Properties

Label 9065.2.a.bd.1.34
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-6,42,-38,-8,0,-6,48,2,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.34
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33502 q^{2} +1.99442 q^{3} +3.45231 q^{4} -1.00000 q^{5} +4.65702 q^{6} +3.39118 q^{8} +0.977724 q^{9} -2.33502 q^{10} -2.05753 q^{11} +6.88537 q^{12} -5.30258 q^{13} -1.99442 q^{15} +1.01384 q^{16} -3.88743 q^{17} +2.28300 q^{18} +0.886044 q^{19} -3.45231 q^{20} -4.80437 q^{22} -0.744489 q^{23} +6.76345 q^{24} +1.00000 q^{25} -12.3816 q^{26} -4.03327 q^{27} -8.44555 q^{29} -4.65702 q^{30} -0.531263 q^{31} -4.41502 q^{32} -4.10358 q^{33} -9.07723 q^{34} +3.37541 q^{36} -1.00000 q^{37} +2.06893 q^{38} -10.5756 q^{39} -3.39118 q^{40} +0.590897 q^{41} +6.51197 q^{43} -7.10323 q^{44} -0.977724 q^{45} -1.73840 q^{46} -6.64805 q^{47} +2.02203 q^{48} +2.33502 q^{50} -7.75319 q^{51} -18.3062 q^{52} +14.2942 q^{53} -9.41777 q^{54} +2.05753 q^{55} +1.76715 q^{57} -19.7205 q^{58} -9.13080 q^{59} -6.88537 q^{60} +5.01342 q^{61} -1.24051 q^{62} -12.3368 q^{64} +5.30258 q^{65} -9.58194 q^{66} +13.2968 q^{67} -13.4206 q^{68} -1.48483 q^{69} +0.554792 q^{71} +3.31564 q^{72} -3.04827 q^{73} -2.33502 q^{74} +1.99442 q^{75} +3.05890 q^{76} -24.6942 q^{78} -8.27660 q^{79} -1.01384 q^{80} -10.9772 q^{81} +1.37976 q^{82} -12.3856 q^{83} +3.88743 q^{85} +15.2056 q^{86} -16.8440 q^{87} -6.97745 q^{88} +12.8058 q^{89} -2.28300 q^{90} -2.57021 q^{92} -1.05956 q^{93} -15.5233 q^{94} -0.886044 q^{95} -8.80541 q^{96} +10.1253 q^{97} -2.01169 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 6 q^{3} + 42 q^{4} - 38 q^{5} - 8 q^{6} - 6 q^{8} + 48 q^{9} + 2 q^{10} + 34 q^{11} - 20 q^{12} - 22 q^{13} + 6 q^{15} + 46 q^{16} - 22 q^{17} - 36 q^{18} - 40 q^{19} - 42 q^{20} - 4 q^{22}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33502 1.65111 0.825554 0.564323i \(-0.190863\pi\)
0.825554 + 0.564323i \(0.190863\pi\)
\(3\) 1.99442 1.15148 0.575740 0.817633i \(-0.304714\pi\)
0.575740 + 0.817633i \(0.304714\pi\)
\(4\) 3.45231 1.72616
\(5\) −1.00000 −0.447214
\(6\) 4.65702 1.90122
\(7\) 0 0
\(8\) 3.39118 1.19896
\(9\) 0.977724 0.325908
\(10\) −2.33502 −0.738398
\(11\) −2.05753 −0.620368 −0.310184 0.950677i \(-0.600391\pi\)
−0.310184 + 0.950677i \(0.600391\pi\)
\(12\) 6.88537 1.98764
\(13\) −5.30258 −1.47067 −0.735336 0.677703i \(-0.762976\pi\)
−0.735336 + 0.677703i \(0.762976\pi\)
\(14\) 0 0
\(15\) −1.99442 −0.514958
\(16\) 1.01384 0.253461
\(17\) −3.88743 −0.942841 −0.471420 0.881909i \(-0.656259\pi\)
−0.471420 + 0.881909i \(0.656259\pi\)
\(18\) 2.28300 0.538109
\(19\) 0.886044 0.203272 0.101636 0.994822i \(-0.467592\pi\)
0.101636 + 0.994822i \(0.467592\pi\)
\(20\) −3.45231 −0.771961
\(21\) 0 0
\(22\) −4.80437 −1.02429
\(23\) −0.744489 −0.155237 −0.0776184 0.996983i \(-0.524732\pi\)
−0.0776184 + 0.996983i \(0.524732\pi\)
\(24\) 6.76345 1.38058
\(25\) 1.00000 0.200000
\(26\) −12.3816 −2.42824
\(27\) −4.03327 −0.776204
\(28\) 0 0
\(29\) −8.44555 −1.56830 −0.784150 0.620572i \(-0.786901\pi\)
−0.784150 + 0.620572i \(0.786901\pi\)
\(30\) −4.65702 −0.850251
\(31\) −0.531263 −0.0954176 −0.0477088 0.998861i \(-0.515192\pi\)
−0.0477088 + 0.998861i \(0.515192\pi\)
\(32\) −4.41502 −0.780472
\(33\) −4.10358 −0.714342
\(34\) −9.07723 −1.55673
\(35\) 0 0
\(36\) 3.37541 0.562568
\(37\) −1.00000 −0.164399
\(38\) 2.06893 0.335625
\(39\) −10.5756 −1.69345
\(40\) −3.39118 −0.536193
\(41\) 0.590897 0.0922827 0.0461413 0.998935i \(-0.485308\pi\)
0.0461413 + 0.998935i \(0.485308\pi\)
\(42\) 0 0
\(43\) 6.51197 0.993066 0.496533 0.868018i \(-0.334606\pi\)
0.496533 + 0.868018i \(0.334606\pi\)
\(44\) −7.10323 −1.07085
\(45\) −0.977724 −0.145750
\(46\) −1.73840 −0.256313
\(47\) −6.64805 −0.969717 −0.484859 0.874593i \(-0.661129\pi\)
−0.484859 + 0.874593i \(0.661129\pi\)
\(48\) 2.02203 0.291855
\(49\) 0 0
\(50\) 2.33502 0.330222
\(51\) −7.75319 −1.08566
\(52\) −18.3062 −2.53861
\(53\) 14.2942 1.96346 0.981732 0.190270i \(-0.0609363\pi\)
0.981732 + 0.190270i \(0.0609363\pi\)
\(54\) −9.41777 −1.28160
\(55\) 2.05753 0.277437
\(56\) 0 0
\(57\) 1.76715 0.234064
\(58\) −19.7205 −2.58943
\(59\) −9.13080 −1.18873 −0.594364 0.804196i \(-0.702596\pi\)
−0.594364 + 0.804196i \(0.702596\pi\)
\(60\) −6.88537 −0.888898
\(61\) 5.01342 0.641902 0.320951 0.947096i \(-0.395997\pi\)
0.320951 + 0.947096i \(0.395997\pi\)
\(62\) −1.24051 −0.157545
\(63\) 0 0
\(64\) −12.3368 −1.54210
\(65\) 5.30258 0.657704
\(66\) −9.58194 −1.17946
