Properties

Label 9065.2.a.bd.1.4
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-6,42,-38,-8,0,-6,48,2,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.54479 q^{2} +2.35441 q^{3} +4.47595 q^{4} -1.00000 q^{5} -5.99147 q^{6} -6.30078 q^{8} +2.54323 q^{9} +2.54479 q^{10} -2.20460 q^{11} +10.5382 q^{12} +3.88869 q^{13} -2.35441 q^{15} +7.08224 q^{16} +6.64930 q^{17} -6.47198 q^{18} -7.22049 q^{19} -4.47595 q^{20} +5.61025 q^{22} -8.15756 q^{23} -14.8346 q^{24} +1.00000 q^{25} -9.89589 q^{26} -1.07542 q^{27} -3.93286 q^{29} +5.99147 q^{30} +0.890739 q^{31} -5.42127 q^{32} -5.19053 q^{33} -16.9211 q^{34} +11.3834 q^{36} -1.00000 q^{37} +18.3746 q^{38} +9.15555 q^{39} +6.30078 q^{40} +11.5171 q^{41} -5.23431 q^{43} -9.86769 q^{44} -2.54323 q^{45} +20.7593 q^{46} +7.64537 q^{47} +16.6745 q^{48} -2.54479 q^{50} +15.6552 q^{51} +17.4056 q^{52} +11.4750 q^{53} +2.73672 q^{54} +2.20460 q^{55} -17.0000 q^{57} +10.0083 q^{58} +7.15917 q^{59} -10.5382 q^{60} -4.43500 q^{61} -2.26674 q^{62} -0.368509 q^{64} -3.88869 q^{65} +13.2088 q^{66} -14.6358 q^{67} +29.7620 q^{68} -19.2062 q^{69} -9.40829 q^{71} -16.0243 q^{72} -4.68801 q^{73} +2.54479 q^{74} +2.35441 q^{75} -32.3186 q^{76} -23.2990 q^{78} -6.11966 q^{79} -7.08224 q^{80} -10.1617 q^{81} -29.3086 q^{82} +12.0500 q^{83} -6.64930 q^{85} +13.3202 q^{86} -9.25954 q^{87} +13.8907 q^{88} +0.282461 q^{89} +6.47198 q^{90} -36.5129 q^{92} +2.09716 q^{93} -19.4559 q^{94} +7.22049 q^{95} -12.7639 q^{96} +17.0402 q^{97} -5.60681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 6 q^{3} + 42 q^{4} - 38 q^{5} - 8 q^{6} - 6 q^{8} + 48 q^{9} + 2 q^{10} + 34 q^{11} - 20 q^{12} - 22 q^{13} + 6 q^{15} + 46 q^{16} - 22 q^{17} - 36 q^{18} - 40 q^{19} - 42 q^{20} - 4 q^{22}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.54479 −1.79944 −0.899719 0.436470i \(-0.856229\pi\)
−0.899719 + 0.436470i \(0.856229\pi\)
\(3\) 2.35441 1.35932 0.679659 0.733529i \(-0.262128\pi\)
0.679659 + 0.733529i \(0.262128\pi\)
\(4\) 4.47595 2.23798
\(5\) −1.00000 −0.447214
\(6\) −5.99147 −2.44601
\(7\) 0 0
\(8\) −6.30078 −2.22766
\(9\) 2.54323 0.847743
\(10\) 2.54479 0.804733
\(11\) −2.20460 −0.664713 −0.332356 0.943154i \(-0.607844\pi\)
−0.332356 + 0.943154i \(0.607844\pi\)
\(12\) 10.5382 3.04212
\(13\) 3.88869 1.07853 0.539264 0.842137i \(-0.318702\pi\)
0.539264 + 0.842137i \(0.318702\pi\)
\(14\) 0 0
\(15\) −2.35441 −0.607905
\(16\) 7.08224 1.77056
\(17\) 6.64930 1.61269 0.806346 0.591444i \(-0.201442\pi\)
0.806346 + 0.591444i \(0.201442\pi\)
\(18\) −6.47198 −1.52546
\(19\) −7.22049 −1.65650 −0.828248 0.560362i \(-0.810662\pi\)
−0.828248 + 0.560362i \(0.810662\pi\)
\(20\) −4.47595 −1.00085
\(21\) 0 0
\(22\) 5.61025 1.19611
\(23\) −8.15756 −1.70097 −0.850485 0.526000i \(-0.823691\pi\)
−0.850485 + 0.526000i \(0.823691\pi\)
\(24\) −14.8346 −3.02810
\(25\) 1.00000 0.200000
\(26\) −9.89589 −1.94074
\(27\) −1.07542 −0.206965
\(28\) 0 0
\(29\) −3.93286 −0.730313 −0.365157 0.930946i \(-0.618985\pi\)
−0.365157 + 0.930946i \(0.618985\pi\)
\(30\) 5.99147 1.09389
\(31\) 0.890739 0.159981 0.0799907 0.996796i \(-0.474511\pi\)
0.0799907 + 0.996796i \(0.474511\pi\)
\(32\) −5.42127 −0.958354
\(33\) −5.19053 −0.903555
\(34\) −16.9211 −2.90194
\(35\) 0 0
\(36\) 11.3834 1.89723
\(37\) −1.00000 −0.164399
\(38\) 18.3746 2.98076
\(39\) 9.15555 1.46606
\(40\) 6.30078 0.996240
\(41\) 11.5171 1.79867 0.899334 0.437262i \(-0.144052\pi\)
0.899334 + 0.437262i \(0.144052\pi\)
\(42\) 0 0
\(43\) −5.23431 −0.798224 −0.399112 0.916902i \(-0.630682\pi\)
−0.399112 + 0.916902i \(0.630682\pi\)
\(44\) −9.86769 −1.48761
\(45\) −2.54323 −0.379122
\(46\) 20.7593 3.06079
\(47\) 7.64537 1.11519 0.557596 0.830112i \(-0.311724\pi\)
0.557596 + 0.830112i \(0.311724\pi\)
\(48\) 16.6745 2.40675
\(49\) 0 0
\(50\) −2.54479 −0.359888
\(51\) 15.6552 2.19216
\(52\) 17.4056 2.41372
\(53\) 11.4750 1.57621 0.788103 0.615543i \(-0.211063\pi\)
0.788103 + 0.615543i \(0.211063\pi\)
\(54\) 2.73672 0.372421
\(55\) 2.20460 0.297269
\(56\) 0 0
\(57\) −17.0000 −2.25170
\(58\) 10.0083 1.31415
\(59\) 7.15917 0.932044 0.466022 0.884773i \(-0.345687\pi\)
0.466022 + 0.884773i \(0.345687\pi\)
\(60\) −10.5382 −1.36048
\(61\) −4.43500 −0.567844 −0.283922 0.958847i \(-0.591636\pi\)
−0.283922 + 0.958847i \(0.591636\pi\)
\(62\) −2.26674 −0.287877
\(63\) 0 0
\(64\) −0.368509 −0.0460636
\(65\) −3.88869 −0.482333
\(66\) 13.2088 1.62589
\(67\) −14.6358 −1.78805 −0.894024 0.448018i \(-0.852130\pi\)
−0.894024 + 0.448018i \(0.852130\pi\)
\(68\) 29.7620 3.60917
\(69\) −19.2062 −2.31216
\(70\) 0 0
\(71\) −9.40829 −1.11656 −0.558279 0.829653i \(-0.688538\pi\)
−0.558279 + 0.829653i \(0.688538\pi\)
\(72\) −16.0243 −1.88848
\(73\) −4.68801 −0.548690 −0.274345 0.961631i \(-0.588461\pi\)
