01693
\(973\) 0 0
\(974\) 89.0956 2.85481
\(975\) −22.0154 −0.705056
\(976\) 10.8773 0.348173
\(977\) 56.5992 1.81077 0.905385 0.424592i \(-0.139582\pi\)
0.905385 + 0.424592i \(0.139582\pi\)
\(978\) 109.564 3.50348
\(979\) −26.3485 −0.842101
\(980\) 0 0
\(981\) −109.219 −3.48711
\(982\) 83.3694 2.66042
\(983\) −3.61521 −0.115307 −0.0576537 0.998337i \(-0.518362\pi\)
−0.0576537 + 0.998337i \(0.518362\pi\)
\(984\) 64.3870 2.05258
\(985\) −9.11416 −0.290401
\(986\) 1.81787 0.0578929
\(987\) 0 0
\(988\) 166.569 5.29927
\(989\) −52.3374 −1.66423
\(990\) 59.2997 1.88467
\(991\) −58.3476 −1.85347 −0.926737 0.375711i \(-0.877398\pi\)
−0.926737 + 0.375711i \(0.877398\pi\)
\(992\) −14.0100 −0.444818
\(993\) −48.8380 −1.54983
\(994\) 0 0
\(995\) 9.94184 0.315178
\(996\) 166.983 5.29106
\(997\) −40.0226 −1.26753 −0.633764 0.773527i \(-0.718491\pi\)
−0.633764 + 0.773527i \(0.718491\pi\)
\(998\) 44.2957 1.40216
\(999\) −13.1798 −0.416990
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.o.1.13 15
7.6 odd 2 1295.2.a.j.1.13 15
35.34 odd 2 6475.2.a.u.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.j.1.13 15 7.6 odd 2
6475.2.a.u.1.3 15 35.34 odd 2
9065.2.a.o.1.13 15 1.1 even 1 trivial