Properties

Label 9065.2.a.i.1.3
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,2,5,-2,0,0,-2,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.126032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 6x^{3} + 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.392048\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.392048 q^{2} -2.20143 q^{3} -1.84630 q^{4} +1.00000 q^{5} +0.863067 q^{6} +1.50793 q^{8} +1.84630 q^{9} -0.392048 q^{10} +0.255115 q^{11} +4.06450 q^{12} +1.33836 q^{13} -2.20143 q^{15} +3.10141 q^{16} -0.276162 q^{17} -0.723838 q^{18} +5.26593 q^{19} -1.84630 q^{20} -0.100017 q^{22} +0.173848 q^{23} -3.31961 q^{24} +1.00000 q^{25} -0.524703 q^{26} +2.53979 q^{27} -10.2196 q^{29} +0.863067 q^{30} -2.40286 q^{31} -4.23177 q^{32} -0.561619 q^{33} +0.108269 q^{34} -3.40882 q^{36} -1.00000 q^{37} -2.06450 q^{38} -2.94632 q^{39} +1.50793 q^{40} -1.01587 q^{41} -6.34995 q^{43} -0.471019 q^{44} +1.84630 q^{45} -0.0681570 q^{46} +1.32389 q^{47} -6.82755 q^{48} -0.392048 q^{50} +0.607952 q^{51} -2.47102 q^{52} -5.58325 q^{53} -0.995722 q^{54} +0.255115 q^{55} -11.5926 q^{57} +4.00657 q^{58} +6.83412 q^{59} +4.06450 q^{60} -1.59348 q^{61} +0.942038 q^{62} -4.54377 q^{64} +1.33836 q^{65} +0.220182 q^{66} -4.43838 q^{67} +0.509878 q^{68} -0.382715 q^{69} +1.45974 q^{71} +2.78410 q^{72} +6.54377 q^{73} +0.392048 q^{74} -2.20143 q^{75} -9.72248 q^{76} +1.15510 q^{78} +2.54403 q^{79} +3.10141 q^{80} -11.1301 q^{81} +0.398269 q^{82} +3.29433 q^{83} -0.276162 q^{85} +2.48949 q^{86} +22.4977 q^{87} +0.384697 q^{88} +10.1693 q^{89} -0.723838 q^{90} -0.320976 q^{92} +5.28973 q^{93} -0.519029 q^{94} +5.26593 q^{95} +9.31595 q^{96} +9.02672 q^{97} +0.471019 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 2 q^{4} + 5 q^{5} - 2 q^{6} - 2 q^{9} - 7 q^{11} + 4 q^{12} + 3 q^{13} - q^{15} - 4 q^{16} - 5 q^{17} + 2 q^{20} - 10 q^{22} + 4 q^{23} + 8 q^{24} + 5 q^{25} - q^{27} - 17 q^{29} - 2 q^{30}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.392048 −0.277220 −0.138610 0.990347i \(-0.544263\pi\)
−0.138610 + 0.990347i \(0.544263\pi\)
\(3\) −2.20143 −1.27100 −0.635498 0.772102i \(-0.719205\pi\)
−0.635498 + 0.772102i \(0.719205\pi\)
\(4\) −1.84630 −0.923149
\(5\) 1.00000 0.447214
\(6\) 0.863067 0.352346
\(7\) 0 0
\(8\) 1.50793 0.533135
\(9\) 1.84630 0.615433
\(10\) −0.392048 −0.123977
\(11\) 0.255115 0.0769201 0.0384601 0.999260i \(-0.487755\pi\)
0.0384601 + 0.999260i \(0.487755\pi\)
\(12\) 4.06450 1.17332
\(13\) 1.33836 0.371195 0.185598 0.982626i \(-0.440578\pi\)
0.185598 + 0.982626i \(0.440578\pi\)
\(14\) 0 0
\(15\) −2.20143 −0.568407
\(16\) 3.10141 0.775353
\(17\) −0.276162 −0.0669791 −0.0334896 0.999439i \(-0.510662\pi\)
−0.0334896 + 0.999439i \(0.510662\pi\)
\(18\) −0.723838 −0.170610
\(19\) 5.26593 1.20809 0.604043 0.796951i \(-0.293555\pi\)
0.604043 + 0.796951i \(0.293555\pi\)
\(20\) −1.84630 −0.412845
\(21\) 0 0
\(22\) −0.100017 −0.0213238
\(23\) 0.173848 0.0362499 0.0181249 0.999836i \(-0.494230\pi\)
0.0181249 + 0.999836i \(0.494230\pi\)
\(24\) −3.31961 −0.677613
\(25\) 1.00000 0.200000
\(26\) −0.524703 −0.102903
\(27\) 2.53979 0.488784
\(28\) 0 0
\(29\) −10.2196 −1.89773 −0.948866 0.315680i \(-0.897767\pi\)
−0.948866 + 0.315680i \(0.897767\pi\)
\(30\) 0.863067 0.157574
\(31\) −2.40286 −0.431567 −0.215783 0.976441i \(-0.569230\pi\)
−0.215783 + 0.976441i \(0.569230\pi\)
\(32\) −4.23177 −0.748079
\(33\) −0.561619 −0.0977653
\(34\) 0.108269 0.0185680
\(35\) 0 0
\(36\) −3.40882 −0.568136
\(37\) −1.00000 −0.164399
\(38\) −2.06450 −0.334906
\(39\) −2.94632 −0.471788
\(40\) 1.50793 0.238425
\(41\) −1.01587 −0.158652 −0.0793260 0.996849i \(-0.525277\pi\)
−0.0793260 + 0.996849i \(0.525277\pi\)
\(42\) 0 0
\(43\) −6.34995 −0.968359 −0.484179 0.874969i \(-0.660882\pi\)
−0.484179 + 0.874969i \(0.660882\pi\)
\(44\) −0.471019 −0.0710088
\(45\) 1.84630 0.275230
\(46\) −0.0681570 −0.0100492
\(47\) 1.32389 0.193109 0.0965547 0.995328i \(-0.469218\pi\)
0.0965547 + 0.995328i \(0.469218\pi\)
\(48\) −6.82755 −0.985472
\(49\) 0 0
\(50\) −0.392048 −0.0554440
\(51\) 0.607952 0.0851303
\(52\) −2.47102 −0.342669
\(53\) −5.58325 −0.766918 −0.383459 0.923558i \(-0.625267\pi\)
−0.383459 + 0.923558i \(0.625267\pi\)
\(54\) −0.995722 −0.135501
\(55\) 0.255115 0.0343997
\(56\) 0 0
\(57\) −11.5926 −1.53547
\(58\) 4.00657 0.526089
\(59\) 6.83412 0.889727 0.444863 0.895598i \(-0.353252\pi\)
0.444863 + 0.895598i \(0.353252\pi\)
\(60\) 4.06450 0.524724
\(61\) −1.59348 −0.204024 −0.102012 0.994783i \(-0.532528\pi\)
−0.102012 + 0.994783i \(0.532528\pi\)
\(62\) 0.942038 0.119639
\(63\) 0 0
\(64\) −4.54377 −0.567971
\(65\) 1.33836 0.166004
\(66\) 0.220182 0.0271025
\(67\) −4.43838 −0.542235 −0.271117 0.962546i \(-0.587393\pi\)
−0.271117 + 0.962546i \(0.587393\pi\)
\(68\) 0.509878 0.0618317
\(69\) −0.382715 −0.0460735
\(70\) 0 0
\(71\) 1.45974 0.173240 0.0866198 0.996241i \(-0.472393\pi\)