−0.274345 + 0.961631i \(0.588461\pi\)
\(74\) 2.54479 0.295826
\(75\) 2.35441 0.271863
\(76\) −32.3186 −3.70720
\(77\) 0 0
\(78\) −23.2990 −2.63809
\(79\) −6.11966 −0.688516 −0.344258 0.938875i \(-0.611869\pi\)
−0.344258 + 0.938875i \(0.611869\pi\)
\(80\) −7.08224 −0.791819
\(81\) −10.1617 −1.12907
\(82\) −29.3086 −3.23659
\(83\) 12.0500 1.32266 0.661328 0.750097i \(-0.269993\pi\)
0.661328 + 0.750097i \(0.269993\pi\)
\(84\) 0 0
\(85\) −6.64930 −0.721218
\(86\) 13.3202 1.43636
\(87\) −9.25954 −0.992727
\(88\) 13.8907 1.48075
\(89\) 0.282461 0.0299408 0.0149704 0.999888i \(-0.495235\pi\)
0.0149704 + 0.999888i \(0.495235\pi\)
\(90\) 6.47198 0.682207
\(91\) 0 0
\(92\) −36.5129 −3.80673
\(93\) 2.09716 0.217466
\(94\) −19.4559 −2.00672
\(95\) 7.22049 0.740807
\(96\) −12.7639 −1.30271
\(97\) 17.0402 1.73017 0.865084 0.501628i \(-0.167265\pi\)
0.865084 + 0.501628i \(0.167265\pi\)
\(98\) 0 0
\(99\) −5.60681 −0.563506
\(100\) 4.47595 0.447595
\(101\) 3.40767 0.339076 0.169538 0.985524i \(-0.445773\pi\)
0.169538 + 0.985524i \(0.445773\pi\)
\(102\) −39.8391 −3.94466
\(103\) −15.1214 −1.48996 −0.744980 0.667087i \(-0.767541\pi\)
−0.744980 + 0.667087i \(0.767541\pi\)
\(104\) −24.5018 −2.40260
\(105\) 0 0
\(106\) −29.2013 −2.83629
\(107\) 10.4790 1.01304 0.506521 0.862228i \(-0.330931\pi\)
0.506521 + 0.862228i \(0.330931\pi\)
\(108\) −4.81354 −0.463183
\(109\) −5.74162 −0.549948 −0.274974 0.961452i \(-0.588669\pi\)
−0.274974 + 0.961452i \(0.588669\pi\)
\(110\) −5.61025 −0.534916
\(111\) −2.35441 −0.223470
\(112\) 0 0
\(113\) −10.8932 −1.02474 −0.512371 0.858764i \(-0.671233\pi\)
−0.512371 + 0.858764i \(0.671233\pi\)
\(114\) 43.2614 4.05180
\(115\) 8.15756 0.760696
\(116\) −17.6033 −1.63442
\(117\) 9.88983 0.914315
\(118\) −18.2186 −1.67716
\(119\) 0 0
\(120\) 14.8346 1.35421
\(121\) −6.13973 −0.558157
\(122\) 11.2862 1.02180
\(123\) 27.1159 2.44496
\(124\) 3.98691 0.358035
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 1.24161 0.110175 0.0550876 0.998482i \(-0.482456\pi\)
0.0550876 + 0.998482i \(0.482456\pi\)
\(128\) 11.7803 1.04124
\(129\) −12.3237 −1.08504
\(130\) 9.89589 0.867927
\(131\) −8.20271 −0.716674 −0.358337 0.933592i \(-0.616656\pi\)
−0.358337 + 0.933592i \(0.616656\pi\)
\(132\) −23.2326 −2.02214
\(133\) 0 0
\(134\) 37.2451 3.21748
\(135\) 1.07542 0.0925576
\(136\) −41.8958 −3.59253
\(137\) −6.15675 −0.526007 −0.263003 0.964795i \(-0.584713\pi\)
−0.263003 + 0.964795i \(0.584713\pi\)
\(138\) 48.8758 4.16058
\(139\) −2.28391 −0.193719 −0.0968596 0.995298i \(-0.530880\pi\)
−0.0968596 + 0.995298i \(0.530880\pi\)
\(140\) 0 0
\(141\) 18.0003 1.51590
\(142\) 23.9421 2.00918
\(143\) −8.57301 −0.716911
\(144\) 18.0118 1.50098
\(145\) 3.93286 0.326606
\(146\) 11.9300 0.987334
\(147\) 0 0
\(148\) −4.47595 −0.367921
\(149\) 11.8950 0.974475 0.487238 0.873269i \(-0.338005\pi\)
0.487238 + 0.873269i \(0.338005\pi\)
\(150\) −5.99147 −0.489201
\(151\) −19.5398 −1.59013 −0.795065 0.606525i \(-0.792563\pi\)
−0.795065 + 0.606525i \(0.792563\pi\)
\(152\) 45.4947 3.69011
\(153\) 16.9107 1.36715
\(154\) 0 0
\(155\) −0.890739 −0.0715459
\(156\) 40.9798 3.28101
\(157\) −14.9353 −1.19196 −0.595982 0.802998i \(-0.703237\pi\)
−0.595982 + 0.802998i \(0.703237\pi\)
\(158\) 15.5732 1.23894
\(159\) 27.0167 2.14256
\(160\) 5.42127 0.428589
\(161\) 0 0
\(162\) 25.8593 2.03170
\(163\) 2.41381 0.189064 0.0945320 0.995522i \(-0.469865\pi\)
0.0945320 + 0.995522i \(0.469865\pi\)
\(164\) 51.5500 4.02538
\(165\) 5.19053 0.404082
\(166\) −30.6646 −2.38004
\(167\) 6.81805 0.527597 0.263798 0.964578i \(-0.415025\pi\)
0.263798 + 0.964578i \(0.415025\pi\)
\(168\) 0 0
\(169\) 2.12190 0.163223
\(170\) 16.9211 1.29779
\(171\) −18.3634 −1.40428
\(172\) −23.4285 −1.78641
\(173\) −18.6792 −1.42015 −0.710077 0.704124i \(-0.751340\pi\)
−0.710077 + 0.704124i \(0.751340\pi\)
\(174\) 23.5636 1.78635
\(175\) 0 0
\(176\) −15.6135 −1.17691
\(177\) 16.8556 1.26694
\(178\) −0.718803 −0.0538766
\(179\) −4.51287 −0.337308 −0.168654 0.985675i \(-0.553942\pi\)
−0.168654 + 0.985675i \(0.553942\pi\)
\(180\) −11.3834 −0.848467
\(181\) −10.1544 −0.754774 −0.377387 0.926056i \(-0.623177\pi\)
−0.377387 + 0.926056i \(0.623177\pi\)
\(182\) 0 0
\(183\) −10.4418 −0.771880
\(184\) 51.3990 3.78918
\(185\) 1.00000 0.0735215
\(186\) −5.33684 −0.391316
\(187\) −14.6591 −1.07198
\(188\) 34.2203 2.49577
\(189\) 0 0
\(190\) −18.3746 −1.33304
\(191\) −8.33736 −0.603271 −0.301635 0.953423i \(-0.597532\pi\)
−0.301635 + 0.953423i \(0.597532\pi\)
\(192\) −0.867620 −0.0626151
\(193\) 6.53651 0.470508 0.235254 0.971934i \(-0.424408\pi\)
0.235254 + 0.971934i \(0.424408\pi\)
\(194\) −43.3636 −3.11333
\(195\) −9.15555 −0.655643
\(196\) 0 0
\(197\) −3.20355 −0.228243 −0.114122 0.993467i \(-0.536405\pi\)
−0.114122 + 0.993467i \(0.536405\pi\)