\(67\) 13.2968 1.62447 0.812233 0.583333i \(-0.198252\pi\)
0.812233 + 0.583333i \(0.198252\pi\)
\(68\) −13.4206 −1.62749
\(69\) −1.48483 −0.178752
\(70\) 0 0
\(71\) 0.554792 0.0658417 0.0329208 0.999458i \(-0.489519\pi\)
0.0329208 + 0.999458i \(0.489519\pi\)
\(72\) 3.31564 0.390752
\(73\) −3.04827 −0.356773 −0.178387 0.983960i \(-0.557088\pi\)
−0.178387 + 0.983960i \(0.557088\pi\)
\(74\) −2.33502 −0.271440
\(75\) 1.99442 0.230296
\(76\) 3.05890 0.350880
\(77\) 0 0
\(78\) −24.6942 −2.79607
\(79\) −8.27660 −0.931190 −0.465595 0.884998i \(-0.654160\pi\)
−0.465595 + 0.884998i \(0.654160\pi\)
\(80\) −1.01384 −0.113351
\(81\) −10.9772 −1.21969
\(82\) 1.37976 0.152369
\(83\) −12.3856 −1.35950 −0.679751 0.733443i \(-0.737912\pi\)
−0.679751 + 0.733443i \(0.737912\pi\)
\(84\) 0 0
\(85\) 3.88743 0.421651
\(86\) 15.2056 1.63966
\(87\) −16.8440 −1.80587
\(88\) −6.97745 −0.743799
\(89\) 12.8058 1.35741 0.678706 0.734410i \(-0.262541\pi\)
0.678706 + 0.734410i \(0.262541\pi\)
\(90\) −2.28300 −0.240650
\(91\) 0 0
\(92\) −2.57021 −0.267963
\(93\) −1.05956 −0.109872
\(94\) −15.5233 −1.60111
\(95\) −0.886044 −0.0909062
\(96\) −8.80541 −0.898699
\(97\) 10.1253 1.02807 0.514036 0.857768i \(-0.328150\pi\)
0.514036 + 0.857768i \(0.328150\pi\)
\(98\) 0 0
\(99\) −2.01169 −0.202183
\(100\) 3.45231 0.345231
\(101\) −9.30816 −0.926197 −0.463098 0.886307i \(-0.653262\pi\)
−0.463098 + 0.886307i \(0.653262\pi\)
\(102\) −18.1038 −1.79255
\(103\) 4.76681 0.469688 0.234844 0.972033i \(-0.424542\pi\)
0.234844 + 0.972033i \(0.424542\pi\)
\(104\) −17.9820 −1.76328
\(105\) 0 0
\(106\) 33.3773 3.24189
\(107\) 7.09637 0.686032 0.343016 0.939329i \(-0.388551\pi\)
0.343016 + 0.939329i \(0.388551\pi\)
\(108\) −13.9241 −1.33985
\(109\) −17.1993 −1.64740 −0.823698 0.567029i \(-0.808093\pi\)
−0.823698 + 0.567029i \(0.808093\pi\)
\(110\) 4.80437 0.458078
\(111\) −1.99442 −0.189302
\(112\) 0 0
\(113\) 4.83555 0.454890 0.227445 0.973791i \(-0.426963\pi\)
0.227445 + 0.973791i \(0.426963\pi\)
\(114\) 4.12632 0.386465
\(115\) 0.744489 0.0694240
\(116\) −29.1567 −2.70713
\(117\) −5.18446 −0.479304
\(118\) −21.3206 −1.96272
\(119\) 0 0
\(120\) −6.76345 −0.617416
\(121\) −6.76658 −0.615144
\(122\) 11.7064 1.05985
\(123\) 1.17850 0.106262
\(124\) −1.83409 −0.164706
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.76568 0.422886 0.211443 0.977390i \(-0.432184\pi\)
0.211443 + 0.977390i \(0.432184\pi\)
\(128\) −19.9767 −1.76571
\(129\) 12.9876 1.14350
\(130\) 12.3816 1.08594
\(131\) −4.84210 −0.423056 −0.211528 0.977372i \(-0.567844\pi\)
−0.211528 + 0.977372i \(0.567844\pi\)
\(132\) −14.1669 −1.23307
\(133\) 0 0
\(134\) 31.0483 2.68217
\(135\) 4.03327 0.347129
\(136\) −13.1830 −1.13043
\(137\) 21.4358 1.83138 0.915692 0.401880i \(-0.131643\pi\)
0.915692 + 0.401880i \(0.131643\pi\)
\(138\) −3.46710 −0.295139
\(139\) −10.3153 −0.874935 −0.437467 0.899234i \(-0.644124\pi\)
−0.437467 + 0.899234i \(0.644124\pi\)
\(140\) 0 0
\(141\) −13.2590 −1.11661
\(142\) 1.29545 0.108712
\(143\) 10.9102 0.912358
\(144\) 0.991259 0.0826049
\(145\) 8.44555 0.701365
\(146\) −7.11777 −0.589071
\(147\) 0 0
\(148\) −3.45231 −0.283778
\(149\) 17.2915 1.41657 0.708286 0.705926i \(-0.249469\pi\)
0.708286 + 0.705926i \(0.249469\pi\)
\(150\) 4.65702 0.380244
\(151\) −18.3698 −1.49491 −0.747457 0.664310i \(-0.768725\pi\)
−0.747457 + 0.664310i \(0.768725\pi\)
\(152\) 3.00474 0.243716
\(153\) −3.80084 −0.307279
\(154\) 0 0
\(155\) 0.531263 0.0426721
\(156\) −36.5103 −2.92316
\(157\) −15.3019 −1.22122 −0.610612 0.791930i \(-0.709077\pi\)
−0.610612 + 0.791930i \(0.709077\pi\)
\(158\) −19.3260 −1.53749
\(159\) 28.5087 2.26089
\(160\) 4.41502 0.349038
\(161\) 0 0
\(162\) −25.6320 −2.01384
\(163\) 0.363267 0.0284533 0.0142266 0.999899i \(-0.495471\pi\)
0.0142266 + 0.999899i \(0.495471\pi\)
\(164\) 2.03996 0.159294
\(165\) 4.10358 0.319463
\(166\) −28.9207 −2.24468
\(167\) −9.08619 −0.703111 −0.351555 0.936167i \(-0.614347\pi\)
−0.351555 + 0.936167i \(0.614347\pi\)
\(168\) 0 0
\(169\) 15.1174 1.16287
\(170\) 9.07723 0.696192
\(171\) 0.866307 0.0662481
\(172\) 22.4814 1.71419
\(173\) 22.3296 1.69769 0.848845 0.528641i \(-0.177298\pi\)
0.848845 + 0.528641i \(0.177298\pi\)
\(174\) −39.3311 −2.98168
\(175\) 0 0
\(176\) −2.08601 −0.157239
\(177\) −18.2107 −1.36880
\(178\) 29.9018 2.24123
\(179\) 18.1549 1.35696 0.678480 0.734619i \(-0.262639\pi\)
0.678480 + 0.734619i \(0.262639\pi\)
\(180\) −3.37541 −0.251588
\(181\) −5.16766 −0.384109 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(182\) 0 0
\(183\) 9.99887 0.739138