0.0866198 + 0.996241i \(0.472393\pi\)
\(72\) 2.78410 0.328109
\(73\) 6.54377 0.765890 0.382945 0.923771i \(-0.374910\pi\)
0.382945 + 0.923771i \(0.374910\pi\)
\(74\) 0.392048 0.0455747
\(75\) −2.20143 −0.254199
\(76\) −9.72248 −1.11524
\(77\) 0 0
\(78\) 1.15510 0.130789
\(79\) 2.54403 0.286226 0.143113 0.989706i \(-0.454289\pi\)
0.143113 + 0.989706i \(0.454289\pi\)
\(80\) 3.10141 0.346749
\(81\) −11.1301 −1.23668
\(82\) 0.398269 0.0439815
\(83\) 3.29433 0.361599 0.180800 0.983520i \(-0.442131\pi\)
0.180800 + 0.983520i \(0.442131\pi\)
\(84\) 0 0
\(85\) −0.276162 −0.0299540
\(86\) 2.48949 0.268448
\(87\) 22.4977 2.41201
\(88\) 0.384697 0.0410088
\(89\) 10.1693 1.07794 0.538971 0.842324i \(-0.318813\pi\)
0.538971 + 0.842324i \(0.318813\pi\)
\(90\) −0.723838 −0.0762992
\(91\) 0 0
\(92\) −0.320976 −0.0334641
\(93\) 5.28973 0.548520
\(94\) −0.519029 −0.0535338
\(95\) 5.26593 0.540273
\(96\) 9.31595 0.950806
\(97\) 9.02672 0.916525 0.458262 0.888817i \(-0.348472\pi\)
0.458262 + 0.888817i \(0.348472\pi\)
\(98\) 0 0
\(99\) 0.471019 0.0473392
\(100\) −1.84630 −0.184630
\(101\) −17.2785 −1.71927 −0.859635 0.510908i \(-0.829309\pi\)
−0.859635 + 0.510908i \(0.829309\pi\)
\(102\) −0.238346 −0.0235998
\(103\) −9.68318 −0.954112 −0.477056 0.878873i \(-0.658296\pi\)
−0.477056 + 0.878873i \(0.658296\pi\)
\(104\) 2.01816 0.197897
\(105\) 0 0
\(106\) 2.18890 0.212605
\(107\) 8.81199 0.851888 0.425944 0.904750i \(-0.359942\pi\)
0.425944 + 0.904750i \(0.359942\pi\)
\(108\) −4.68922 −0.451220
\(109\) 15.4903 1.48370 0.741851 0.670565i \(-0.233948\pi\)
0.741851 + 0.670565i \(0.233948\pi\)
\(110\) −0.100017 −0.00953629
\(111\) 2.20143 0.208951
\(112\) 0 0
\(113\) −3.28698 −0.309213 −0.154606 0.987976i \(-0.549411\pi\)
−0.154606 + 0.987976i \(0.549411\pi\)
\(114\) 4.54485 0.425664
\(115\) 0.173848 0.0162114
\(116\) 18.8684 1.75189
\(117\) 2.47102 0.228446
\(118\) −2.67931 −0.246650
\(119\) 0 0
\(120\) −3.31961 −0.303038
\(121\) −10.9349 −0.994083
\(122\) 0.624721 0.0565595
\(123\) 2.23636 0.201646
\(124\) 4.43640 0.398400
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.2254 −0.996093 −0.498046 0.867150i \(-0.665949\pi\)
−0.498046 + 0.867150i \(0.665949\pi\)
\(128\) 10.2449 0.905532
\(129\) 13.9790 1.23078
\(130\) −0.524703 −0.0460195
\(131\) 5.53949 0.483988 0.241994 0.970278i \(-0.422199\pi\)
0.241994 + 0.970278i \(0.422199\pi\)
\(132\) 1.03692 0.0902519
\(133\) 0 0
\(134\) 1.74006 0.150318
\(135\) 2.53979 0.218591
\(136\) −0.416434 −0.0357089
\(137\) 9.50942 0.812444 0.406222 0.913774i \(-0.366846\pi\)
0.406222 + 0.913774i \(0.366846\pi\)
\(138\) 0.150043 0.0127725
\(139\) −22.7763 −1.93186 −0.965930 0.258802i \(-0.916672\pi\)
−0.965930 + 0.258802i \(0.916672\pi\)
\(140\) 0 0
\(141\) −2.91446 −0.245441
\(142\) −0.572289 −0.0480255
\(143\) 0.341437 0.0285524
\(144\) 5.72613 0.477178
\(145\) −10.2196 −0.848691
\(146\) −2.56547 −0.212320
\(147\) 0 0
\(148\) 1.84630 0.151765
\(149\) 20.7343 1.69862 0.849311 0.527892i \(-0.177018\pi\)
0.849311 + 0.527892i \(0.177018\pi\)
\(150\) 0.863067 0.0704691
\(151\) −3.27811 −0.266768 −0.133384 0.991064i \(-0.542584\pi\)
−0.133384 + 0.991064i \(0.542584\pi\)
\(152\) 7.94067 0.644074
\(153\) −0.509878 −0.0412212
\(154\) 0 0
\(155\) −2.40286 −0.193003
\(156\) 5.43978 0.435531
\(157\) 2.95137 0.235545 0.117773 0.993041i \(-0.462425\pi\)
0.117773 + 0.993041i \(0.462425\pi\)
\(158\) −0.997384 −0.0793476
\(159\) 12.2911 0.974750
\(160\) −4.23177 −0.334551
\(161\) 0 0
\(162\) 4.36353 0.342831
\(163\) 14.2091 1.11294 0.556471 0.830867i \(-0.312155\pi\)
0.556471 + 0.830867i \(0.312155\pi\)
\(164\) 1.87560 0.146459
\(165\) −0.561619 −0.0437220
\(166\) −1.29153 −0.100243
\(167\) 11.3353 0.877151 0.438575 0.898694i \(-0.355483\pi\)
0.438575 + 0.898694i \(0.355483\pi\)
\(168\) 0 0
\(169\) −11.2088 −0.862214
\(170\) 0.108269 0.00830384
\(171\) 9.72248 0.743496
\(172\) 11.7239 0.893940
\(173\) −11.5860 −0.880871 −0.440435 0.897784i \(-0.645176\pi\)
−0.440435 + 0.897784i \(0.645176\pi\)
\(174\) −8.82020 −0.668657
\(175\) 0 0
\(176\) 0.791218 0.0596403
\(177\) −15.0448 −1.13084
\(178\) −3.98685 −0.298827
\(179\) −6.09804 −0.455789 −0.227894 0.973686i \(-0.573184\pi\)
−0.227894 + 0.973686i \(0.573184\pi\)
\(180\) −3.40882 −0.254078
\(181\) 9.50793 0.706719 0.353360 0.935488i \(-0.385039\pi\)
0.353360 + 0.935488i \(0.385039\pi\)
\(182\) 0 0
\(183\) 3.50793 0.259314
\(184\) 0.262152 0.0193261
\(185\) −1.00000 −0.0735215
\(186\) −2.07383 −0.152061
\(187\) −0.0704532 −0.00515205
\(188\) −2.44430 −0.178269
\(189\) 0 0
\(190\) −2.06450 −0.149774
\(191\) 2.87212 0.207819 0.103910 0.994587i \(-0.466865\pi\)
0.103910 + 0.994587i \(0.466865\pi\)
\(192\) 10.0028 0.721889
\(193\) −8.82386 −0.635155 −0.317578 0.948232i \(-0.602869\pi\)
−0.317578 + 0.948232i \(0.602869\pi\)
\(194\) −3.53891 −0.254079
\(195\) −2.94632 −0.210990
\(196\) 0 0