\(198\) 14.2682 1.01399
\(199\) −10.3204 −0.731592 −0.365796 0.930695i \(-0.619203\pi\)
−0.365796 + 0.930695i \(0.619203\pi\)
\(200\) −6.30078 −0.445532
\(201\) −34.4587 −2.43053
\(202\) −8.67180 −0.610145
\(203\) 0 0
\(204\) 70.0718 4.90600
\(205\) −11.5171 −0.804389
\(206\) 38.4809 2.68109
\(207\) −20.7466 −1.44199
\(208\) 27.5406 1.90960
\(209\) 15.9183 1.10109
\(210\) 0 0
\(211\) 4.17102 0.287145 0.143573 0.989640i \(-0.454141\pi\)
0.143573 + 0.989640i \(0.454141\pi\)
\(212\) 51.3614 3.52751
\(213\) −22.1509 −1.51776
\(214\) −26.6668 −1.82291
\(215\) 5.23431 0.356977
\(216\) 6.77600 0.461048
\(217\) 0 0
\(218\) 14.6112 0.989596
\(219\) −11.0375 −0.745844
\(220\) 9.86769 0.665280
\(221\) 25.8571 1.73933
\(222\) 5.99147 0.402121
\(223\) 10.3965 0.696202 0.348101 0.937457i \(-0.386827\pi\)
0.348101 + 0.937457i \(0.386827\pi\)
\(224\) 0 0
\(225\) 2.54323 0.169549
\(226\) 27.7208 1.84396
\(227\) −3.45351 −0.229217 −0.114609 0.993411i \(-0.536561\pi\)
−0.114609 + 0.993411i \(0.536561\pi\)
\(228\) −76.0911 −5.03926
\(229\) 24.0355 1.58831 0.794155 0.607715i \(-0.207914\pi\)
0.794155 + 0.607715i \(0.207914\pi\)
\(230\) −20.7593 −1.36883
\(231\) 0 0
\(232\) 24.7801 1.62689
\(233\) −18.2982 −1.19876 −0.599379 0.800465i \(-0.704586\pi\)
−0.599379 + 0.800465i \(0.704586\pi\)
\(234\) −25.1675 −1.64525
\(235\) −7.64537 −0.498729
\(236\) 32.0441 2.08589
\(237\) −14.4082 −0.935911
\(238\) 0 0
\(239\) 13.4593 0.870612 0.435306 0.900283i \(-0.356640\pi\)
0.435306 + 0.900283i \(0.356640\pi\)
\(240\) −16.6745 −1.07633
\(241\) −10.9640 −0.706252 −0.353126 0.935576i \(-0.614881\pi\)
−0.353126 + 0.935576i \(0.614881\pi\)
\(242\) 15.6243 1.00437
\(243\) −20.6984 −1.32781
\(244\) −19.8509 −1.27082
\(245\) 0 0
\(246\) −69.0043 −4.39955
\(247\) −28.0783 −1.78658
\(248\) −5.61235 −0.356385
\(249\) 28.3705 1.79791
\(250\) 2.54479 0.160947
\(251\) −31.0897 −1.96236 −0.981181 0.193089i \(-0.938149\pi\)
−0.981181 + 0.193089i \(0.938149\pi\)
\(252\) 0 0
\(253\) 17.9842 1.13066
\(254\) −3.15964 −0.198253
\(255\) −15.6552 −0.980364
\(256\) −29.2414 −1.82759
\(257\) 12.8560 0.801936 0.400968 0.916092i \(-0.368674\pi\)
0.400968 + 0.916092i \(0.368674\pi\)
\(258\) 31.3612 1.95246
\(259\) 0 0
\(260\) −17.4056 −1.07945
\(261\) −10.0022 −0.619118
\(262\) 20.8742 1.28961
\(263\) −16.9630 −1.04599 −0.522993 0.852337i \(-0.675185\pi\)
−0.522993 + 0.852337i \(0.675185\pi\)
\(264\) 32.7044 2.01281
\(265\) −11.4750 −0.704901
\(266\) 0 0
\(267\) 0.665027 0.0406990
\(268\) −65.5092 −4.00161
\(269\) 17.1329 1.04461 0.522307 0.852758i \(-0.325072\pi\)
0.522307 + 0.852758i \(0.325072\pi\)
\(270\) −2.73672 −0.166552
\(271\) 21.5304 1.30788 0.653939 0.756547i \(-0.273115\pi\)
0.653939 + 0.756547i \(0.273115\pi\)
\(272\) 47.0920 2.85537
\(273\) 0 0
\(274\) 15.6676 0.946516
\(275\) −2.20460 −0.132943
\(276\) −85.9661 −5.17455
\(277\) −26.8300 −1.61206 −0.806030 0.591875i \(-0.798388\pi\)
−0.806030 + 0.591875i \(0.798388\pi\)
\(278\) 5.81208 0.348586
\(279\) 2.26535 0.135623
\(280\) 0 0
\(281\) −31.6042 −1.88535 −0.942675 0.333713i \(-0.891698\pi\)
−0.942675 + 0.333713i \(0.891698\pi\)
\(282\) −45.8070 −2.72777
\(283\) 7.95534 0.472896 0.236448 0.971644i \(-0.424017\pi\)
0.236448 + 0.971644i \(0.424017\pi\)
\(284\) −42.1111 −2.49883
\(285\) 17.0000 1.00699
\(286\) 21.8165 1.29004
\(287\) 0 0
\(288\) −13.7875 −0.812438
\(289\) 27.2132 1.60078
\(290\) −10.0083 −0.587707
\(291\) 40.1195 2.35185
\(292\) −20.9833 −1.22796
\(293\) 1.88525 0.110138 0.0550688 0.998483i \(-0.482462\pi\)
0.0550688 + 0.998483i \(0.482462\pi\)
\(294\) 0 0
\(295\) −7.15917 −0.416823
\(296\) 6.30078 0.366225
\(297\) 2.37088 0.137572
\(298\) −30.2702 −1.75351
\(299\) −31.7222 −1.83454
\(300\) 10.5382 0.608424
\(301\) 0 0
\(302\) 49.7248 2.86134
\(303\) 8.02304 0.460911
\(304\) −51.1373 −2.93293
\(305\) 4.43500 0.253948
\(306\) −43.0342 −2.46010
\(307\) −27.6166 −1.57616 −0.788081 0.615571i \(-0.788925\pi\)
−0.788081 + 0.615571i \(0.788925\pi\)
\(308\) 0 0
\(309\) −35.6020 −2.02533
\(310\) 2.26674 0.128742
\(311\) 11.8079 0.669563 0.334782 0.942296i \(-0.391337\pi\)
0.334782 + 0.942296i \(0.391337\pi\)
\(312\) −57.6871 −3.26589
\(313\) 4.29805 0.242940 0.121470 0.992595i \(-0.461239\pi\)
0.121470 + 0.992595i \(0.461239\pi\)
\(314\) 38.0071 2.14487
\(315\) 0 0
\(316\) −27.3913 −1.54088
\(317\) −13.6201 −0.764980 −0.382490 0.923960i \(-0.624933\pi\)
−0.382490 + 0.923960i \(0.624933\pi\)
\(318\) −68.7518 −3.85541
\(319\) 8.67039 0.485448
\(320\) 0.368509 0.0206003
\(321\) 24.6718 1.37704
\(322\) 0 0
\(323\) −48.0113 −2.67142
\(324\) −45.4832 −2.52684
\(325\) 3.88869 0.215706
\(326\) −6.14263 −0.340209
\(327\) −13.5181 −0.747553
\(328\) −72.5667 −4.00682
\(329\) 0 0
\(330\) −13.2088 −0.727121