\(184\) −2.52470 −0.186123
\(185\) 1.00000 0.0735215
\(186\) −2.47410 −0.181410
\(187\) 7.99850 0.584908
\(188\) −22.9511 −1.67388
\(189\) 0 0
\(190\) −2.06893 −0.150096
\(191\) −0.396923 −0.0287203 −0.0143602 0.999897i \(-0.504571\pi\)
−0.0143602 + 0.999897i \(0.504571\pi\)
\(192\) −24.6049 −1.77570
\(193\) 7.71941 0.555656 0.277828 0.960631i \(-0.410386\pi\)
0.277828 + 0.960631i \(0.410386\pi\)
\(194\) 23.6429 1.69746
\(195\) 10.5756 0.757334
\(196\) 0 0
\(197\) −3.78696 −0.269810 −0.134905 0.990859i \(-0.543073\pi\)
−0.134905 + 0.990859i \(0.543073\pi\)
\(198\) −4.69734 −0.333826
\(199\) −14.3388 −1.01645 −0.508224 0.861225i \(-0.669698\pi\)
−0.508224 + 0.861225i \(0.669698\pi\)
\(200\) 3.39118 0.239793
\(201\) 26.5195 1.87054
\(202\) −21.7347 −1.52925
\(203\) 0 0
\(204\) −26.7664 −1.87402
\(205\) −0.590897 −0.0412701
\(206\) 11.1306 0.775505
\(207\) −0.727905 −0.0505929
\(208\) −5.37599 −0.372758
\(209\) −1.82306 −0.126104
\(210\) 0 0
\(211\) 26.5993 1.83117 0.915585 0.402124i \(-0.131728\pi\)
0.915585 + 0.402124i \(0.131728\pi\)
\(212\) 49.3482 3.38925
\(213\) 1.10649 0.0758154
\(214\) 16.5702 1.13271
\(215\) −6.51197 −0.444113
\(216\) −13.6776 −0.930640
\(217\) 0 0
\(218\) −40.1607 −2.72003
\(219\) −6.07954 −0.410817
\(220\) 7.10323 0.478900
\(221\) 20.6134 1.38661
\(222\) −4.65702 −0.312558
\(223\) −10.7716 −0.721319 −0.360659 0.932698i \(-0.617448\pi\)
−0.360659 + 0.932698i \(0.617448\pi\)
\(224\) 0 0
\(225\) 0.977724 0.0651816
\(226\) 11.2911 0.751072
\(227\) −6.63335 −0.440271 −0.220136 0.975469i \(-0.570650\pi\)
−0.220136 + 0.975469i \(0.570650\pi\)
\(228\) 6.10075 0.404032
\(229\) −13.8389 −0.914501 −0.457251 0.889338i \(-0.651166\pi\)
−0.457251 + 0.889338i \(0.651166\pi\)
\(230\) 1.73840 0.114627
\(231\) 0 0
\(232\) −28.6404 −1.88033
\(233\) −19.8586 −1.30098 −0.650489 0.759515i \(-0.725436\pi\)
−0.650489 + 0.759515i \(0.725436\pi\)
\(234\) −12.1058 −0.791382
\(235\) 6.64805 0.433671
\(236\) −31.5224 −2.05193
\(237\) −16.5070 −1.07225
\(238\) 0 0
\(239\) 21.2568 1.37499 0.687495 0.726189i \(-0.258710\pi\)
0.687495 + 0.726189i \(0.258710\pi\)
\(240\) −2.02203 −0.130522
\(241\) 3.62112 0.233257 0.116628 0.993176i \(-0.462791\pi\)
0.116628 + 0.993176i \(0.462791\pi\)
\(242\) −15.8001 −1.01567
\(243\) −9.79341 −0.628248
\(244\) 17.3079 1.10802
\(245\) 0 0
\(246\) 2.75182 0.175450
\(247\) −4.69832 −0.298947
\(248\) −1.80161 −0.114402
\(249\) −24.7022 −1.56544
\(250\) −2.33502 −0.147680
\(251\) 5.48077 0.345943 0.172971 0.984927i \(-0.444663\pi\)
0.172971 + 0.984927i \(0.444663\pi\)
\(252\) 0 0
\(253\) 1.53181 0.0963039
\(254\) 11.1280 0.698230
\(255\) 7.75319 0.485523
\(256\) −21.9723 −1.37327
\(257\) −4.27279 −0.266529 −0.133265 0.991080i \(-0.542546\pi\)
−0.133265 + 0.991080i \(0.542546\pi\)
\(258\) 30.3264 1.88804
\(259\) 0 0
\(260\) 18.3062 1.13530
\(261\) −8.25741 −0.511121
\(262\) −11.3064 −0.698512
\(263\) −0.572948 −0.0353295 −0.0176647 0.999844i \(-0.505623\pi\)
−0.0176647 + 0.999844i \(0.505623\pi\)
\(264\) −13.9160 −0.856470
\(265\) −14.2942 −0.878088
\(266\) 0 0
\(267\) 25.5402 1.56303
\(268\) 45.9048 2.80408
\(269\) 1.04702 0.0638380 0.0319190 0.999490i \(-0.489838\pi\)
0.0319190 + 0.999490i \(0.489838\pi\)
\(270\) 9.41777 0.573147
\(271\) −11.5962 −0.704418 −0.352209 0.935921i \(-0.614569\pi\)
−0.352209 + 0.935921i \(0.614569\pi\)
\(272\) −3.94125 −0.238973
\(273\) 0 0
\(274\) 50.0530 3.02381
\(275\) −2.05753 −0.124074
\(276\) −5.12609 −0.308554
\(277\) −8.63023 −0.518540 −0.259270 0.965805i \(-0.583482\pi\)
−0.259270 + 0.965805i \(0.583482\pi\)
\(278\) −24.0865 −1.44461
\(279\) −0.519428 −0.0310974
\(280\) 0 0
\(281\) −8.90251 −0.531079 −0.265540 0.964100i \(-0.585550\pi\)
−0.265540 + 0.964100i \(0.585550\pi\)
\(282\) −30.9601 −1.84364
\(283\) −6.29501 −0.374200 −0.187100 0.982341i \(-0.559909\pi\)
−0.187100 + 0.982341i \(0.559909\pi\)
\(284\) 1.91532 0.113653
\(285\) −1.76715 −0.104677
\(286\) 25.4755 1.50640
\(287\) 0 0
\(288\) −4.31667 −0.254362
\(289\) −1.88787 −0.111051
\(290\) 19.7205 1.15803
\(291\) 20.1942 1.18381
\(292\) −10.5236 −0.615847
\(293\) 17.0831 0.998006 0.499003 0.866600i \(-0.333700\pi\)
0.499003 + 0.866600i \(0.333700\pi\)
\(294\) 0 0
\(295\) 9.13080 0.531616
\(296\) −3.39118 −0.197108
\(297\) 8.29857 0.481532
\(298\) 40.3759 2.33891
\(299\) 3.94772 0.228302
\(300\) 6.88537 0.397527
\(301\) 0 0
\(302\) −42.8938 −2.46826
\(303\) −18.5644 −1.06650
\(304\) 0.898310 0.0515216
\(305\) −5.01342 −0.287067
\(306\) −8.87502 −0.507351