\(197\) 16.6963 1.18956 0.594779 0.803889i \(-0.297239\pi\)
0.594779 + 0.803889i \(0.297239\pi\)
\(198\) −0.184662 −0.0131234
\(199\) 0.961637 0.0681686 0.0340843 0.999419i \(-0.489149\pi\)
0.0340843 + 0.999419i \(0.489149\pi\)
\(200\) 1.50793 0.106627
\(201\) 9.77079 0.689178
\(202\) 6.77399 0.476616
\(203\) 0 0
\(204\) −1.12246 −0.0785879
\(205\) −1.01587 −0.0709513
\(206\) 3.79627 0.264499
\(207\) 0.320976 0.0223094
\(208\) 4.15082 0.287808
\(209\) 1.34342 0.0929262
\(210\) 0 0
\(211\) −15.7622 −1.08511 −0.542557 0.840019i \(-0.682544\pi\)
−0.542557 + 0.840019i \(0.682544\pi\)
\(212\) 10.3083 0.707979
\(213\) −3.21352 −0.220187
\(214\) −3.45473 −0.236160
\(215\) −6.34995 −0.433063
\(216\) 3.82984 0.260588
\(217\) 0 0
\(218\) −6.07294 −0.411312
\(219\) −14.4057 −0.973444
\(220\) −0.471019 −0.0317561
\(221\) −0.369605 −0.0248623
\(222\) −0.863067 −0.0579253
\(223\) 5.78744 0.387555 0.193778 0.981045i \(-0.437926\pi\)
0.193778 + 0.981045i \(0.437926\pi\)
\(224\) 0 0
\(225\) 1.84630 0.123087
\(226\) 1.28865 0.0857199
\(227\) −11.0453 −0.733103 −0.366551 0.930398i \(-0.619462\pi\)
−0.366551 + 0.930398i \(0.619462\pi\)
\(228\) 21.4034 1.41747
\(229\) 9.62747 0.636201 0.318101 0.948057i \(-0.396955\pi\)
0.318101 + 0.948057i \(0.396955\pi\)
\(230\) −0.0681570 −0.00449414
\(231\) 0 0
\(232\) −15.4105 −1.01175
\(233\) 6.25508 0.409784 0.204892 0.978785i \(-0.434316\pi\)
0.204892 + 0.978785i \(0.434316\pi\)
\(234\) −0.968759 −0.0633297
\(235\) 1.32389 0.0863611
\(236\) −12.6178 −0.821351
\(237\) −5.60052 −0.363793
\(238\) 0 0
\(239\) −5.17277 −0.334598 −0.167299 0.985906i \(-0.553505\pi\)
−0.167299 + 0.985906i \(0.553505\pi\)
\(240\) −6.82755 −0.440716
\(241\) 22.8866 1.47425 0.737126 0.675755i \(-0.236182\pi\)
0.737126 + 0.675755i \(0.236182\pi\)
\(242\) 4.28701 0.275580
\(243\) 16.8827 1.08303
\(244\) 2.94204 0.188345
\(245\) 0 0
\(246\) −0.876763 −0.0559004
\(247\) 7.04773 0.448436
\(248\) −3.62336 −0.230083
\(249\) −7.25223 −0.459592
\(250\) −0.392048 −0.0247953
\(251\) 27.9048 1.76134 0.880669 0.473732i \(-0.157094\pi\)
0.880669 + 0.473732i \(0.157094\pi\)
\(252\) 0 0
\(253\) 0.0443514 0.00278835
\(254\) 4.40090 0.276137
\(255\) 0.607952 0.0380714
\(256\) 5.07103 0.316940
\(257\) −5.66014 −0.353070 −0.176535 0.984294i \(-0.556489\pi\)
−0.176535 + 0.984294i \(0.556489\pi\)
\(258\) −5.48044 −0.341197
\(259\) 0 0
\(260\) −2.47102 −0.153246
\(261\) −18.8684 −1.16793
\(262\) −2.17175 −0.134171
\(263\) −5.88897 −0.363130 −0.181565 0.983379i \(-0.558116\pi\)
−0.181565 + 0.983379i \(0.558116\pi\)
\(264\) −0.846884 −0.0521221
\(265\) −5.58325 −0.342976
\(266\) 0 0
\(267\) −22.3870 −1.37006
\(268\) 8.19458 0.500563
\(269\) −4.78959 −0.292026 −0.146013 0.989283i \(-0.546644\pi\)
−0.146013 + 0.989283i \(0.546644\pi\)
\(270\) −0.995722 −0.0605977
\(271\) −12.3012 −0.747246 −0.373623 0.927581i \(-0.621885\pi\)
−0.373623 + 0.927581i \(0.621885\pi\)
\(272\) −0.856493 −0.0519325
\(273\) 0 0
\(274\) −3.72815 −0.225226
\(275\) 0.255115 0.0153840
\(276\) 0.706607 0.0425327
\(277\) 10.3882 0.624166 0.312083 0.950055i \(-0.398973\pi\)
0.312083 + 0.950055i \(0.398973\pi\)
\(278\) 8.92941 0.535550
\(279\) −4.43640 −0.265600
\(280\) 0 0
\(281\) −1.14779 −0.0684711 −0.0342356 0.999414i \(-0.510900\pi\)
−0.0342356 + 0.999414i \(0.510900\pi\)
\(282\) 1.14261 0.0680413
\(283\) −25.4270 −1.51148 −0.755738 0.654874i \(-0.772722\pi\)
−0.755738 + 0.654874i \(0.772722\pi\)
\(284\) −2.69512 −0.159926
\(285\) −11.5926 −0.686685
\(286\) −0.133860 −0.00791529
\(287\) 0 0
\(288\) −7.81311 −0.460392
\(289\) −16.9237 −0.995514
\(290\) 4.00657 0.235274
\(291\) −19.8717 −1.16490
\(292\) −12.0817 −0.707031
\(293\) −32.2921 −1.88653 −0.943264 0.332044i \(-0.892262\pi\)
−0.943264 + 0.332044i \(0.892262\pi\)
\(294\) 0 0
\(295\) 6.83412 0.397898
\(296\) −1.50793 −0.0876469
\(297\) 0.647940 0.0375973
\(298\) −8.12886 −0.470892
\(299\) 0.232672 0.0134558
\(300\) 4.06450 0.234664
\(301\) 0 0
\(302\) 1.28518 0.0739535
\(303\) 38.0373 2.18519
\(304\) 16.3318 0.936694
\(305\) −1.59348 −0.0912424
\(306\) 0.199897 0.0114273
\(307\) 18.3806 1.04904 0.524519 0.851399i \(-0.324245\pi\)
0.524519 + 0.851399i \(0.324245\pi\)
\(308\) 0 0
\(309\) 21.3168 1.21267
\(310\) 0.942038 0.0535041
\(311\) −24.0525 −1.36389 −0.681946 0.731403i \(-0.738866\pi\)
−0.681946 + 0.731403i \(0.738866\pi\)
\(312\) −4.44285 −0.251527
\(313\) −13.4720 −0.761480 −0.380740 0.924682i \(-0.624331\pi\)
−0.380740 + 0.924682i \(0.624331\pi\)
\(314\) −1.15708 −0.0652978
\(315\) 0 0
\(316\) −4.69705 −0.264229
\(317\) 26.7938 1.50489 0.752445 0.658655i \(-0.228874\pi\)
0.752445 + 0.658655i \(0.228874\pi\)
\(318\) −4.81872 −0.270220
\(319\) −2.60717 −0.145974
\(320\) −4.54377 −0.254004
\(321\) −19.3990 −1.08275
\(322\) 0 0
\(323\) −1.45425 −0.0809166
\(324\) 20.5494 1.14164
\(325\) 1.33836 0.0742391
\(326\) −5.57064 −0.308529
\(327\) −34.1008 −1.88578