\(331\) 10.2240 0.561964 0.280982 0.959713i \(-0.409340\pi\)
0.280982 + 0.959713i \(0.409340\pi\)
\(332\) 53.9350 2.96007
\(333\) −2.54323 −0.139368
\(334\) −17.3505 −0.949378
\(335\) 14.6358 0.799640
\(336\) 0 0
\(337\) −10.0875 −0.549503 −0.274752 0.961515i \(-0.588596\pi\)
−0.274752 + 0.961515i \(0.588596\pi\)
\(338\) −5.39980 −0.293710
\(339\) −25.6469 −1.39295
\(340\) −29.7620 −1.61407
\(341\) −1.96373 −0.106342
\(342\) 46.7309 2.52692
\(343\) 0 0
\(344\) 32.9802 1.77817
\(345\) 19.2062 1.03403
\(346\) 47.5346 2.55548
\(347\) −12.6324 −0.678142 −0.339071 0.940761i \(-0.610113\pi\)
−0.339071 + 0.940761i \(0.610113\pi\)
\(348\) −41.4453 −2.22170
\(349\) 36.0137 1.92777 0.963886 0.266316i \(-0.0858064\pi\)
0.963886 + 0.266316i \(0.0858064\pi\)
\(350\) 0 0
\(351\) −4.18198 −0.223218
\(352\) 11.9517 0.637030
\(353\) −35.0543 −1.86575 −0.932875 0.360200i \(-0.882709\pi\)
−0.932875 + 0.360200i \(0.882709\pi\)
\(354\) −42.8939 −2.27979
\(355\) 9.40829 0.499340
\(356\) 1.26428 0.0670067
\(357\) 0 0
\(358\) 11.4843 0.606965
\(359\) 12.5814 0.664023 0.332011 0.943275i \(-0.392273\pi\)
0.332011 + 0.943275i \(0.392273\pi\)
\(360\) 16.0243 0.844556
\(361\) 33.1355 1.74398
\(362\) 25.8409 1.35817
\(363\) −14.4554 −0.758713
\(364\) 0 0
\(365\) 4.68801 0.245382
\(366\) 26.5722 1.38895
\(367\) 2.61616 0.136562 0.0682812 0.997666i \(-0.478248\pi\)
0.0682812 + 0.997666i \(0.478248\pi\)
\(368\) −57.7738 −3.01167
\(369\) 29.2906 1.52481
\(370\) −2.54479 −0.132297
\(371\) 0 0
\(372\) 9.38680 0.486683
\(373\) −33.8273 −1.75151 −0.875756 0.482754i \(-0.839637\pi\)
−0.875756 + 0.482754i \(0.839637\pi\)
\(374\) 37.3042 1.92896
\(375\) −2.35441 −0.121581
\(376\) −48.1718 −2.48427
\(377\) −15.2937 −0.787663
\(378\) 0 0
\(379\) −11.1547 −0.572978 −0.286489 0.958083i \(-0.592488\pi\)
−0.286489 + 0.958083i \(0.592488\pi\)
\(380\) 32.3186 1.65791
\(381\) 2.92326 0.149763
\(382\) 21.2168 1.08555
\(383\) −17.5343 −0.895961 −0.447980 0.894043i \(-0.647857\pi\)
−0.447980 + 0.894043i \(0.647857\pi\)
\(384\) 27.7356 1.41538
\(385\) 0 0
\(386\) −16.6340 −0.846651
\(387\) −13.3120 −0.676689
\(388\) 76.2710 3.87207
\(389\) 1.79309 0.0909133 0.0454567 0.998966i \(-0.485526\pi\)
0.0454567 + 0.998966i \(0.485526\pi\)
\(390\) 23.2990 1.17979
\(391\) −54.2421 −2.74314
\(392\) 0 0
\(393\) −19.3125 −0.974187
\(394\) 8.15236 0.410710
\(395\) 6.11966 0.307914
\(396\) −25.0958 −1.26111
\(397\) −6.96092 −0.349358 −0.174679 0.984625i \(-0.555889\pi\)
−0.174679 + 0.984625i \(0.555889\pi\)
\(398\) 26.2632 1.31646
\(399\) 0 0
\(400\) 7.08224 0.354112
\(401\) 9.29439 0.464139 0.232070 0.972699i \(-0.425450\pi\)
0.232070 + 0.972699i \(0.425450\pi\)
\(402\) 87.6900 4.37358
\(403\) 3.46381 0.172545
\(404\) 15.2526 0.758843
\(405\) 10.1617 0.504938
\(406\) 0 0
\(407\) 2.20460 0.109278
\(408\) −98.6397 −4.88339
\(409\) 37.4916 1.85384 0.926921 0.375256i \(-0.122445\pi\)
0.926921 + 0.375256i \(0.122445\pi\)
\(410\) 29.3086 1.44745
\(411\) −14.4955 −0.715010
\(412\) −67.6829 −3.33450
\(413\) 0 0
\(414\) 52.7956 2.59476
\(415\) −12.0500 −0.591509
\(416\) −21.0816 −1.03361
\(417\) −5.37726 −0.263326
\(418\) −40.5088 −1.98135
\(419\) 13.2388 0.646758 0.323379 0.946270i \(-0.395181\pi\)
0.323379 + 0.946270i \(0.395181\pi\)
\(420\) 0 0
\(421\) 10.5732 0.515305 0.257652 0.966238i \(-0.417051\pi\)
0.257652 + 0.966238i \(0.417051\pi\)
\(422\) −10.6144 −0.516700
\(423\) 19.4439 0.945397
\(424\) −72.3011 −3.51125
\(425\) 6.64930 0.322539
\(426\) 56.3695 2.73111
\(427\) 0 0
\(428\) 46.9034 2.26716
\(429\) −20.1844 −0.974510
\(430\) −13.3202 −0.642358
\(431\) −19.2295 −0.926252 −0.463126 0.886293i \(-0.653272\pi\)
−0.463126 + 0.886293i \(0.653272\pi\)
\(432\) −7.61640 −0.366444
\(433\) 32.4074 1.55740 0.778699 0.627397i \(-0.215880\pi\)
0.778699 + 0.627397i \(0.215880\pi\)
\(434\) 0 0
\(435\) 9.25954 0.443961
\(436\) −25.6992 −1.23077
\(437\) 58.9016 2.81765
\(438\) 28.0881 1.34210
\(439\) −17.9700 −0.857661 −0.428830 0.903385i \(-0.641074\pi\)
−0.428830 + 0.903385i \(0.641074\pi\)
\(440\) −13.8907 −0.662213
\(441\) 0 0
\(442\) −65.8008 −3.12982
\(443\) −7.94973 −0.377703 −0.188851 0.982006i \(-0.560476\pi\)
−0.188851 + 0.982006i \(0.560476\pi\)
\(444\) −10.5382 −0.500121
\(445\) −0.282461 −0.0133899
\(446\) −26.4569 −1.25277
\(447\) 28.0056 1.32462
\(448\) 0 0
\(449\) 1.29739 0.0612274 0.0306137 0.999531i \(-0.490254\pi\)
0.0306137 + 0.999531i \(0.490254\pi\)
\(450\) −6.47198 −0.305092
\(451\) −25.3906 −1.19560
\(452\) −48.7572 −2.29335
\(453\) −46.0047 −2.16149
\(454\) 8.78845 0.412463
\(455\) 0 0
\(456\) 107.113 5.01603
\(457\) −14.7423 −0.689614 −0.344807 0.938674i \(-0.612056\pi\)
−0.344807 + 0.938674i \(0.612056\pi\)
\(458\) −61.1653 −2.85807
\(459\) −7.15081 −0.333771
\(460\) 36.5129 1.70242