\(307\) −6.14151 −0.350514 −0.175257 0.984523i \(-0.556076\pi\)
−0.175257 + 0.984523i \(0.556076\pi\)
\(308\) 0 0
\(309\) 9.50704 0.540836
\(310\) 1.24051 0.0704562
\(311\) −4.88632 −0.277078 −0.138539 0.990357i \(-0.544241\pi\)
−0.138539 + 0.990357i \(0.544241\pi\)
\(312\) −35.8637 −2.03038
\(313\) −23.0340 −1.30196 −0.650980 0.759095i \(-0.725642\pi\)
−0.650980 + 0.759095i \(0.725642\pi\)
\(314\) −35.7302 −2.01637
\(315\) 0 0
\(316\) −28.5734 −1.60738
\(317\) 13.4715 0.756634 0.378317 0.925676i \(-0.376503\pi\)
0.378317 + 0.925676i \(0.376503\pi\)
\(318\) 66.5685 3.73297
\(319\) 17.3770 0.972923
\(320\) 12.3368 0.689650
\(321\) 14.1532 0.789953
\(322\) 0 0
\(323\) −3.44444 −0.191654
\(324\) −37.8968 −2.10538
\(325\) −5.30258 −0.294134
\(326\) 0.848236 0.0469794
\(327\) −34.3027 −1.89694
\(328\) 2.00384 0.110644
\(329\) 0 0
\(330\) 9.58194 0.527468
\(331\) −34.0534 −1.87174 −0.935871 0.352344i \(-0.885385\pi\)
−0.935871 + 0.352344i \(0.885385\pi\)
\(332\) −42.7591 −2.34671
\(333\) −0.977724 −0.0535789
\(334\) −21.2164 −1.16091
\(335\) −13.2968 −0.726483
\(336\) 0 0
\(337\) −9.60065 −0.522980 −0.261490 0.965206i \(-0.584214\pi\)
−0.261490 + 0.965206i \(0.584214\pi\)
\(338\) 35.2994 1.92003
\(339\) 9.64413 0.523797
\(340\) 13.4206 0.727836
\(341\) 1.09309 0.0591940
\(342\) 2.02284 0.109383
\(343\) 0 0
\(344\) 22.0833 1.19065
\(345\) 1.48483 0.0799404
\(346\) 52.1401 2.80307
\(347\) −10.2333 −0.549354 −0.274677 0.961537i \(-0.588571\pi\)
−0.274677 + 0.961537i \(0.588571\pi\)
\(348\) −58.1508 −3.11721
\(349\) −33.7956 −1.80904 −0.904519 0.426434i \(-0.859770\pi\)
−0.904519 + 0.426434i \(0.859770\pi\)
\(350\) 0 0
\(351\) 21.3868 1.14154
\(352\) 9.08402 0.484180
\(353\) 3.65202 0.194377 0.0971887 0.995266i \(-0.469015\pi\)
0.0971887 + 0.995266i \(0.469015\pi\)
\(354\) −42.5223 −2.26003
\(355\) −0.554792 −0.0294453
\(356\) 44.2097 2.34311
\(357\) 0 0
\(358\) 42.3920 2.24049
\(359\) 10.4508 0.551573 0.275786 0.961219i \(-0.411062\pi\)
0.275786 + 0.961219i \(0.411062\pi\)
\(360\) −3.31564 −0.174749
\(361\) −18.2149 −0.958680
\(362\) −12.0666 −0.634205
\(363\) −13.4954 −0.708326
\(364\) 0 0
\(365\) 3.04827 0.159554
\(366\) 23.3476 1.22040
\(367\) −3.39084 −0.177000 −0.0885002 0.996076i \(-0.528207\pi\)
−0.0885002 + 0.996076i \(0.528207\pi\)
\(368\) −0.754796 −0.0393464
\(369\) 0.577734 0.0300756
\(370\) 2.33502 0.121392
\(371\) 0 0
\(372\) −3.65794 −0.189656
\(373\) −12.7351 −0.659398 −0.329699 0.944086i \(-0.606947\pi\)
−0.329699 + 0.944086i \(0.606947\pi\)
\(374\) 18.6767 0.965747
\(375\) −1.99442 −0.102992
\(376\) −22.5447 −1.16266
\(377\) 44.7832 2.30645
\(378\) 0 0
\(379\) 13.7772 0.707686 0.353843 0.935305i \(-0.384875\pi\)
0.353843 + 0.935305i \(0.384875\pi\)
\(380\) −3.05890 −0.156918
\(381\) 9.50478 0.486945
\(382\) −0.926822 −0.0474203
\(383\) 2.08143 0.106356 0.0531781 0.998585i \(-0.483065\pi\)
0.0531781 + 0.998585i \(0.483065\pi\)
\(384\) −39.8420 −2.03318
\(385\) 0 0
\(386\) 18.0250 0.917447
\(387\) 6.36691 0.323648
\(388\) 34.9559 1.77462
\(389\) 4.78908 0.242816 0.121408 0.992603i \(-0.461259\pi\)
0.121408 + 0.992603i \(0.461259\pi\)
\(390\) 24.6942 1.25044
\(391\) 2.89415 0.146364
\(392\) 0 0
\(393\) −9.65720 −0.487141
\(394\) −8.84262 −0.445485
\(395\) 8.27660 0.416441
\(396\) −6.94500 −0.348999
\(397\) −6.19533 −0.310935 −0.155467 0.987841i \(-0.549688\pi\)
−0.155467 + 0.987841i \(0.549688\pi\)
\(398\) −33.4813 −1.67826
\(399\) 0 0
\(400\) 1.01384 0.0506922
\(401\) −20.3734 −1.01740 −0.508699 0.860945i \(-0.669873\pi\)
−0.508699 + 0.860945i \(0.669873\pi\)
\(402\) 61.9235 3.08847
\(403\) 2.81706 0.140328
\(404\) −32.1347 −1.59876
\(405\) 10.9772 0.545463
\(406\) 0 0
\(407\) 2.05753 0.101988
\(408\) −26.2925 −1.30167
\(409\) −14.7756 −0.730606 −0.365303 0.930889i \(-0.619035\pi\)
−0.365303 + 0.930889i \(0.619035\pi\)
\(410\) −1.37976 −0.0681413
\(411\) 42.7521 2.10880
\(412\) 16.4565 0.810755
\(413\) 0 0
\(414\) −1.69967 −0.0835343
\(415\) 12.3856 0.607987
\(416\) 23.4110 1.14782
\(417\) −20.5731 −1.00747
\(418\) −4.25688 −0.208211
\(419\) 36.4864 1.78248 0.891238 0.453537i \(-0.149838\pi\)
0.891238 + 0.453537i \(0.149838\pi\)
\(420\) 0 0
\(421\) −24.2906 −1.18385 −0.591925 0.805993i \(-0.701632\pi\)
−0.591925 + 0.805993i \(0.701632\pi\)
\(422\) 62.1098 3.02346
\(423\) −6.49995 −0.316039
\(424\) 48.4743 2.35412
\(425\) −3.88743 −0.188568
\(426\) 2.58367 0.125179
\(427\) 0 0
\(428\) 24.4989 1.18420
\(429\) 21.7596 1.05056
\(430\) −15.2056 −0.733278
\(431\) 5.54323 0.267008 0.133504 0.991048i \(-0.457377\pi\)
