Properties

Label 9065.2.a.i
Level $9065$
Weight $2$
Character orbit 9065.a
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,2,5,-2,0,0,-2,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.126032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 6x^{3} + 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{4} q^{3} + \beta_{2} q^{4} + q^{5} + \beta_{3} q^{6} + ( - \beta_{4} + \beta_{3} - \beta_{2} + 1) q^{8} - \beta_{2} q^{9} - \beta_1 q^{10} + (\beta_{3} + \beta_1 - 1) q^{11}+ \cdots + (\beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 2 q^{4} + 5 q^{5} - 2 q^{6} - 2 q^{9} - 7 q^{11} + 4 q^{12} + 3 q^{13} - q^{15} - 4 q^{16} - 5 q^{17} + 2 q^{20} - 10 q^{22} + 4 q^{23} + 8 q^{24} + 5 q^{25} - q^{27} - 17 q^{29} - 2 q^{30}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 6x^{3} + 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 5\nu^{2} - \nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + \nu^{3} - 6\nu^{2} - 5\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 4\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 5\beta_{2} + \beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.23025
0.815403
0.392048
−1.33253
−2.10518
−2.23025 0.161179 2.97402 1.00000 −0.359470 0 −2.17231 −2.97402 −2.23025
1.2 −0.815403 2.08209 −1.33512 1.00000 −1.69775 0 2.71947 1.33512 −0.815403
1.3 −0.392048 −2.20143 −1.84630 1.00000 0.863067 0 1.50793 1.84630 −0.392048
1.4 1.33253 −1.79565 −0.224374 1.00000 −2.39276 0 −2.96404 0.224374 1.33253
1.5 2.10518 0.753811 2.43177 1.00000 1.58691 0 0.908949 −2.43177 2.10518
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9065.2.a.i 5
7.b odd 2 1 1295.2.a.f 5
35.c odd 2 1 6475.2.a.p 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1295.2.a.f 5 7.b odd 2 1
6475.2.a.p 5 35.c odd 2 1
9065.2.a.i 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9065))\):

\( T_{2}^{5} - 6T_{2}^{3} + 6T_{2} + 2 \) Copy content Toggle raw display
\( T_{3}^{5} + T_{3}^{4} - 6T_{3}^{3} - 4T_{3}^{2} + 7T_{3} - 1 \) Copy content Toggle raw display
\( T_{11}^{5} + 7T_{11}^{4} + 10T_{11}^{3} - 6T_{11}^{2} - 11T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 6 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{5} + T^{4} - 6 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 7 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$13$ \( T^{5} - 3 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{5} + 5 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{5} - 32 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$23$ \( T^{5} - 4 T^{4} + \cdots + 2 \) Copy content Toggle raw display
$29$ \( T^{5} + 17 T^{4} + \cdots - 2287 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$37$ \( (T + 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - 10 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$43$ \( T^{5} + 6 T^{4} + \cdots + 7286 \) Copy content Toggle raw display
$47$ \( T^{5} + 11 T^{4} + \cdots - 25 \) Copy content Toggle raw display
$53$ \( T^{5} - 14 T^{4} + \cdots + 450 \) Copy content Toggle raw display
$59$ \( T^{5} - 104 T^{3} + \cdots + 5046 \) Copy content Toggle raw display
$61$ \( T^{5} - 4 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$67$ \( T^{5} + 28 T^{4} + \cdots + 1282 \) Copy content Toggle raw display
$71$ \( T^{5} - 236 T^{3} + \cdots + 12 \) Copy content Toggle raw display
$73$ \( T^{5} - 26 T^{4} + \cdots - 15584 \) Copy content Toggle raw display
$79$ \( T^{5} + 17 T^{4} + \cdots - 4923 \) Copy content Toggle raw display
$83$ \( T^{5} + 4 T^{4} + \cdots + 192 \) Copy content Toggle raw display
$89$ \( T^{5} - 2 T^{4} + \cdots - 1376 \) Copy content Toggle raw display
$97$ \( T^{5} - 35 T^{4} + \cdots + 161657 \) Copy content Toggle raw display
show more
show less