\(461\) −4.62821 −0.215557 −0.107779 0.994175i \(-0.534374\pi\)
−0.107779 + 0.994175i \(0.534374\pi\)
\(462\) 0 0
\(463\) −8.54874 −0.397293 −0.198647 0.980071i \(-0.563655\pi\)
−0.198647 + 0.980071i \(0.563655\pi\)
\(464\) −27.8535 −1.29306
\(465\) −2.09716 −0.0972536
\(466\) 46.5652 2.15709
\(467\) −24.9465 −1.15438 −0.577192 0.816608i \(-0.695852\pi\)
−0.577192 + 0.816608i \(0.695852\pi\)
\(468\) 44.2664 2.04622
\(469\) 0 0
\(470\) 19.4559 0.897432
\(471\) −35.1637 −1.62026
\(472\) −45.1083 −2.07628
\(473\) 11.5396 0.530590
\(474\) 36.6657 1.68411
\(475\) −7.22049 −0.331299
\(476\) 0 0
\(477\) 29.1835 1.33622
\(478\) −34.2512 −1.56661
\(479\) −23.7322 −1.08435 −0.542176 0.840265i \(-0.682399\pi\)
−0.542176 + 0.840265i \(0.682399\pi\)
\(480\) 12.7639 0.582588
\(481\) −3.88869 −0.177309
\(482\) 27.9010 1.27086
\(483\) 0 0
\(484\) −27.4811 −1.24914
\(485\) −17.0402 −0.773754
\(486\) 52.6732 2.38930
\(487\) −1.49225 −0.0676205 −0.0338102 0.999428i \(-0.510764\pi\)
−0.0338102 + 0.999428i \(0.510764\pi\)
\(488\) 27.9440 1.26496
\(489\) 5.68308 0.256998
\(490\) 0 0
\(491\) 11.3886 0.513958 0.256979 0.966417i \(-0.417273\pi\)
0.256979 + 0.966417i \(0.417273\pi\)
\(492\) 121.370 5.47176
\(493\) −26.1508 −1.17777
\(494\) 71.4533 3.21483
\(495\) 5.60681 0.252007
\(496\) 6.30843 0.283257
\(497\) 0 0
\(498\) −72.1970 −3.23522
\(499\) 32.5950 1.45915 0.729576 0.683900i \(-0.239718\pi\)
0.729576 + 0.683900i \(0.239718\pi\)
\(500\) −4.47595 −0.200171
\(501\) 16.0525 0.717172
\(502\) 79.1166 3.53115
\(503\) −5.12412 −0.228473 −0.114237 0.993454i \(-0.536442\pi\)
−0.114237 + 0.993454i \(0.536442\pi\)
\(504\) 0 0
\(505\) −3.40767 −0.151639
\(506\) −45.7659 −2.03454
\(507\) 4.99582 0.221872
\(508\) 5.55739 0.246569
\(509\) 17.9004 0.793421 0.396710 0.917944i \(-0.370152\pi\)
0.396710 + 0.917944i \(0.370152\pi\)
\(510\) 39.8391 1.76410
\(511\) 0 0
\(512\) 50.8526 2.24739
\(513\) 7.76508 0.342837
\(514\) −32.7158 −1.44303
\(515\) 15.1214 0.666330
\(516\) −55.1602 −2.42829
\(517\) −16.8550 −0.741282
\(518\) 0 0
\(519\) −43.9784 −1.93044
\(520\) 24.5018 1.07447
\(521\) −1.88188 −0.0824466 −0.0412233 0.999150i \(-0.513125\pi\)
−0.0412233 + 0.999150i \(0.513125\pi\)
\(522\) 25.4534 1.11406
\(523\) −11.9217 −0.521299 −0.260649 0.965434i \(-0.583937\pi\)
−0.260649 + 0.965434i \(0.583937\pi\)
\(524\) −36.7149 −1.60390
\(525\) 0 0
\(526\) 43.1674 1.88219
\(527\) 5.92279 0.258001
\(528\) −36.7606 −1.59980
\(529\) 43.5458 1.89330
\(530\) 29.2013 1.26843
\(531\) 18.2074 0.790134
\(532\) 0 0
\(533\) 44.7864 1.93991
\(534\) −1.69235 −0.0732353
\(535\) −10.4790 −0.453046
\(536\) 92.2170 3.98317
\(537\) −10.6251 −0.458509
\(538\) −43.5997 −1.87972
\(539\) 0 0
\(540\) 4.81354 0.207142
\(541\) −18.1448 −0.780108 −0.390054 0.920792i \(-0.627544\pi\)
−0.390054 + 0.920792i \(0.627544\pi\)
\(542\) −54.7903 −2.35345
\(543\) −23.9077 −1.02598
\(544\) −36.0476 −1.54553
\(545\) 5.74162 0.245944
\(546\) 0 0
\(547\) 1.37089 0.0586149 0.0293074 0.999570i \(-0.490670\pi\)
0.0293074 + 0.999570i \(0.490670\pi\)
\(548\) −27.5573 −1.17719
\(549\) −11.2792 −0.481386
\(550\) 5.61025 0.239222
\(551\) 28.3972 1.20976
\(552\) 121.014 5.15070
\(553\) 0 0
\(554\) 68.2767 2.90080
\(555\) 2.35441 0.0999390
\(556\) −10.2227 −0.433539
\(557\) −35.1843 −1.49081 −0.745404 0.666613i \(-0.767744\pi\)
−0.745404 + 0.666613i \(0.767744\pi\)
\(558\) −5.76485 −0.244046
\(559\) −20.3546 −0.860908
\(560\) 0 0
\(561\) −34.5134 −1.45716
\(562\) 80.4261 3.39257
\(563\) 4.82881 0.203510 0.101755 0.994809i \(-0.467554\pi\)
0.101755 + 0.994809i \(0.467554\pi\)
\(564\) 80.5685 3.39255
\(565\) 10.8932 0.458278
\(566\) −20.2447 −0.850947
\(567\) 0 0
\(568\) 59.2795 2.48731
\(569\) 22.3966 0.938915 0.469458 0.882955i \(-0.344449\pi\)
0.469458 + 0.882955i \(0.344449\pi\)
\(570\) −43.2614 −1.81202
\(571\) −32.9511 −1.37896 −0.689481 0.724304i \(-0.742161\pi\)
−0.689481 + 0.724304i \(0.742161\pi\)
\(572\) −38.3724 −1.60443
\(573\) −19.6295 −0.820036
\(574\) 0 0
\(575\) −8.15756 −0.340194
\(576\) −0.937203 −0.0390501
\(577\) 2.82197 0.117480 0.0587400 0.998273i \(-0.481292\pi\)
0.0587400 + 0.998273i \(0.481292\pi\)
\(578\) −69.2519 −2.88050
\(579\) 15.3896 0.639570
\(580\) 17.6033 0.730936
\(581\) 0 0
\(582\) −102.096 −4.23200
\(583\) −25.2977 −1.04772
\(584\) 29.5381 1.22230
\(585\) −9.88983 −0.408894
\(586\) −4.79757 −0.198186
\(587\) 3.36188 0.138760 0.0693798 0.997590i \(-0.477898\pi\)
0.0693798 + 0.997590i \(0.477898\pi\)
\(588\) 0 0
\(589\) −6.43158 −0.265009
\(590\) 18.2186 0.750047
\(591\) −7.54246 −0.310255
\(592\) −7.08224 −0.291078
\(593\) 8.42812 0.346102 0.173051 0.984913i \(-0.444638\pi\)
0.173051 + 0.984913i \(0.444638\pi\)
\(594\) −6.03339 −0.247553
\(595\) 0 0
\(596\) 53.2414 2.18085
\(597\) −24.2984 −0.994466