\(328\) −1.53186 −0.0845830
\(329\) 0 0
\(330\) 0.220182 0.0121206
\(331\) 5.60562 0.308113 0.154056 0.988062i \(-0.450766\pi\)
0.154056 + 0.988062i \(0.450766\pi\)
\(332\) −6.08231 −0.333810
\(333\) −1.84630 −0.101177
\(334\) −4.44398 −0.243164
\(335\) −4.43838 −0.242495
\(336\) 0 0
\(337\) 12.7245 0.693145 0.346573 0.938023i \(-0.387345\pi\)
0.346573 + 0.938023i \(0.387345\pi\)
\(338\) 4.39438 0.239023
\(339\) 7.23605 0.393008
\(340\) 0.509878 0.0276520
\(341\) −0.613007 −0.0331962
\(342\) −3.81168 −0.206112
\(343\) 0 0
\(344\) −9.57531 −0.516266
\(345\) −0.382715 −0.0206047
\(346\) 4.54229 0.244195
\(347\) 17.6319 0.946531 0.473265 0.880920i \(-0.343075\pi\)
0.473265 + 0.880920i \(0.343075\pi\)
\(348\) −41.5375 −2.22665
\(349\) 13.3124 0.712597 0.356299 0.934372i \(-0.384039\pi\)
0.356299 + 0.934372i \(0.384039\pi\)
\(350\) 0 0
\(351\) 3.39917 0.181434
\(352\) −1.07959 −0.0575423
\(353\) 9.42247 0.501508 0.250754 0.968051i \(-0.419322\pi\)
0.250754 + 0.968051i \(0.419322\pi\)
\(354\) 5.89831 0.313491
\(355\) 1.45974 0.0774751
\(356\) −18.7755 −0.995102
\(357\) 0 0
\(358\) 2.39072 0.126354
\(359\) −25.1416 −1.32692 −0.663462 0.748210i \(-0.730914\pi\)
−0.663462 + 0.748210i \(0.730914\pi\)
\(360\) 2.78410 0.146735
\(361\) 8.73001 0.459474
\(362\) −3.72757 −0.195917
\(363\) 24.0725 1.26348
\(364\) 0 0
\(365\) 6.54377 0.342516
\(366\) −1.37528 −0.0718870
\(367\) 1.42744 0.0745120 0.0372560 0.999306i \(-0.488138\pi\)
0.0372560 + 0.999306i \(0.488138\pi\)
\(368\) 0.539176 0.0281065
\(369\) −1.87560 −0.0976396
\(370\) 0.392048 0.0203816
\(371\) 0 0
\(372\) −9.76643 −0.506366
\(373\) 1.53186 0.0793169 0.0396584 0.999213i \(-0.487373\pi\)
0.0396584 + 0.999213i \(0.487373\pi\)
\(374\) 0.0276210 0.00142825
\(375\) −2.20143 −0.113681
\(376\) 1.99634 0.102953
\(377\) −13.6775 −0.704429
\(378\) 0 0
\(379\) −5.31424 −0.272974 −0.136487 0.990642i \(-0.543581\pi\)
−0.136487 + 0.990642i \(0.543581\pi\)
\(380\) −9.72248 −0.498752
\(381\) 24.7119 1.26603
\(382\) −1.12601 −0.0576116
\(383\) 4.68827 0.239560 0.119780 0.992800i \(-0.461781\pi\)
0.119780 + 0.992800i \(0.461781\pi\)
\(384\) −22.5535 −1.15093
\(385\) 0 0
\(386\) 3.45938 0.176078
\(387\) −11.7239 −0.595960
\(388\) −16.6660 −0.846089
\(389\) −9.65184 −0.489368 −0.244684 0.969603i \(-0.578684\pi\)
−0.244684 + 0.969603i \(0.578684\pi\)
\(390\) 1.15510 0.0584906
\(391\) −0.0480103 −0.00242799
\(392\) 0 0
\(393\) −12.1948 −0.615147
\(394\) −6.54573 −0.329769
\(395\) 2.54403 0.128004
\(396\) −0.869641 −0.0437011
\(397\) 5.67953 0.285048 0.142524 0.989791i \(-0.454478\pi\)
0.142524 + 0.989791i \(0.454478\pi\)
\(398\) −0.377008 −0.0188977
\(399\) 0 0
\(400\) 3.10141 0.155071
\(401\) −16.1379 −0.805887 −0.402943 0.915225i \(-0.632013\pi\)
−0.402943 + 0.915225i \(0.632013\pi\)
\(402\) −3.83062 −0.191054
\(403\) −3.21590 −0.160196
\(404\) 31.9012 1.58714
\(405\) −11.1301 −0.553058
\(406\) 0 0
\(407\) −0.255115 −0.0126456
\(408\) 0.916751 0.0453860
\(409\) −23.6728 −1.17054 −0.585271 0.810838i \(-0.699012\pi\)
−0.585271 + 0.810838i \(0.699012\pi\)
\(410\) 0.398269 0.0196691
\(411\) −20.9343 −1.03261
\(412\) 17.8780 0.880788
\(413\) 0 0
\(414\) −0.125838 −0.00618460
\(415\) 3.29433 0.161712
\(416\) −5.66365 −0.277683
\(417\) 50.1405 2.45539
\(418\) −0.526685 −0.0257610
\(419\) −16.6740 −0.814580 −0.407290 0.913299i \(-0.633526\pi\)
−0.407290 + 0.913299i \(0.633526\pi\)
\(420\) 0 0
\(421\) −18.9406 −0.923106 −0.461553 0.887113i \(-0.652708\pi\)
−0.461553 + 0.887113i \(0.652708\pi\)
\(422\) 6.17954 0.300815
\(423\) 2.44430 0.118846
\(424\) −8.41917 −0.408871
\(425\) −0.276162 −0.0133958
\(426\) 1.25986 0.0610402
\(427\) 0 0
\(428\) −16.2696 −0.786419
\(429\) −0.751650 −0.0362900
\(430\) 2.48949 0.120054
\(431\) −27.8389 −1.34095 −0.670477 0.741930i \(-0.733911\pi\)
−0.670477 + 0.741930i \(0.733911\pi\)
\(432\) 7.87695 0.378980
\(433\) 23.9871 1.15275 0.576374 0.817186i \(-0.304467\pi\)
0.576374 + 0.817186i \(0.304467\pi\)
\(434\) 0 0
\(435\) 22.4977 1.07868
\(436\) −28.5997 −1.36968
\(437\) 0.915473 0.0437930
\(438\) 5.64771 0.269858
\(439\) −11.4703 −0.547448 −0.273724 0.961808i \(-0.588256\pi\)
−0.273724 + 0.961808i \(0.588256\pi\)
\(440\) 0.384697 0.0183397
\(441\) 0 0
\(442\) 0.144903 0.00689234
\(443\) −0.376519 −0.0178889 −0.00894447 0.999960i \(-0.502847\pi\)
−0.00894447 + 0.999960i \(0.502847\pi\)
\(444\) −4.06450 −0.192893
\(445\) 10.1693 0.482071
\(446\) −2.26895 −0.107438
\(447\) −45.6452 −2.15894
\(448\) 0 0
\(449\) 29.1023 1.37342 0.686712 0.726930i \(-0.259053\pi\)
0.686712 + 0.726930i \(0.259053\pi\)
\(450\) −0.723838 −0.0341220
\(451\) −0.259164 −0.0122035
\(452\) 6.06874 0.285449
\(453\) 7.21652 0.339062
\(454\) 4.33029 0.203231
\(455\) 0 0
\(456\) −17.4808 −0.818616
\(457\) 22.5171 1.05331 0.526653 0.850080i \(-0.323447\pi\)
0.526653 + 0.850080i \(0.323447\pi\)
\(458\) −3.77443 −0.176368
