Properties

Label 2-9065-1.1-c1-0-469
Degree $2$
Conductor $9065$
Sign $-1$
Analytic cond. $72.3843$
Root an. cond. $8.50790$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.10·2-s + 0.753·3-s + 2.43·4-s + 5-s + 1.58·6-s + 0.908·8-s − 2.43·9-s + 2.10·10-s − 1.51·11-s + 1.83·12-s − 2.34·13-s + 0.753·15-s − 2.95·16-s + 4.11·17-s − 5.11·18-s + 0.0792·19-s + 2.43·20-s − 3.19·22-s − 4.37·23-s + 0.685·24-s + 25-s − 4.92·26-s − 4.09·27-s − 3.11·29-s + 1.58·30-s + 3.50·31-s − 8.02·32-s + ⋯
L(s)  = 1  + 1.48·2-s + 0.435·3-s + 1.21·4-s + 0.447·5-s + 0.647·6-s + 0.321·8-s − 0.810·9-s + 0.665·10-s − 0.457·11-s + 0.529·12-s − 0.649·13-s + 0.194·15-s − 0.737·16-s + 0.999·17-s − 1.20·18-s + 0.0181·19-s + 0.543·20-s − 0.681·22-s − 0.911·23-s + 0.139·24-s + 0.200·25-s − 0.966·26-s − 0.787·27-s − 0.579·29-s + 0.289·30-s + 0.629·31-s − 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9065 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9065\)    =    \(5 \cdot 7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(72.3843\)
Root analytic conductor: \(8.50790\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9065,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 \)
37 \( 1 + T \)
good2 \( 1 - 2.10T + 2T^{2} \)
3 \( 1 - 0.753T + 3T^{2} \)
11 \( 1 + 1.51T + 11T^{2} \)
13 \( 1 + 2.34T + 13T^{2} \)
17 \( 1 - 4.11T + 17T^{2} \)
19 \( 1 - 0.0792T + 19T^{2} \)
23 \( 1 + 4.37T + 23T^{2} \)
29 \( 1 + 3.11T + 29T^{2} \)
31 \( 1 - 3.50T + 31T^{2} \)
41 \( 1 - 0.182T + 41T^{2} \)
43 \( 1 + 9.09T + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 - 0.660T + 53T^{2} \)
59 \( 1 + 8.34T + 59T^{2} \)
61 \( 1 - 3.85T + 61T^{2} \)
67 \( 1 + 3.85T + 67T^{2} \)
71 \( 1 + 0.0167T + 71T^{2} \)
73 \( 1 - 13.0T + 73T^{2} \)
79 \( 1 - 3.06T + 79T^{2} \)
83 \( 1 + 5.24T + 83T^{2} \)
89 \( 1 + 11.9T + 89T^{2} \)
97 \( 1 + 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23054226448434850919525546025, −6.42611435297302649970294539701, −5.82121536077672233966322652143, −5.26803312831383002357785917921, −4.72762895738577502601355823126, −3.75176357540663585315593261295, −3.15096658968970221123927481434, −2.54642831724651551139609394096, −1.74549764661476491648731500442, 0, 1.74549764661476491648731500442, 2.54642831724651551139609394096, 3.15096658968970221123927481434, 3.75176357540663585315593261295, 4.72762895738577502601355823126, 5.26803312831383002357785917921, 5.82121536077672233966322652143, 6.42611435297302649970294539701, 7.23054226448434850919525546025

Graph of the $Z$-function along the critical line