\(598\) 80.7264 3.30115
\(599\) −33.3191 −1.36138 −0.680692 0.732570i \(-0.738321\pi\)
−0.680692 + 0.732570i \(0.738321\pi\)
\(600\) −14.8346 −0.605620
\(601\) 11.6412 0.474853 0.237426 0.971406i \(-0.423696\pi\)
0.237426 + 0.971406i \(0.423696\pi\)
\(602\) 0 0
\(603\) −37.2222 −1.51581
\(604\) −87.4594 −3.55867
\(605\) 6.13973 0.249615
\(606\) −20.4169 −0.829381
\(607\) −36.3921 −1.47711 −0.738556 0.674192i \(-0.764492\pi\)
−0.738556 + 0.674192i \(0.764492\pi\)
\(608\) 39.1442 1.58751
\(609\) 0 0
\(610\) −11.2862 −0.456963
\(611\) 29.7305 1.20277
\(612\) 75.6915 3.05965
\(613\) 10.3344 0.417401 0.208701 0.977980i \(-0.433077\pi\)
0.208701 + 0.977980i \(0.433077\pi\)
\(614\) 70.2784 2.83621
\(615\) −27.1159 −1.09342
\(616\) 0 0
\(617\) 2.00704 0.0808004 0.0404002 0.999184i \(-0.487137\pi\)
0.0404002 + 0.999184i \(0.487137\pi\)
\(618\) 90.5997 3.64445
\(619\) 4.83034 0.194148 0.0970739 0.995277i \(-0.469052\pi\)
0.0970739 + 0.995277i \(0.469052\pi\)
\(620\) −3.98691 −0.160118
\(621\) 8.77282 0.352041
\(622\) −30.0486 −1.20484
\(623\) 0 0
\(624\) 64.8419 2.59575
\(625\) 1.00000 0.0400000
\(626\) −10.9376 −0.437155
\(627\) 37.4782 1.49673
\(628\) −66.8496 −2.66759
\(629\) −6.64930 −0.265125
\(630\) 0 0
\(631\) −31.0999 −1.23807 −0.619034 0.785364i \(-0.712476\pi\)
−0.619034 + 0.785364i \(0.712476\pi\)
\(632\) 38.5586 1.53378
\(633\) 9.82028 0.390321
\(634\) 34.6602 1.37653
\(635\) −1.24161 −0.0492718
\(636\) 120.926 4.79501
\(637\) 0 0
\(638\) −22.0643 −0.873534
\(639\) −23.9274 −0.946555
\(640\) −11.7803 −0.465658
\(641\) 17.5240 0.692155 0.346077 0.938206i \(-0.387513\pi\)
0.346077 + 0.938206i \(0.387513\pi\)
\(642\) −62.7845 −2.47791
\(643\) 18.2968 0.721554 0.360777 0.932652i \(-0.382511\pi\)
0.360777 + 0.932652i \(0.382511\pi\)
\(644\) 0 0
\(645\) 12.3237 0.485245
\(646\) 122.179 4.80705
\(647\) −34.2314 −1.34577 −0.672887 0.739745i \(-0.734946\pi\)
−0.672887 + 0.739745i \(0.734946\pi\)
\(648\) 64.0264 2.51520
\(649\) −15.7831 −0.619542
\(650\) −9.89589 −0.388149
\(651\) 0 0
\(652\) 10.8041 0.423121
\(653\) −50.3002 −1.96840 −0.984200 0.177063i \(-0.943340\pi\)
−0.984200 + 0.177063i \(0.943340\pi\)
\(654\) 34.4007 1.34518
\(655\) 8.20271 0.320506
\(656\) 81.5669 3.18465
\(657\) −11.9227 −0.465148
\(658\) 0 0
\(659\) 11.3334 0.441485 0.220743 0.975332i \(-0.429152\pi\)
0.220743 + 0.975332i \(0.429152\pi\)
\(660\) 23.2326 0.904326
\(661\) −14.4522 −0.562127 −0.281063 0.959689i \(-0.590687\pi\)
−0.281063 + 0.959689i \(0.590687\pi\)
\(662\) −26.0180 −1.01122
\(663\) 60.8781 2.36431
\(664\) −75.9241 −2.94643
\(665\) 0 0
\(666\) 6.47198 0.250784
\(667\) 32.0825 1.24224
\(668\) 30.5173 1.18075
\(669\) 24.4776 0.946359
\(670\) −37.2451 −1.43890
\(671\) 9.77742 0.377453
\(672\) 0 0
\(673\) 33.8004 1.30291 0.651454 0.758688i \(-0.274159\pi\)
0.651454 + 0.758688i \(0.274159\pi\)
\(674\) 25.6707 0.988797
\(675\) −1.07542 −0.0413930
\(676\) 9.49754 0.365290
\(677\) 39.9941 1.53710 0.768548 0.639792i \(-0.220979\pi\)
0.768548 + 0.639792i \(0.220979\pi\)
\(678\) 65.2660 2.50652
\(679\) 0 0
\(680\) 41.8958 1.60663
\(681\) −8.13096 −0.311579
\(682\) 4.99727 0.191355
\(683\) −29.3953 −1.12478 −0.562390 0.826872i \(-0.690118\pi\)
−0.562390 + 0.826872i \(0.690118\pi\)
\(684\) −82.1936 −3.14275
\(685\) 6.15675 0.235237
\(686\) 0 0
\(687\) 56.5893 2.15902
\(688\) −37.0706 −1.41331
\(689\) 44.6225 1.69998
\(690\) −48.8758 −1.86067
\(691\) 49.3473 1.87726 0.938630 0.344927i \(-0.112096\pi\)
0.938630 + 0.344927i \(0.112096\pi\)
\(692\) −83.6072 −3.17827
\(693\) 0 0
\(694\) 32.1467 1.22027
\(695\) 2.28391 0.0866338
\(696\) 58.3423 2.21146
\(697\) 76.5807 2.90070
\(698\) −91.6474 −3.46891
\(699\) −43.0815 −1.62949
\(700\) 0 0
\(701\) −0.114605 −0.00432857 −0.00216429 0.999998i \(-0.500689\pi\)
−0.00216429 + 0.999998i \(0.500689\pi\)
\(702\) 10.6423 0.401666
\(703\) 7.22049 0.272326
\(704\) 0.812416 0.0306191
\(705\) −18.0003 −0.677931
\(706\) 89.2057 3.35730
\(707\) 0 0
\(708\) 75.4448 2.83539
\(709\) 26.7017 1.00280 0.501402 0.865214i \(-0.332818\pi\)
0.501402 + 0.865214i \(0.332818\pi\)
\(710\) −23.9421 −0.898531
\(711\) −15.5637 −0.583684
\(712\) −1.77972 −0.0666979
\(713\) −7.26626 −0.272124
\(714\) 0 0
\(715\) 8.57301 0.320613
\(716\) −20.1994 −0.754887
\(717\) 31.6887 1.18344
\(718\) −32.0171 −1.19487
\(719\) 17.2223 0.642283 0.321142 0.947031i \(-0.395933\pi\)
0.321142 + 0.947031i \(0.395933\pi\)
\(720\) −18.0118 −0.671259
\(721\) 0 0
\(722\) −84.3230 −3.13818
\(723\) −25.8137 −0.960020
\(724\) −45.4508 −1.68917
\(725\) −3.93286 −0.146063
\(726\) 36.7860 1.36526
\(727\) −25.8423 −0.958438 −0.479219 0.877695i \(-0.659080\pi\)
−0.479219 + 0.877695i \(0.659080\pi\)
\(728\) 0 0
\(729\) −18.2475 −0.675834
\(730\) −11.9300 −0.441549
\(731\) −34.8045 −1.28729