\(459\) −0.701395 −0.0327383
\(460\) −0.320976 −0.0149656
\(461\) 7.72947 0.359997 0.179999 0.983667i \(-0.442391\pi\)
0.179999 + 0.983667i \(0.442391\pi\)
\(462\) 0 0
\(463\) −28.3234 −1.31630 −0.658149 0.752887i \(-0.728661\pi\)
−0.658149 + 0.752887i \(0.728661\pi\)
\(464\) −31.6952 −1.47141
\(465\) 5.28973 0.245306
\(466\) −2.45229 −0.113600
\(467\) −14.2749 −0.660563 −0.330281 0.943883i \(-0.607144\pi\)
−0.330281 + 0.943883i \(0.607144\pi\)
\(468\) −4.56224 −0.210890
\(469\) 0 0
\(470\) −0.519029 −0.0239410
\(471\) −6.49724 −0.299377
\(472\) 10.3054 0.474345
\(473\) −1.61997 −0.0744863
\(474\) 2.19567 0.100851
\(475\) 5.26593 0.241617
\(476\) 0 0
\(477\) −10.3083 −0.471986
\(478\) 2.02797 0.0927574
\(479\) −0.352216 −0.0160932 −0.00804658 0.999968i \(-0.502561\pi\)
−0.00804658 + 0.999968i \(0.502561\pi\)
\(480\) 9.31595 0.425213
\(481\) −1.33836 −0.0610241
\(482\) −8.97263 −0.408692
\(483\) 0 0
\(484\) 20.1891 0.917687
\(485\) 9.02672 0.409882
\(486\) −6.61884 −0.300237
\(487\) −12.1878 −0.552284 −0.276142 0.961117i \(-0.589056\pi\)
−0.276142 + 0.961117i \(0.589056\pi\)
\(488\) −2.40286 −0.108772
\(489\) −31.2803 −1.41454
\(490\) 0 0
\(491\) 23.0640 1.04086 0.520432 0.853903i \(-0.325771\pi\)
0.520432 + 0.853903i \(0.325771\pi\)
\(492\) −4.12900 −0.186150
\(493\) 2.82227 0.127108
\(494\) −2.76305 −0.124315
\(495\) 0.471019 0.0211707
\(496\) −7.45227 −0.334617
\(497\) 0 0
\(498\) 2.84323 0.127408
\(499\) −13.1905 −0.590486 −0.295243 0.955422i \(-0.595401\pi\)
−0.295243 + 0.955422i \(0.595401\pi\)
\(500\) −1.84630 −0.0825690
\(501\) −24.9538 −1.11486
\(502\) −10.9400 −0.488278
\(503\) 7.93728 0.353906 0.176953 0.984219i \(-0.443376\pi\)
0.176953 + 0.984219i \(0.443376\pi\)
\(504\) 0 0
\(505\) −17.2785 −0.768881
\(506\) −0.0173879 −0.000772986 0
\(507\) 24.6754 1.09587
\(508\) 20.7254 0.919542
\(509\) −22.1571 −0.982097 −0.491048 0.871132i \(-0.663386\pi\)
−0.491048 + 0.871132i \(0.663386\pi\)
\(510\) −0.238346 −0.0105542
\(511\) 0 0
\(512\) −22.4779 −0.993394
\(513\) 13.3744 0.590493
\(514\) 2.21905 0.0978780
\(515\) −9.68318 −0.426692
\(516\) −25.8094 −1.13619
\(517\) 0.337745 0.0148540
\(518\) 0 0
\(519\) 25.5059 1.11958
\(520\) 2.01816 0.0885024
\(521\) −17.9314 −0.785587 −0.392793 0.919627i \(-0.628491\pi\)
−0.392793 + 0.919627i \(0.628491\pi\)
\(522\) 7.39733 0.323772
\(523\) −28.4369 −1.24346 −0.621730 0.783232i \(-0.713570\pi\)
−0.621730 + 0.783232i \(0.713570\pi\)
\(524\) −10.2276 −0.446793
\(525\) 0 0
\(526\) 2.30876 0.100667
\(527\) 0.663579 0.0289060
\(528\) −1.74181 −0.0758026
\(529\) −22.9698 −0.998686
\(530\) 2.18890 0.0950798
\(531\) 12.6178 0.547567
\(532\) 0 0
\(533\) −1.35960 −0.0588909
\(534\) 8.77678 0.379808
\(535\) 8.81199 0.380976
\(536\) −6.69279 −0.289084
\(537\) 13.4244 0.579306
\(538\) 1.87775 0.0809555
\(539\) 0 0
\(540\) −4.68922 −0.201792
\(541\) −24.1728 −1.03927 −0.519635 0.854389i \(-0.673932\pi\)
−0.519635 + 0.854389i \(0.673932\pi\)
\(542\) 4.82267 0.207151
\(543\) −20.9311 −0.898238
\(544\) 1.16866 0.0501057
\(545\) 15.4903 0.663531
\(546\) 0 0
\(547\) −32.7697 −1.40113 −0.700566 0.713588i \(-0.747069\pi\)
−0.700566 + 0.713588i \(0.747069\pi\)
\(548\) −17.5572 −0.750007
\(549\) −2.94204 −0.125563
\(550\) −0.100017 −0.00426476
\(551\) −53.8157 −2.29262
\(552\) −0.577109 −0.0245634
\(553\) 0 0
\(554\) −4.07267 −0.173031
\(555\) 2.20143 0.0934455
\(556\) 42.0518 1.78340
\(557\) 18.9243 0.801850 0.400925 0.916111i \(-0.368689\pi\)
0.400925 + 0.916111i \(0.368689\pi\)
\(558\) 1.73928 0.0736297
\(559\) −8.49855 −0.359450
\(560\) 0 0
\(561\) 0.155098 0.00654823
\(562\) 0.449987 0.0189816
\(563\) 4.75796 0.200524 0.100262 0.994961i \(-0.468032\pi\)
0.100262 + 0.994961i \(0.468032\pi\)
\(564\) 5.38095 0.226579
\(565\) −3.28698 −0.138284
\(566\) 9.96860 0.419012
\(567\) 0 0
\(568\) 2.20120 0.0923601
\(569\) −28.3509 −1.18853 −0.594266 0.804268i \(-0.702557\pi\)
−0.594266 + 0.804268i \(0.702557\pi\)
\(570\) 4.54485 0.190363
\(571\) −30.6804 −1.28393 −0.641967 0.766732i \(-0.721882\pi\)
−0.641967 + 0.766732i \(0.721882\pi\)
\(572\) −0.630395 −0.0263581
\(573\) −6.32277 −0.264138
\(574\) 0 0
\(575\) 0.173848 0.00724998
\(576\) −8.38915 −0.349548
\(577\) 39.3644 1.63876 0.819380 0.573250i \(-0.194318\pi\)
0.819380 + 0.573250i \(0.194318\pi\)
\(578\) 6.63492 0.275976
\(579\) 19.4251 0.807280
\(580\) 18.8684 0.783469
\(581\) 0 0
\(582\) 7.79067 0.322933
\(583\) −1.42437 −0.0589914
\(584\) 9.86757 0.408323
\(585\) 2.47102 0.102164
\(586\) 12.6601 0.522983
\(587\) 11.2905 0.466010 0.233005 0.972476i \(-0.425144\pi\)
0.233005 + 0.972476i \(0.425144\pi\)
\(588\) 0 0
\(589\) −12.6533 −0.521370
\(590\) −2.67931 −0.110305
\(591\) −36.7556 −1.51193
\(592\) −3.10141 −0.127467
\(593\) 0.844669 0.0346864 0.0173432 0.999850i \(-0.494479\pi\)
0.0173432 + 0.999850i \(0.494479\pi\)
\(594\) −0.254024 −0.0104227
\(595\) 0 0
\(596\) −38.2818 −1.56808