0.133504 + 0.991048i \(0.457377\pi\)
\(432\) −4.08911 −0.196737
\(433\) 14.7697 0.709786 0.354893 0.934907i \(-0.384517\pi\)
0.354893 + 0.934907i \(0.384517\pi\)
\(434\) 0 0
\(435\) 16.8440 0.807608
\(436\) −59.3774 −2.84366
\(437\) −0.659651 −0.0315554
\(438\) −14.1958 −0.678304
\(439\) −3.80842 −0.181766 −0.0908830 0.995862i \(-0.528969\pi\)
−0.0908830 + 0.995862i \(0.528969\pi\)
\(440\) 6.97745 0.332637
\(441\) 0 0
\(442\) 48.1327 2.28944
\(443\) −1.29336 −0.0614496 −0.0307248 0.999528i \(-0.509782\pi\)
−0.0307248 + 0.999528i \(0.509782\pi\)
\(444\) −6.88537 −0.326765
\(445\) −12.8058 −0.607053
\(446\) −25.1519 −1.19097
\(447\) 34.4865 1.63116
\(448\) 0 0
\(449\) 23.3359 1.10129 0.550645 0.834740i \(-0.314382\pi\)
0.550645 + 0.834740i \(0.314382\pi\)
\(450\) 2.28300 0.107622
\(451\) −1.21579 −0.0572492
\(452\) 16.6938 0.785212
\(453\) −36.6372 −1.72136
\(454\) −15.4890 −0.726935
\(455\) 0 0
\(456\) 5.99272 0.280635
\(457\) −0.838110 −0.0392051 −0.0196026 0.999808i \(-0.506240\pi\)
−0.0196026 + 0.999808i \(0.506240\pi\)
\(458\) −32.3141 −1.50994
\(459\) 15.6791 0.731837
\(460\) 2.57021 0.119837
\(461\) 26.5278 1.23552 0.617761 0.786366i \(-0.288040\pi\)
0.617761 + 0.786366i \(0.288040\pi\)
\(462\) 0 0
\(463\) 14.9420 0.694415 0.347207 0.937788i \(-0.387130\pi\)
0.347207 + 0.937788i \(0.387130\pi\)
\(464\) −8.56246 −0.397502
\(465\) 1.05956 0.0491360
\(466\) −46.3701 −2.14806
\(467\) −21.1416 −0.978315 −0.489158 0.872195i \(-0.662696\pi\)
−0.489158 + 0.872195i \(0.662696\pi\)
\(468\) −17.8984 −0.827353
\(469\) 0 0
\(470\) 15.5233 0.716037
\(471\) −30.5185 −1.40622
\(472\) −30.9642 −1.42524
\(473\) −13.3986 −0.616067
\(474\) −38.5442 −1.77040
\(475\) 0.886044 0.0406545
\(476\) 0 0
\(477\) 13.9758 0.639908
\(478\) 49.6351 2.27026
\(479\) −20.1255 −0.919557 −0.459779 0.888034i \(-0.652071\pi\)
−0.459779 + 0.888034i \(0.652071\pi\)
\(480\) 8.80541 0.401910
\(481\) 5.30258 0.241777
\(482\) 8.45538 0.385132
\(483\) 0 0
\(484\) −23.3604 −1.06183
\(485\) −10.1253 −0.459768
\(486\) −22.8678 −1.03730
\(487\) 22.2052 1.00621 0.503106 0.864225i \(-0.332190\pi\)
0.503106 + 0.864225i \(0.332190\pi\)
\(488\) 17.0014 0.769617
\(489\) 0.724508 0.0327634
\(490\) 0 0
\(491\) −11.5432 −0.520938 −0.260469 0.965482i \(-0.583877\pi\)
−0.260469 + 0.965482i \(0.583877\pi\)
\(492\) 4.06855 0.183424
\(493\) 32.8315 1.47866
\(494\) −10.9707 −0.493594
\(495\) 2.01169 0.0904189
\(496\) −0.538617 −0.0241846
\(497\) 0 0
\(498\) −57.6802 −2.58471
\(499\) 32.6808 1.46300 0.731498 0.681844i \(-0.238822\pi\)
0.731498 + 0.681844i \(0.238822\pi\)
\(500\) −3.45231 −0.154392
\(501\) −18.1217 −0.809618
\(502\) 12.7977 0.571189
\(503\) 28.6283 1.27647 0.638237 0.769840i \(-0.279664\pi\)
0.638237 + 0.769840i \(0.279664\pi\)
\(504\) 0 0
\(505\) 9.30816 0.414208
\(506\) 3.57680 0.159008
\(507\) 30.1504 1.33903
\(508\) 16.4526 0.729967
\(509\) 9.28117 0.411381 0.205690 0.978617i \(-0.434056\pi\)
0.205690 + 0.978617i \(0.434056\pi\)
\(510\) 18.1038 0.801651
\(511\) 0 0
\(512\) −11.3524 −0.501709
\(513\) −3.57366 −0.157781
\(514\) −9.97705 −0.440069
\(515\) −4.76681 −0.210051
\(516\) 44.8374 1.97386
\(517\) 13.6785 0.601582
\(518\) 0 0
\(519\) 44.5347 1.95486
\(520\) 17.9820 0.788563
\(521\) 4.30099 0.188430 0.0942148 0.995552i \(-0.469966\pi\)
0.0942148 + 0.995552i \(0.469966\pi\)
\(522\) −19.2812 −0.843916
\(523\) 3.36743 0.147247 0.0736237 0.997286i \(-0.476544\pi\)
0.0736237 + 0.997286i \(0.476544\pi\)
\(524\) −16.7165 −0.730262
\(525\) 0 0
\(526\) −1.33784 −0.0583328
\(527\) 2.06525 0.0899636
\(528\) −4.16039 −0.181058
\(529\) −22.4457 −0.975902
\(530\) −33.3773 −1.44982
\(531\) −8.92740 −0.387416
\(532\) 0 0
\(533\) −3.13328 −0.135717
\(534\) 59.6368 2.58074
\(535\) −7.09637 −0.306803
\(536\) 45.0919 1.94768
\(537\) 36.2085 1.56251
\(538\) 2.44482 0.105403
\(539\) 0 0
\(540\) 13.9241 0.599199
\(541\) −33.6705 −1.44761 −0.723803 0.690006i \(-0.757608\pi\)
−0.723803 + 0.690006i \(0.757608\pi\)
\(542\) −27.0773 −1.16307
\(543\) −10.3065 −0.442294
\(544\) 17.1631 0.735861
\(545\) 17.1993 0.736738
\(546\) 0 0
\(547\) −21.7800 −0.931247 −0.465623 0.884983i \(-0.654170\pi\)
−0.465623 + 0.884983i \(0.654170\pi\)
\(548\) 74.0031 3.16126
\(549\) 4.90174 0.209201
\(550\) −4.80437 −0.204859
\(551\) −7.48313 −0.318792
\(552\) −5.03532 −0.214317
\(553\) 0 0
\(554\) −20.1518 −0.856166
\(555\) 1.99442 0.0846585
\(556\) −35.6118 −1.51027
\(557\) −38.3353 −1.62432 −0.812159 0.583437i \(-0.801708\pi\)
−0.812159 + 0.583437i \(0.801708\pi\)