\(732\) −46.7370 −1.72745
\(733\) −30.6178 −1.13090 −0.565448 0.824784i \(-0.691297\pi\)
−0.565448 + 0.824784i \(0.691297\pi\)
\(734\) −6.65758 −0.245736
\(735\) 0 0
\(736\) 44.2243 1.63013
\(737\) 32.2661 1.18854
\(738\) −74.5385 −2.74380
\(739\) −7.73298 −0.284462 −0.142231 0.989833i \(-0.545428\pi\)
−0.142231 + 0.989833i \(0.545428\pi\)
\(740\) 4.47595 0.164539
\(741\) −66.1076 −2.42852
\(742\) 0 0
\(743\) −13.4302 −0.492708 −0.246354 0.969180i \(-0.579233\pi\)
−0.246354 + 0.969180i \(0.579233\pi\)
\(744\) −13.2138 −0.484440
\(745\) −11.8950 −0.435798
\(746\) 86.0834 3.15174
\(747\) 30.6458 1.12127
\(748\) −65.6133 −2.39906
\(749\) 0 0
\(750\) 5.99147 0.218777
\(751\) 21.5083 0.784848 0.392424 0.919784i \(-0.371637\pi\)
0.392424 + 0.919784i \(0.371637\pi\)
\(752\) 54.1464 1.97452
\(753\) −73.1977 −2.66747
\(754\) 38.9191 1.41735
\(755\) 19.5398 0.711127
\(756\) 0 0
\(757\) 49.3938 1.79525 0.897624 0.440761i \(-0.145291\pi\)
0.897624 + 0.440761i \(0.145291\pi\)
\(758\) 28.3864 1.03104
\(759\) 42.3421 1.53692
\(760\) −45.4947 −1.65027
\(761\) −49.1115 −1.78029 −0.890144 0.455679i \(-0.849397\pi\)
−0.890144 + 0.455679i \(0.849397\pi\)
\(762\) −7.43907 −0.269489
\(763\) 0 0
\(764\) −37.3176 −1.35011
\(765\) −16.9107 −0.611408
\(766\) 44.6211 1.61223
\(767\) 27.8398 1.00524
\(768\) −68.8461 −2.48427
\(769\) −37.6430 −1.35744 −0.678721 0.734396i \(-0.737466\pi\)
−0.678721 + 0.734396i \(0.737466\pi\)
\(770\) 0 0
\(771\) 30.2683 1.09009
\(772\) 29.2571 1.05299
\(773\) 35.7119 1.28447 0.642233 0.766509i \(-0.278008\pi\)
0.642233 + 0.766509i \(0.278008\pi\)
\(774\) 33.8764 1.21766
\(775\) 0.890739 0.0319963
\(776\) −107.366 −3.85423
\(777\) 0 0
\(778\) −4.56304 −0.163593
\(779\) −83.1591 −2.97949
\(780\) −40.9798 −1.46731
\(781\) 20.7415 0.742190
\(782\) 138.035 4.93611
\(783\) 4.22948 0.151149
\(784\) 0 0
\(785\) 14.9353 0.533063
\(786\) 49.1463 1.75299
\(787\) −23.4157 −0.834679 −0.417340 0.908751i \(-0.637037\pi\)
−0.417340 + 0.908751i \(0.637037\pi\)
\(788\) −14.3389 −0.510804
\(789\) −39.9379 −1.42183
\(790\) −15.5732 −0.554071
\(791\) 0 0
\(792\) 35.3273 1.25530
\(793\) −17.2464 −0.612436
\(794\) 17.7141 0.628649
\(795\) −27.0167 −0.958184
\(796\) −46.1935 −1.63729
\(797\) 3.59111 0.127204 0.0636018 0.997975i \(-0.479741\pi\)
0.0636018 + 0.997975i \(0.479741\pi\)
\(798\) 0 0
\(799\) 50.8364 1.79846
\(800\) −5.42127 −0.191671
\(801\) 0.718362 0.0253821
\(802\) −23.6523 −0.835190
\(803\) 10.3352 0.364721
\(804\) −154.235 −5.43946
\(805\) 0 0
\(806\) −8.81466 −0.310483
\(807\) 40.3379 1.41996
\(808\) −21.4710 −0.755346
\(809\) 23.1592 0.814234 0.407117 0.913376i \(-0.366534\pi\)
0.407117 + 0.913376i \(0.366534\pi\)
\(810\) −25.8593 −0.908604
\(811\) −24.4422 −0.858282 −0.429141 0.903238i \(-0.641184\pi\)
−0.429141 + 0.903238i \(0.641184\pi\)
\(812\) 0 0
\(813\) 50.6913 1.77782
\(814\) −5.61025 −0.196639
\(815\) −2.41381 −0.0845520
\(816\) 110.874 3.88136
\(817\) 37.7943 1.32225
\(818\) −95.4083 −3.33587
\(819\) 0 0
\(820\) −51.5500 −1.80020
\(821\) −19.1107 −0.666968 −0.333484 0.942756i \(-0.608224\pi\)
−0.333484 + 0.942756i \(0.608224\pi\)
\(822\) 36.8880 1.28662
\(823\) 21.1105 0.735866 0.367933 0.929852i \(-0.380066\pi\)
0.367933 + 0.929852i \(0.380066\pi\)
\(824\) 95.2768 3.31913
\(825\) −5.19053 −0.180711
\(826\) 0 0
\(827\) −4.63103 −0.161037 −0.0805184 0.996753i \(-0.525658\pi\)
−0.0805184 + 0.996753i \(0.525658\pi\)
\(828\) −92.8606 −3.22713
\(829\) 33.8483 1.17560 0.587799 0.809007i \(-0.299994\pi\)
0.587799 + 0.809007i \(0.299994\pi\)
\(830\) 30.6646 1.06438
\(831\) −63.1687 −2.19130
\(832\) −1.43302 −0.0496809
\(833\) 0 0
\(834\) 13.6840 0.473838
\(835\) −6.81805 −0.235948
\(836\) 71.2496 2.46422
\(837\) −0.957921 −0.0331106
\(838\) −33.6899 −1.16380
\(839\) 42.8414 1.47905 0.739524 0.673130i \(-0.235051\pi\)
0.739524 + 0.673130i \(0.235051\pi\)
\(840\) 0 0
\(841\) −13.5326 −0.466643
\(842\) −26.9065 −0.927259
\(843\) −74.4092 −2.56279
\(844\) 18.6693 0.642624
\(845\) −2.12190 −0.0729957
\(846\) −49.4807 −1.70118
\(847\) 0 0
\(848\) 81.2685 2.79077
\(849\) 18.7301 0.642816
\(850\) −16.9211 −0.580388
\(851\) 8.15756 0.279638
\(852\) −99.1465 −3.39670
\(853\) 17.0137 0.582539 0.291270 0.956641i \(-0.405922\pi\)
0.291270 + 0.956641i \(0.405922\pi\)
\(854\) 0 0
\(855\) 18.3634 0.628014
\(856\) −66.0257 −2.25671
\(857\) −11.6747 −0.398800 −0.199400 0.979918i \(-0.563899\pi\)
−0.199400 + 0.979918i \(0.563899\pi\)
\(858\) 51.3649 1.75357
\(859\) 56.7067 1.93481 0.967404 0.253238i \(-0.0814957\pi\)
0.967404 + 0.253238i \(0.0814957\pi\)
\(860\) 23.4285 0.798906
\(861\) 0 0
\(862\) 48.9350 1.66673
\(863\) −9.26836 −0.315499 −0.157749 0.987479i \(-0.550424\pi\)
−0.157749 + 0.987479i \(0.550424\pi\)
\(864\) 5.83015 0.198346
\(865\) 18.6792 0.635112