\(597\) −2.11698 −0.0866421
\(598\) −0.0912188 −0.00373021
\(599\) 8.68728 0.354952 0.177476 0.984125i \(-0.443207\pi\)
0.177476 + 0.984125i \(0.443207\pi\)
\(600\) −3.31961 −0.135523
\(601\) 21.9854 0.896802 0.448401 0.893833i \(-0.351994\pi\)
0.448401 + 0.893833i \(0.351994\pi\)
\(602\) 0 0
\(603\) −8.19458 −0.333709
\(604\) 6.05236 0.246267
\(605\) −10.9349 −0.444568
\(606\) −14.9125 −0.605777
\(607\) −9.03808 −0.366844 −0.183422 0.983034i \(-0.558718\pi\)
−0.183422 + 0.983034i \(0.558718\pi\)
\(608\) −22.2842 −0.903744
\(609\) 0 0
\(610\) 0.624721 0.0252942
\(611\) 1.77185 0.0716813
\(612\) 0.941386 0.0380533
\(613\) −33.7654 −1.36377 −0.681885 0.731459i \(-0.738840\pi\)
−0.681885 + 0.731459i \(0.738840\pi\)
\(614\) −7.20609 −0.290814
\(615\) 2.23636 0.0901789
\(616\) 0 0
\(617\) 3.04136 0.122440 0.0612202 0.998124i \(-0.480501\pi\)
0.0612202 + 0.998124i \(0.480501\pi\)
\(618\) −8.35723 −0.336177
\(619\) 8.01154 0.322011 0.161006 0.986954i \(-0.448526\pi\)
0.161006 + 0.986954i \(0.448526\pi\)
\(620\) 4.43640 0.178170
\(621\) 0.441539 0.0177184
\(622\) 9.42974 0.378098
\(623\) 0 0
\(624\) −9.13774 −0.365802
\(625\) 1.00000 0.0400000
\(626\) 5.28165 0.211097
\(627\) −2.95744 −0.118109
\(628\) −5.44911 −0.217443
\(629\) 0.276162 0.0110113
\(630\) 0 0
\(631\) −47.3472 −1.88486 −0.942432 0.334398i \(-0.891467\pi\)
−0.942432 + 0.334398i \(0.891467\pi\)
\(632\) 3.83624 0.152597
\(633\) 34.6994 1.37918
\(634\) −10.5045 −0.417186
\(635\) −11.2254 −0.445466
\(636\) −22.6931 −0.899840
\(637\) 0 0
\(638\) 1.02214 0.0404668
\(639\) 2.69512 0.106617
\(640\) 10.2449 0.404966
\(641\) −29.2604 −1.15572 −0.577859 0.816137i \(-0.696112\pi\)
−0.577859 + 0.816137i \(0.696112\pi\)
\(642\) 7.60534 0.300159
\(643\) −18.7096 −0.737835 −0.368917 0.929462i \(-0.620271\pi\)
−0.368917 + 0.929462i \(0.620271\pi\)
\(644\) 0 0
\(645\) 13.9790 0.550422
\(646\) 0.570136 0.0224317
\(647\) −19.4974 −0.766523 −0.383262 0.923640i \(-0.625199\pi\)
−0.383262 + 0.923640i \(0.625199\pi\)
\(648\) −16.7834 −0.659315
\(649\) 1.74349 0.0684379
\(650\) −0.524703 −0.0205806
\(651\) 0 0
\(652\) −26.2342 −1.02741
\(653\) −4.89422 −0.191526 −0.0957629 0.995404i \(-0.530529\pi\)
−0.0957629 + 0.995404i \(0.530529\pi\)
\(654\) 13.3692 0.522776
\(655\) 5.53949 0.216446
\(656\) −3.15063 −0.123011
\(657\) 12.0817 0.471354
\(658\) 0 0
\(659\) 15.8239 0.616413 0.308207 0.951319i \(-0.400271\pi\)
0.308207 + 0.951319i \(0.400271\pi\)
\(660\) 1.03692 0.0403619
\(661\) 45.7332 1.77882 0.889408 0.457115i \(-0.151117\pi\)
0.889408 + 0.457115i \(0.151117\pi\)
\(662\) −2.19767 −0.0854150
\(663\) 0.813661 0.0316000
\(664\) 4.96763 0.192781
\(665\) 0 0
\(666\) 0.723838 0.0280481
\(667\) −1.77666 −0.0687926
\(668\) −20.9283 −0.809741
\(669\) −12.7406 −0.492582
\(670\) 1.74006 0.0672244
\(671\) −0.406521 −0.0156936
\(672\) 0 0
\(673\) −12.5412 −0.483426 −0.241713 0.970348i \(-0.577709\pi\)
−0.241713 + 0.970348i \(0.577709\pi\)
\(674\) −4.98860 −0.192154
\(675\) 2.53979 0.0977567
\(676\) 20.6948 0.795952
\(677\) 20.0036 0.768799 0.384400 0.923167i \(-0.374408\pi\)
0.384400 + 0.923167i \(0.374408\pi\)
\(678\) −2.83688 −0.108950
\(679\) 0 0
\(680\) −0.416434 −0.0159695
\(681\) 24.3155 0.931771
\(682\) 0.240328 0.00920264
\(683\) −20.3062 −0.776997 −0.388498 0.921449i \(-0.627006\pi\)
−0.388498 + 0.921449i \(0.627006\pi\)
\(684\) −17.9506 −0.686358
\(685\) 9.50942 0.363336
\(686\) 0 0
\(687\) −21.1942 −0.808610
\(688\) −19.6938 −0.750820
\(689\) −7.47241 −0.284676
\(690\) 0.150043 0.00571203
\(691\) −23.1754 −0.881636 −0.440818 0.897597i \(-0.645312\pi\)
−0.440818 + 0.897597i \(0.645312\pi\)
\(692\) 21.3913 0.813175
\(693\) 0 0
\(694\) −6.91256 −0.262397
\(695\) −22.7763 −0.863954
\(696\) 33.9251 1.28593
\(697\) 0.280544 0.0106264
\(698\) −5.21911 −0.197546
\(699\) −13.7701 −0.520834
\(700\) 0 0
\(701\) −44.0298 −1.66298 −0.831492 0.555537i \(-0.812513\pi\)
−0.831492 + 0.555537i \(0.812513\pi\)
\(702\) −1.33264 −0.0502972
\(703\) −5.26593 −0.198608
\(704\) −1.15918 −0.0436884
\(705\) −2.91446 −0.109765
\(706\) −3.69406 −0.139028
\(707\) 0 0
\(708\) 27.7773 1.04393
\(709\) −14.8918 −0.559274 −0.279637 0.960106i \(-0.590214\pi\)
−0.279637 + 0.960106i \(0.590214\pi\)
\(710\) −0.572289 −0.0214776
\(711\) 4.69705 0.176153
\(712\) 15.3346 0.574689
\(713\) −0.417734 −0.0156443
\(714\) 0 0
\(715\) 0.341437 0.0127690
\(716\) 11.2588 0.420761
\(717\) 11.3875 0.425274
\(718\) 9.85673 0.367850
\(719\) 7.23956 0.269990 0.134995 0.990846i \(-0.456898\pi\)
0.134995 + 0.990846i \(0.456898\pi\)
\(720\) 5.72613 0.213400
\(721\) 0 0
\(722\) −3.42258 −0.127375
\(723\) −50.3832 −1.87377
\(724\) −17.5545 −0.652407
\(725\) −10.2196 −0.379546
\(726\) −9.43757 −0.350261
\(727\) 27.9049 1.03494 0.517469 0.855702i \(-0.326874\pi\)
0.517469 + 0.855702i \(0.326874\pi\)
\(728\) 0 0
\(729\) −3.77589 −0.139848
\(730\) −2.56547 −0.0949524