\(558\) −1.21287 −0.0513451
\(559\) −34.5303 −1.46047
\(560\) 0 0
\(561\) 15.9524 0.673511
\(562\) −20.7875 −0.876869
\(563\) 1.76908 0.0745576 0.0372788 0.999305i \(-0.488131\pi\)
0.0372788 + 0.999305i \(0.488131\pi\)
\(564\) −45.7743 −1.92745
\(565\) −4.83555 −0.203433
\(566\) −14.6990 −0.617844
\(567\) 0 0
\(568\) 1.88140 0.0789418
\(569\) −31.8451 −1.33502 −0.667509 0.744602i \(-0.732639\pi\)
−0.667509 + 0.744602i \(0.732639\pi\)
\(570\) −4.12632 −0.172833
\(571\) 31.5415 1.31997 0.659985 0.751279i \(-0.270563\pi\)
0.659985 + 0.751279i \(0.270563\pi\)
\(572\) 37.6655 1.57487
\(573\) −0.791632 −0.0330709
\(574\) 0 0
\(575\) −0.744489 −0.0310474
\(576\) −12.0620 −0.502584
\(577\) −4.38750 −0.182654 −0.0913270 0.995821i \(-0.529111\pi\)
−0.0913270 + 0.995821i \(0.529111\pi\)
\(578\) −4.40821 −0.183357
\(579\) 15.3958 0.639827
\(580\) 29.1567 1.21067
\(581\) 0 0
\(582\) 47.1539 1.95459
\(583\) −29.4108 −1.21807
\(584\) −10.3372 −0.427758
\(585\) 5.18446 0.214351
\(586\) 39.8894 1.64782
\(587\) −35.7210 −1.47436 −0.737182 0.675695i \(-0.763844\pi\)
−0.737182 + 0.675695i \(0.763844\pi\)
\(588\) 0 0
\(589\) −0.470722 −0.0193958
\(590\) 21.3206 0.877755
\(591\) −7.55280 −0.310681
\(592\) −1.01384 −0.0416687
\(593\) −37.5667 −1.54268 −0.771340 0.636423i \(-0.780413\pi\)
−0.771340 + 0.636423i \(0.780413\pi\)
\(594\) 19.3773 0.795061
\(595\) 0 0
\(596\) 59.6956 2.44523
\(597\) −28.5976 −1.17042
\(598\) 9.21799 0.376952
\(599\) −47.2585 −1.93093 −0.965465 0.260532i \(-0.916102\pi\)
−0.965465 + 0.260532i \(0.916102\pi\)
\(600\) 6.76345 0.276117
\(601\) 32.4297 1.32283 0.661417 0.750019i \(-0.269955\pi\)
0.661417 + 0.750019i \(0.269955\pi\)
\(602\) 0 0
\(603\) 13.0006 0.529426
\(604\) −63.4183 −2.58046
\(605\) 6.76658 0.275101
\(606\) −43.3483 −1.76090
\(607\) −12.8532 −0.521694 −0.260847 0.965380i \(-0.584002\pi\)
−0.260847 + 0.965380i \(0.584002\pi\)
\(608\) −3.91190 −0.158649
\(609\) 0 0
\(610\) −11.7064 −0.473979
\(611\) 35.2518 1.42614
\(612\) −13.1217 −0.530412
\(613\) −7.64274 −0.308687 −0.154344 0.988017i \(-0.549326\pi\)
−0.154344 + 0.988017i \(0.549326\pi\)
\(614\) −14.3405 −0.578737
\(615\) −1.17850 −0.0475217
\(616\) 0 0
\(617\) −16.8708 −0.679192 −0.339596 0.940571i \(-0.610290\pi\)
−0.339596 + 0.940571i \(0.610290\pi\)
\(618\) 22.1991 0.892979
\(619\) 34.4221 1.38354 0.691770 0.722118i \(-0.256831\pi\)
0.691770 + 0.722118i \(0.256831\pi\)
\(620\) 1.83409 0.0736587
\(621\) 3.00273 0.120495
\(622\) −11.4097 −0.457486
\(623\) 0 0
\(624\) −10.7220 −0.429223
\(625\) 1.00000 0.0400000
\(626\) −53.7849 −2.14968
\(627\) −3.63595 −0.145206
\(628\) −52.8269 −2.10802
\(629\) 3.88743 0.155002
\(630\) 0 0
\(631\) 40.0624 1.59486 0.797430 0.603411i \(-0.206192\pi\)
0.797430 + 0.603411i \(0.206192\pi\)
\(632\) −28.0674 −1.11646
\(633\) 53.0502 2.10856
\(634\) 31.4562 1.24928
\(635\) −4.76568 −0.189120
\(636\) 98.4211 3.90265
\(637\) 0 0
\(638\) 40.5755 1.60640
\(639\) 0.542433 0.0214583
\(640\) 19.9767 0.789649
\(641\) 7.28133 0.287595 0.143798 0.989607i \(-0.454069\pi\)
0.143798 + 0.989607i \(0.454069\pi\)
\(642\) 33.0479 1.30430
\(643\) 8.94393 0.352714 0.176357 0.984326i \(-0.443569\pi\)
0.176357 + 0.984326i \(0.443569\pi\)
\(644\) 0 0
\(645\) −12.9876 −0.511387
\(646\) −8.04283 −0.316441
\(647\) −8.22738 −0.323452 −0.161726 0.986836i \(-0.551706\pi\)
−0.161726 + 0.986836i \(0.551706\pi\)
\(648\) −37.2258 −1.46237
\(649\) 18.7869 0.737449
\(650\) −12.3816 −0.485647
\(651\) 0 0
\(652\) 1.25411 0.0491148
\(653\) −9.37665 −0.366937 −0.183468 0.983026i \(-0.558732\pi\)
−0.183468 + 0.983026i \(0.558732\pi\)
\(654\) −80.0975 −3.13206
\(655\) 4.84210 0.189197
\(656\) 0.599077 0.0233900
\(657\) −2.98037 −0.116275
\(658\) 0 0
\(659\) −23.2317 −0.904980 −0.452490 0.891769i \(-0.649464\pi\)
−0.452490 + 0.891769i \(0.649464\pi\)
\(660\) 14.1669 0.551444
\(661\) 3.21035 0.124868 0.0624341 0.998049i \(-0.480114\pi\)
0.0624341 + 0.998049i \(0.480114\pi\)
\(662\) −79.5152 −3.09045
\(663\) 41.1119 1.59665
\(664\) −42.0020 −1.62999
\(665\) 0 0
\(666\) −2.28300 −0.0884646
\(667\) 6.28762 0.243458
\(668\) −31.3684 −1.21368
\(669\) −21.4831 −0.830584
\(670\) −31.0483 −1.19950
\(671\) −10.3152 −0.398216
\(672\) 0 0
\(673\) 45.5553 1.75603 0.878014 0.478635i \(-0.158868\pi\)
0.878014 + 0.478635i \(0.158868\pi\)
\(674\) −22.4177 −0.863497
\(675\) −4.03327 −0.155241
\(676\) 52.1899 2.00730
\(677\) −15.4647 −0.594357 −0.297179 0.954822i \(-0.596046\pi\)
−0.297179 + 0.954822i \(0.596046\pi\)
\(678\) 22.5192 0.864845
\(679\) 0 0