\(866\) −82.4699 −2.80244
\(867\) 64.0710 2.17597
\(868\) 0 0
\(869\) 13.4914 0.457665
\(870\) −23.5636 −0.798880
\(871\) −56.9141 −1.92846
\(872\) 36.1767 1.22510
\(873\) 43.3371 1.46674
\(874\) −149.892 −5.07018
\(875\) 0 0
\(876\) −49.4032 −1.66918
\(877\) 1.85155 0.0625225 0.0312612 0.999511i \(-0.490048\pi\)
0.0312612 + 0.999511i \(0.490048\pi\)
\(878\) 45.7298 1.54331
\(879\) 4.43865 0.149712
\(880\) 15.6135 0.526332
\(881\) −30.3014 −1.02088 −0.510439 0.859914i \(-0.670517\pi\)
−0.510439 + 0.859914i \(0.670517\pi\)
\(882\) 0 0
\(883\) 22.7042 0.764056 0.382028 0.924151i \(-0.375226\pi\)
0.382028 + 0.924151i \(0.375226\pi\)
\(884\) 115.735 3.89259
\(885\) −16.8556 −0.566595
\(886\) 20.2304 0.679653
\(887\) −6.56187 −0.220326 −0.110163 0.993914i \(-0.535137\pi\)
−0.110163 + 0.993914i \(0.535137\pi\)
\(888\) 14.8346 0.497816
\(889\) 0 0
\(890\) 0.718803 0.0240943
\(891\) 22.4024 0.750510
\(892\) 46.5343 1.55808
\(893\) −55.2034 −1.84731
\(894\) −71.2684 −2.38357
\(895\) 4.51287 0.150849
\(896\) 0 0
\(897\) −74.6870 −2.49373
\(898\) −3.30157 −0.110175
\(899\) −3.50315 −0.116837
\(900\) 11.3834 0.379446
\(901\) 76.3005 2.54194
\(902\) 64.6138 2.15140
\(903\) 0 0
\(904\) 68.6353 2.28278
\(905\) 10.1544 0.337545
\(906\) 117.072 3.88947
\(907\) 13.0689 0.433947 0.216973 0.976178i \(-0.430382\pi\)
0.216973 + 0.976178i \(0.430382\pi\)
\(908\) −15.4577 −0.512983
\(909\) 8.66648 0.287449
\(910\) 0 0
\(911\) −33.1053 −1.09683 −0.548414 0.836207i \(-0.684768\pi\)
−0.548414 + 0.836207i \(0.684768\pi\)
\(912\) −120.398 −3.98678
\(913\) −26.5654 −0.879185
\(914\) 37.5160 1.24092
\(915\) 10.4418 0.345195
\(916\) 107.582 3.55460
\(917\) 0 0
\(918\) 18.1973 0.600600
\(919\) −26.3425 −0.868958 −0.434479 0.900682i \(-0.643067\pi\)
−0.434479 + 0.900682i \(0.643067\pi\)
\(920\) −51.3990 −1.69457
\(921\) −65.0207 −2.14250
\(922\) 11.7778 0.387882
\(923\) −36.5859 −1.20424
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 21.7547 0.714905
\(927\) −38.4573 −1.26310
\(928\) 21.3211 0.699898
\(929\) 14.9371 0.490071 0.245035 0.969514i \(-0.421200\pi\)
0.245035 + 0.969514i \(0.421200\pi\)
\(930\) 5.33684 0.175002
\(931\) 0 0
\(932\) −81.9021 −2.68279
\(933\) 27.8005 0.910149
\(934\) 63.4835 2.07724
\(935\) 14.6591 0.479403
\(936\) −62.3136 −2.03678
\(937\) 3.29147 0.107528 0.0537638 0.998554i \(-0.482878\pi\)
0.0537638 + 0.998554i \(0.482878\pi\)
\(938\) 0 0
\(939\) 10.1193 0.330232
\(940\) −34.2203 −1.11614
\(941\) 16.6749 0.543585 0.271792 0.962356i \(-0.412384\pi\)
0.271792 + 0.962356i \(0.412384\pi\)
\(942\) 89.4842 2.91555
\(943\) −93.9514 −3.05948
\(944\) 50.7030 1.65024
\(945\) 0 0
\(946\) −29.3658 −0.954763
\(947\) 28.0659 0.912020 0.456010 0.889975i \(-0.349278\pi\)
0.456010 + 0.889975i \(0.349278\pi\)
\(948\) −64.4903 −2.09455
\(949\) −18.2302 −0.591778
\(950\) 18.3746 0.596152
\(951\) −32.0672 −1.03985
\(952\) 0 0
\(953\) 18.9875 0.615066 0.307533 0.951537i \(-0.400497\pi\)
0.307533 + 0.951537i \(0.400497\pi\)
\(954\) −74.2657 −2.40444
\(955\) 8.33736 0.269791
\(956\) 60.2433 1.94841
\(957\) 20.4136 0.659878
\(958\) 60.3934 1.95122
\(959\) 0 0
\(960\) 0.867620 0.0280023
\(961\) −30.2066 −0.974406
\(962\) 9.89589 0.319056
\(963\) 26.6505 0.858799
\(964\) −49.0742 −1.58057
\(965\) −6.53651 −0.210418
\(966\) 0 0
\(967\) 35.8455 1.15271 0.576356 0.817199i \(-0.304474\pi\)
0.576356 + 0.817199i \(0.304474\pi\)
\(968\) 38.6851 1.24338
\(969\) −113.038 −3.63130
\(970\) 43.3636 1.39232
\(971\) −30.7807 −0.987799 −0.493899 0.869519i \(-0.664429\pi\)
−0.493899 + 0.869519i \(0.664429\pi\)
\(972\) −92.6452 −2.97160
\(973\) 0 0
\(974\) 3.79747 0.121679
\(975\) 9.15555 0.293212
\(976\) −31.4098 −1.00540
\(977\) −44.2971 −1.41719 −0.708596 0.705615i \(-0.750671\pi\)
−0.708596 + 0.705615i \(0.750671\pi\)
\(978\) −14.4622 −0.462452
\(979\) −0.622714 −0.0199020
\(980\) 0 0
\(981\) −14.6023 −0.466214
\(982\) −28.9815 −0.924836
\(983\) −11.9697 −0.381775 −0.190888 0.981612i \(-0.561137\pi\)
−0.190888 + 0.981612i \(0.561137\pi\)
\(984\) −170.851 −5.44654
\(985\) 3.20355 0.102074
\(986\) 66.5482 2.11933
\(987\) 0 0
\(988\) −125.677 −3.99832
\(989\) 42.6992 1.35776
\(990\) −14.2682 −0.453472
\(991\) −46.9285 −1.49073 −0.745367 0.666654i \(-0.767726\pi\)
−0.745367 + 0.666654i \(0.767726\pi\)
\(992\) −4.82893 −0.153319
\(993\) 24.0715 0.763887
\(994\) 0 0
\(995\) 10.3204 0.327178
\(996\) 126.985 4.02367
\(997\) −61.7824 −1.95667 −0.978335 0.207029i \(-0.933621\pi\)
−0.978335 + 0.207029i \(0.933621\pi\)
\(998\) −82.9473 −2.62565
\(999\) 1.07542 0.0340249
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bd.1.4 38
7.6 odd 2 9065.2.a.be.1.4 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bd.1.4 38 1.1 even 1 trivial
9065.2.a.be.1.4 yes 38 7.6 odd 2