\(731\) 1.75362 0.0648599
\(732\) −6.47669 −0.239385
\(733\) −15.7218 −0.580698 −0.290349 0.956921i \(-0.593771\pi\)
−0.290349 + 0.956921i \(0.593771\pi\)
\(734\) −0.559627 −0.0206562
\(735\) 0 0
\(736\) −0.735687 −0.0271178
\(737\) −1.13230 −0.0417088
\(738\) 0.735324 0.0270677
\(739\) −5.48469 −0.201758 −0.100879 0.994899i \(-0.532165\pi\)
−0.100879 + 0.994899i \(0.532165\pi\)
\(740\) 1.84630 0.0678713
\(741\) −15.5151 −0.569961
\(742\) 0 0
\(743\) 40.8565 1.49888 0.749441 0.662072i \(-0.230323\pi\)
0.749441 + 0.662072i \(0.230323\pi\)
\(744\) 7.97657 0.292435
\(745\) 20.7343 0.759647
\(746\) −0.600564 −0.0219882
\(747\) 6.08231 0.222540
\(748\) 0.130078 0.00475611
\(749\) 0 0
\(750\) 0.863067 0.0315148
\(751\) −2.82502 −0.103087 −0.0515433 0.998671i \(-0.516414\pi\)
−0.0515433 + 0.998671i \(0.516414\pi\)
\(752\) 4.10593 0.149728
\(753\) −61.4306 −2.23865
\(754\) 5.36225 0.195282
\(755\) −3.27811 −0.119302
\(756\) 0 0
\(757\) 7.91528 0.287686 0.143843 0.989601i \(-0.454054\pi\)
0.143843 + 0.989601i \(0.454054\pi\)
\(758\) 2.08344 0.0756739
\(759\) −0.0976365 −0.00354398
\(760\) 7.94067 0.288039
\(761\) 6.97754 0.252936 0.126468 0.991971i \(-0.459636\pi\)
0.126468 + 0.991971i \(0.459636\pi\)
\(762\) −9.68827 −0.350969
\(763\) 0 0
\(764\) −5.30279 −0.191848
\(765\) −0.509878 −0.0184347
\(766\) −1.83803 −0.0664107
\(767\) 9.14654 0.330262
\(768\) −11.1635 −0.402829
\(769\) 26.3394 0.949824 0.474912 0.880033i \(-0.342480\pi\)
0.474912 + 0.880033i \(0.342480\pi\)
\(770\) 0 0
\(771\) 12.4604 0.448751
\(772\) 16.2915 0.586343
\(773\) −28.5637 −1.02736 −0.513682 0.857980i \(-0.671719\pi\)
−0.513682 + 0.857980i \(0.671719\pi\)
\(774\) 4.59634 0.165212
\(775\) −2.40286 −0.0863133
\(776\) 13.6117 0.488632
\(777\) 0 0
\(778\) 3.78399 0.135663
\(779\) −5.34949 −0.191665
\(780\) 5.43978 0.194775
\(781\) 0.372403 0.0133256
\(782\) 0.0188224 0.000673087 0
\(783\) −25.9557 −0.927580
\(784\) 0 0
\(785\) 2.95137 0.105339
\(786\) 4.78095 0.170531
\(787\) −40.6974 −1.45071 −0.725353 0.688377i \(-0.758324\pi\)
−0.725353 + 0.688377i \(0.758324\pi\)
\(788\) −30.8263 −1.09814
\(789\) 12.9642 0.461537
\(790\) −0.997384 −0.0354853
\(791\) 0 0
\(792\) 0.710265 0.0252382
\(793\) −2.13265 −0.0757328
\(794\) −2.22665 −0.0790209
\(795\) 12.2911 0.435921
\(796\) −1.77547 −0.0629298
\(797\) −52.7815 −1.86962 −0.934809 0.355152i \(-0.884429\pi\)
−0.934809 + 0.355152i \(0.884429\pi\)
\(798\) 0 0
\(799\) −0.365609 −0.0129343
\(800\) −4.23177 −0.149616
\(801\) 18.7755 0.663401
\(802\) 6.32682 0.223408
\(803\) 1.66942 0.0589124
\(804\) −18.0398 −0.636214
\(805\) 0 0
\(806\) 1.26079 0.0444094
\(807\) 10.5439 0.371165
\(808\) −26.0548 −0.916604
\(809\) −38.0770 −1.33872 −0.669358 0.742940i \(-0.733431\pi\)
−0.669358 + 0.742940i \(0.733431\pi\)
\(810\) 4.36353 0.153319
\(811\) −44.2388 −1.55343 −0.776717 0.629850i \(-0.783117\pi\)
−0.776717 + 0.629850i \(0.783117\pi\)
\(812\) 0 0
\(813\) 27.0803 0.949747
\(814\) 0.100017 0.00350561
\(815\) 14.2091 0.497722
\(816\) 1.88551 0.0660060
\(817\) −33.4384 −1.16986
\(818\) 9.28086 0.324498
\(819\) 0 0
\(820\) 1.87560 0.0654987
\(821\) −45.0145 −1.57102 −0.785508 0.618851i \(-0.787598\pi\)
−0.785508 + 0.618851i \(0.787598\pi\)
\(822\) 8.20726 0.286261
\(823\) −51.0857 −1.78074 −0.890368 0.455241i \(-0.849553\pi\)
−0.890368 + 0.455241i \(0.849553\pi\)
\(824\) −14.6016 −0.508671
\(825\) −0.561619 −0.0195531
\(826\) 0 0
\(827\) −46.5393 −1.61833 −0.809165 0.587582i \(-0.800080\pi\)
−0.809165 + 0.587582i \(0.800080\pi\)
\(828\) −0.592617 −0.0205949
\(829\) 25.1523 0.873576 0.436788 0.899565i \(-0.356116\pi\)
0.436788 + 0.899565i \(0.356116\pi\)
\(830\) −1.29153 −0.0448298
\(831\) −22.8689 −0.793313
\(832\) −6.08122 −0.210828
\(833\) 0 0
\(834\) −19.6575 −0.680683
\(835\) 11.3353 0.392274
\(836\) −2.48035 −0.0857848
\(837\) −6.10278 −0.210943
\(838\) 6.53702 0.225818
\(839\) −13.8687 −0.478801 −0.239400 0.970921i \(-0.576951\pi\)
−0.239400 + 0.970921i \(0.576951\pi\)
\(840\) 0 0
\(841\) 75.4401 2.60138
\(842\) 7.42561 0.255903
\(843\) 2.52677 0.0870266
\(844\) 29.1017 1.00172
\(845\) −11.2088 −0.385594
\(846\) −0.958283 −0.0329464
\(847\) 0 0
\(848\) −17.3160 −0.594632
\(849\) 55.9757 1.92108
\(850\) 0.108269 0.00371359
\(851\) −0.173848 −0.00595945
\(852\) 5.93312 0.203265
\(853\) 37.9715 1.30012 0.650059 0.759884i \(-0.274744\pi\)
0.650059 + 0.759884i \(0.274744\pi\)
\(854\) 0 0
\(855\) 9.72248 0.332502
\(856\) 13.2879 0.454171
\(857\) 20.7367 0.708351 0.354175 0.935179i \(-0.384762\pi\)
0.354175 + 0.935179i \(0.384762\pi\)
\(858\) 0.294683 0.0100603
\(859\) 44.2668 1.51036 0.755182 0.655516i \(-0.227549\pi\)
0.755182 + 0.655516i \(0.227549\pi\)
\(860\) 11.7239 0.399782
\(861\) 0 0
\(862\) 10.9142 0.371739
\(863\) −25.2651 −0.860035 −0.430018 0.902821i \(-0.641493\pi\)
−0.430018 + 0.902821i \(0.641493\pi\)
\(864\) −10.7478 −0.365649
\(865\) −11.5860 −0.393937