\(680\) 13.1830 0.505544
\(681\) −13.2297 −0.506964
\(682\) 2.55238 0.0977357
\(683\) −47.6098 −1.82174 −0.910869 0.412696i \(-0.864587\pi\)
−0.910869 + 0.412696i \(0.864587\pi\)
\(684\) 2.99076 0.114355
\(685\) −21.4358 −0.819020
\(686\) 0 0
\(687\) −27.6006 −1.05303
\(688\) 6.60212 0.251703
\(689\) −75.7963 −2.88761
\(690\) 3.46710 0.131990
\(691\) 21.4983 0.817835 0.408918 0.912571i \(-0.365906\pi\)
0.408918 + 0.912571i \(0.365906\pi\)
\(692\) 77.0889 2.93048
\(693\) 0 0
\(694\) −23.8950 −0.907042
\(695\) 10.3153 0.391283
\(696\) −57.1210 −2.16517
\(697\) −2.29707 −0.0870079
\(698\) −78.9134 −2.98692
\(699\) −39.6064 −1.49805
\(700\) 0 0
\(701\) 40.9424 1.54637 0.773186 0.634180i \(-0.218662\pi\)
0.773186 + 0.634180i \(0.218662\pi\)
\(702\) 49.9385 1.88481
\(703\) −0.886044 −0.0334178
\(704\) 25.3834 0.956672
\(705\) 13.2590 0.499364
\(706\) 8.52754 0.320938
\(707\) 0 0
\(708\) −62.8690 −2.36276
\(709\) 1.63237 0.0613048 0.0306524 0.999530i \(-0.490242\pi\)
0.0306524 + 0.999530i \(0.490242\pi\)
\(710\) −1.29545 −0.0486174
\(711\) −8.09223 −0.303482
\(712\) 43.4268 1.62749
\(713\) 0.395519 0.0148123
\(714\) 0 0
\(715\) −10.9102 −0.408019
\(716\) 62.6764 2.34233
\(717\) 42.3951 1.58328
\(718\) 24.4028 0.910706
\(719\) 35.4624 1.32252 0.661262 0.750155i \(-0.270021\pi\)
0.661262 + 0.750155i \(0.270021\pi\)
\(720\) −0.991259 −0.0369420
\(721\) 0 0
\(722\) −42.5322 −1.58288
\(723\) 7.22204 0.268591
\(724\) −17.8404 −0.663032
\(725\) −8.44555 −0.313660
\(726\) −31.5121 −1.16952
\(727\) −35.3049 −1.30939 −0.654693 0.755895i \(-0.727202\pi\)
−0.654693 + 0.755895i \(0.727202\pi\)
\(728\) 0 0
\(729\) 13.3995 0.496277
\(730\) 7.11777 0.263441
\(731\) −25.3149 −0.936304
\(732\) 34.5192 1.27587
\(733\) −42.6297 −1.57456 −0.787281 0.616594i \(-0.788512\pi\)
−0.787281 + 0.616594i \(0.788512\pi\)
\(734\) −7.91767 −0.292247
\(735\) 0 0
\(736\) 3.28693 0.121158
\(737\) −27.3586 −1.00777
\(738\) 1.34902 0.0496581
\(739\) −17.5915 −0.647114 −0.323557 0.946209i \(-0.604879\pi\)
−0.323557 + 0.946209i \(0.604879\pi\)
\(740\) 3.45231 0.126910
\(741\) −9.37044 −0.344232
\(742\) 0 0
\(743\) 14.5952 0.535445 0.267723 0.963496i \(-0.413729\pi\)
0.267723 + 0.963496i \(0.413729\pi\)
\(744\) −3.59317 −0.131732
\(745\) −17.2915 −0.633510
\(746\) −29.7367 −1.08874
\(747\) −12.1097 −0.443072
\(748\) 27.6133 1.00964
\(749\) 0 0
\(750\) −4.65702 −0.170050
\(751\) 1.34737 0.0491662 0.0245831 0.999698i \(-0.492174\pi\)
0.0245831 + 0.999698i \(0.492174\pi\)
\(752\) −6.74008 −0.245785
\(753\) 10.9310 0.398347
\(754\) 104.570 3.80820
\(755\) 18.3698 0.668546
\(756\) 0 0
\(757\) 1.51676 0.0551277 0.0275639 0.999620i \(-0.491225\pi\)
0.0275639 + 0.999620i \(0.491225\pi\)
\(758\) 32.1700 1.16847
\(759\) 3.05507 0.110892
\(760\) −3.00474 −0.108993
\(761\) 18.3985 0.666944 0.333472 0.942760i \(-0.391780\pi\)
0.333472 + 0.942760i \(0.391780\pi\)
\(762\) 22.1938 0.803998
\(763\) 0 0
\(764\) −1.37030 −0.0495758
\(765\) 3.80084 0.137419
\(766\) 4.86018 0.175605
\(767\) 48.4168 1.74823
\(768\) −43.8221 −1.58129
\(769\) −30.1956 −1.08888 −0.544441 0.838799i \(-0.683258\pi\)
−0.544441 + 0.838799i \(0.683258\pi\)
\(770\) 0 0
\(771\) −8.52175 −0.306903
\(772\) 26.6498 0.959149
\(773\) 3.11757 0.112131 0.0560656 0.998427i \(-0.482144\pi\)
0.0560656 + 0.998427i \(0.482144\pi\)
\(774\) 14.8669 0.534378
\(775\) −0.531263 −0.0190835
\(776\) 34.3369 1.23262
\(777\) 0 0
\(778\) 11.1826 0.400915
\(779\) 0.523561 0.0187585
\(780\) 36.5103 1.30728
\(781\) −1.14150 −0.0408461
\(782\) 6.75790 0.241662
\(783\) 34.0632 1.21732
\(784\) 0 0
\(785\) 15.3019 0.546148
\(786\) −22.5498 −0.804323
\(787\) −2.06553 −0.0736282 −0.0368141 0.999322i \(-0.511721\pi\)
−0.0368141 + 0.999322i \(0.511721\pi\)
\(788\) −13.0738 −0.465734
\(789\) −1.14270 −0.0406812
\(790\) 19.3260 0.687589
\(791\) 0 0
\(792\) −6.82202 −0.242410
\(793\) −26.5840 −0.944027
\(794\) −14.4662 −0.513386
\(795\) −28.5087 −1.01110
\(796\) −49.5019 −1.75455
\(797\) 10.3454 0.366452 0.183226 0.983071i \(-0.441346\pi\)
0.183226 + 0.983071i \(0.441346\pi\)
\(798\) 0 0
\(799\) 25.8438 0.914289
\(800\) −4.41502 −0.156094
\(801\) 12.5205 0.442392
\(802\) −47.5722 −1.67983
\(803\) 6.27190 0.221331
\(804\) 91.5536 3.22885
\(805\) 0 0
\(806\) 6.57790 0.231697
\(807\) 2.08820 0.0735083
\(808\) −31.5657 −1.11048
\(809\) 16.6790 0.586401 0.293200 0.956051i \(-0.405280\pi\)
0.293200 + 0.956051i \(0.405280\pi\)
\(810\) 25.6320 0.900618
\(811\) 55.7573 1.95790 0.978951 0.204093i \(-0.0654246\pi\)
0.978951 + 0.204093i \(0.0654246\pi\)