\(866\) −9.40411 −0.319565
\(867\) 37.2564 1.26529
\(868\) 0 0
\(869\) 0.649022 0.0220166
\(870\) −8.82020 −0.299033
\(871\) −5.94017 −0.201275
\(872\) 23.3584 0.791014
\(873\) 16.6660 0.564059
\(874\) −0.358910 −0.0121403
\(875\) 0 0
\(876\) 26.5971 0.898634
\(877\) 26.6365 0.899452 0.449726 0.893167i \(-0.351522\pi\)
0.449726 + 0.893167i \(0.351522\pi\)
\(878\) 4.49692 0.151764
\(879\) 71.0889 2.39777
\(880\) 0.791218 0.0266720
\(881\) −17.8515 −0.601431 −0.300716 0.953714i \(-0.597226\pi\)
−0.300716 + 0.953714i \(0.597226\pi\)
\(882\) 0 0
\(883\) 30.9160 1.04041 0.520203 0.854043i \(-0.325856\pi\)
0.520203 + 0.854043i \(0.325856\pi\)
\(884\) 0.682402 0.0229517
\(885\) −15.0448 −0.505727
\(886\) 0.147614 0.00495917
\(887\) −12.8238 −0.430580 −0.215290 0.976550i \(-0.569070\pi\)
−0.215290 + 0.976550i \(0.569070\pi\)
\(888\) 3.31961 0.111399
\(889\) 0 0
\(890\) −3.98685 −0.133640
\(891\) −2.83945 −0.0951252
\(892\) −10.6853 −0.357771
\(893\) 6.97152 0.233293
\(894\) 17.8951 0.598502
\(895\) −6.09804 −0.203835
\(896\) 0 0
\(897\) −0.512212 −0.0171023
\(898\) −11.4095 −0.380740
\(899\) 24.5563 0.818998
\(900\) −3.40882 −0.113627
\(901\) 1.54188 0.0513675
\(902\) 0.101605 0.00338306
\(903\) 0 0
\(904\) −4.95654 −0.164852
\(905\) 9.50793 0.316054
\(906\) −2.82922 −0.0939947
\(907\) 17.6839 0.587186 0.293593 0.955931i \(-0.405149\pi\)
0.293593 + 0.955931i \(0.405149\pi\)
\(908\) 20.3929 0.676763
\(909\) −31.9012 −1.05810
\(910\) 0 0
\(911\) 17.3150 0.573670 0.286835 0.957980i \(-0.407397\pi\)
0.286835 + 0.957980i \(0.407397\pi\)
\(912\) −35.9534 −1.19054
\(913\) 0.840433 0.0278143
\(914\) −8.82779 −0.291997
\(915\) 3.50793 0.115969
\(916\) −17.7752 −0.587309
\(917\) 0 0
\(918\) 0.274981 0.00907571
\(919\) 35.7265 1.17851 0.589254 0.807948i \(-0.299422\pi\)
0.589254 + 0.807948i \(0.299422\pi\)
\(920\) 0.262152 0.00864290
\(921\) −40.4637 −1.33332
\(922\) −3.03033 −0.0997985
\(923\) 1.95367 0.0643057
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 11.1041 0.364904
\(927\) −17.8780 −0.587192
\(928\) 43.2470 1.41965
\(929\) 43.7620 1.43578 0.717892 0.696155i \(-0.245107\pi\)
0.717892 + 0.696155i \(0.245107\pi\)
\(930\) −2.07383 −0.0680036
\(931\) 0 0
\(932\) −11.5487 −0.378291
\(933\) 52.9499 1.73350
\(934\) 5.59644 0.183121
\(935\) −0.0704532 −0.00230406
\(936\) 3.72613 0.121793
\(937\) 58.1375 1.89927 0.949635 0.313359i \(-0.101454\pi\)
0.949635 + 0.313359i \(0.101454\pi\)
\(938\) 0 0
\(939\) 29.6576 0.967838
\(940\) −2.44430 −0.0797242
\(941\) −36.8277 −1.20055 −0.600274 0.799795i \(-0.704942\pi\)
−0.600274 + 0.799795i \(0.704942\pi\)
\(942\) 2.54723 0.0829933
\(943\) −0.176607 −0.00575112
\(944\) 21.1954 0.689853
\(945\) 0 0
\(946\) 0.635106 0.0206491
\(947\) 13.8629 0.450483 0.225241 0.974303i \(-0.427683\pi\)
0.225241 + 0.974303i \(0.427683\pi\)
\(948\) 10.3402 0.335835
\(949\) 8.75794 0.284295
\(950\) −2.06450 −0.0669812
\(951\) −58.9847 −1.91271
\(952\) 0 0
\(953\) 23.5558 0.763047 0.381524 0.924359i \(-0.375400\pi\)
0.381524 + 0.924359i \(0.375400\pi\)
\(954\) 4.04137 0.130844
\(955\) 2.87212 0.0929396
\(956\) 9.55047 0.308884
\(957\) 5.73952 0.185532
\(958\) 0.138086 0.00446135
\(959\) 0 0
\(960\) 10.0028 0.322839
\(961\) −25.2263 −0.813750
\(962\) 0.524703 0.0169171
\(963\) 16.2696 0.524279
\(964\) −42.2554 −1.36095
\(965\) −8.82386 −0.284050
\(966\) 0 0
\(967\) −33.4841 −1.07678 −0.538388 0.842697i \(-0.680967\pi\)
−0.538388 + 0.842697i \(0.680967\pi\)
\(968\) −16.4891 −0.529981
\(969\) 3.20143 0.102845
\(970\) −3.53891 −0.113628
\(971\) −55.5264 −1.78193 −0.890963 0.454076i \(-0.849969\pi\)
−0.890963 + 0.454076i \(0.849969\pi\)
\(972\) −31.1705 −0.999795
\(973\) 0 0
\(974\) 4.77822 0.153104
\(975\) −2.94632 −0.0943576
\(976\) −4.94204 −0.158191
\(977\) 5.68462 0.181867 0.0909335 0.995857i \(-0.471015\pi\)
0.0909335 + 0.995857i \(0.471015\pi\)
\(978\) 12.2634 0.392140
\(979\) 2.59434 0.0829155
\(980\) 0 0
\(981\) 28.5997 0.913118
\(982\) −9.04219 −0.288548
\(983\) −4.76817 −0.152081 −0.0760404 0.997105i \(-0.524228\pi\)
−0.0760404 + 0.997105i \(0.524228\pi\)
\(984\) 3.37229 0.107505
\(985\) 16.6963 0.531987
\(986\) −1.10646 −0.0352370
\(987\) 0 0
\(988\) −13.0122 −0.413974
\(989\) −1.10393 −0.0351029
\(990\) −0.184662 −0.00586895
\(991\) 0.665517 0.0211409 0.0105704 0.999944i \(-0.496635\pi\)
0.0105704 + 0.999944i \(0.496635\pi\)
\(992\) 10.1684 0.322846
\(993\) −12.3404 −0.391610
\(994\) 0 0
\(995\) 0.961637 0.0304859
\(996\) 13.3898 0.424272
\(997\) −56.3881 −1.78583 −0.892915 0.450226i \(-0.851343\pi\)
−0.892915 + 0.450226i \(0.851343\pi\)
\(998\) 5.17130 0.163695
\(999\) −2.53979 −0.0803556
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.i.1.3 5
7.6 odd 2 1295.2.a.f.1.3 5
35.34 odd 2 6475.2.a.p.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.a.f.1.3 5 7.6 odd 2
6475.2.a.p.1.3 5 35.34 odd 2
9065.2.a.i.1.3 5 1.1 even 1 trivial