\(812\) 0 0
\(813\) −23.1277 −0.811123
\(814\) 4.80437 0.168393
\(815\) −0.363267 −0.0127247
\(816\) −7.86052 −0.275173
\(817\) 5.76990 0.201863
\(818\) −34.5013 −1.20631
\(819\) 0 0
\(820\) −2.03996 −0.0712386
\(821\) −28.6230 −0.998949 −0.499475 0.866329i \(-0.666474\pi\)
−0.499475 + 0.866329i \(0.666474\pi\)
\(822\) 99.8269 3.48186
\(823\) −37.4904 −1.30683 −0.653416 0.756999i \(-0.726665\pi\)
−0.653416 + 0.756999i \(0.726665\pi\)
\(824\) 16.1651 0.563138
\(825\) −4.10358 −0.142868
\(826\) 0 0
\(827\) −53.9684 −1.87666 −0.938332 0.345736i \(-0.887629\pi\)
−0.938332 + 0.345736i \(0.887629\pi\)
\(828\) −2.51296 −0.0873313
\(829\) −23.8717 −0.829100 −0.414550 0.910027i \(-0.636061\pi\)
−0.414550 + 0.910027i \(0.636061\pi\)
\(830\) 28.9207 1.00385
\(831\) −17.2123 −0.597089
\(832\) 65.4171 2.26793
\(833\) 0 0
\(834\) −48.0387 −1.66344
\(835\) 9.08619 0.314441
\(836\) −6.29378 −0.217675
\(837\) 2.14273 0.0740635
\(838\) 85.1963 2.94306
\(839\) 55.4905 1.91574 0.957872 0.287197i \(-0.0927233\pi\)
0.957872 + 0.287197i \(0.0927233\pi\)
\(840\) 0 0
\(841\) 42.3273 1.45956
\(842\) −56.7189 −1.95466
\(843\) −17.7554 −0.611528
\(844\) 91.8291 3.16089
\(845\) −15.1174 −0.520053
\(846\) −15.1775 −0.521814
\(847\) 0 0
\(848\) 14.4921 0.497661
\(849\) −12.5549 −0.430884
\(850\) −9.07723 −0.311346
\(851\) 0.744489 0.0255208
\(852\) 3.81995 0.130869
\(853\) 17.8941 0.612681 0.306341 0.951922i \(-0.400895\pi\)
0.306341 + 0.951922i \(0.400895\pi\)
\(854\) 0 0
\(855\) −0.866307 −0.0296271
\(856\) 24.0651 0.822528
\(857\) 15.1126 0.516237 0.258118 0.966113i \(-0.416898\pi\)
0.258118 + 0.966113i \(0.416898\pi\)
\(858\) 50.8090 1.73459
\(859\) −39.2354 −1.33870 −0.669348 0.742949i \(-0.733426\pi\)
−0.669348 + 0.742949i \(0.733426\pi\)
\(860\) −22.4814 −0.766608
\(861\) 0 0
\(862\) 12.9435 0.440859
\(863\) 38.8554 1.32265 0.661327 0.750098i \(-0.269994\pi\)
0.661327 + 0.750098i \(0.269994\pi\)
\(864\) 17.8070 0.605806
\(865\) −22.3296 −0.759230
\(866\) 34.4875 1.17193
\(867\) −3.76521 −0.127873
\(868\) 0 0
\(869\) 17.0293 0.577680
\(870\) 39.3311 1.33345
\(871\) −70.5075 −2.38906
\(872\) −58.3260 −1.97517
\(873\) 9.89979 0.335057
\(874\) −1.54030 −0.0521013
\(875\) 0 0
\(876\) −20.9885 −0.709135
\(877\) 11.1573 0.376755 0.188377 0.982097i \(-0.439677\pi\)
0.188377 + 0.982097i \(0.439677\pi\)
\(878\) −8.89274 −0.300115
\(879\) 34.0709 1.14918
\(880\) 2.08601 0.0703194
\(881\) −35.5972 −1.19930 −0.599651 0.800262i \(-0.704694\pi\)
−0.599651 + 0.800262i \(0.704694\pi\)
\(882\) 0 0
\(883\) −17.2704 −0.581196 −0.290598 0.956845i \(-0.593854\pi\)
−0.290598 + 0.956845i \(0.593854\pi\)
\(884\) 71.1640 2.39351
\(885\) 18.2107 0.612145
\(886\) −3.02003 −0.101460
\(887\) −8.22033 −0.276012 −0.138006 0.990431i \(-0.544069\pi\)
−0.138006 + 0.990431i \(0.544069\pi\)
\(888\) −6.76345 −0.226966
\(889\) 0 0
\(890\) −29.9018 −1.00231
\(891\) 22.5860 0.756658
\(892\) −37.1869 −1.24511
\(893\) −5.89046 −0.197117
\(894\) 80.5266 2.69321
\(895\) −18.1549 −0.606851
\(896\) 0 0
\(897\) 7.87342 0.262886
\(898\) 54.4898 1.81835
\(899\) 4.48681 0.149643
\(900\) 3.37541 0.112514
\(901\) −55.5679 −1.85123
\(902\) −2.83889 −0.0945246
\(903\) 0 0
\(904\) 16.3982 0.545396
\(905\) 5.16766 0.171779
\(906\) −85.5485 −2.84216
\(907\) 47.2081 1.56752 0.783759 0.621065i \(-0.213300\pi\)
0.783759 + 0.621065i \(0.213300\pi\)
\(908\) −22.9004 −0.759977
\(909\) −9.10081 −0.301855
\(910\) 0 0
\(911\) −29.1565 −0.965997 −0.482998 0.875621i \(-0.660452\pi\)
−0.482998 + 0.875621i \(0.660452\pi\)
\(912\) 1.79161 0.0593262
\(913\) 25.4838 0.843391
\(914\) −1.95700 −0.0647319
\(915\) −9.99887 −0.330553
\(916\) −47.7763 −1.57857
\(917\) 0 0
\(918\) 36.6110 1.20834
\(919\) −12.0346 −0.396984 −0.198492 0.980102i \(-0.563604\pi\)
−0.198492 + 0.980102i \(0.563604\pi\)
\(920\) 2.52470 0.0832368
\(921\) −12.2488 −0.403611
\(922\) 61.9429 2.03998
\(923\) −2.94183 −0.0968315
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 34.8899 1.14655
\(927\) 4.66062 0.153075
\(928\) 37.2872 1.22401
\(929\) −9.35722 −0.307000 −0.153500 0.988149i \(-0.549055\pi\)
−0.153500 + 0.988149i \(0.549055\pi\)
\(930\) 2.47410 0.0811289
\(931\) 0 0
\(932\) −68.5580 −2.24569
\(933\) −9.74540 −0.319050
\(934\) −49.3660 −1.61530
\(935\) −7.99850 −0.261579
\(936\) −17.5814 −0.574667
\(937\) −6.94565 −0.226905 −0.113452 0.993543i \(-0.536191\pi\)
−0.113452 + 0.993543i \(0.536191\pi\)
\(938\) 0 0
\(939\) −45.9396 −1.49918
\(940\) 22.9511 0.748584
\(941\) 31.4542 1.02538 0.512688 0.858575i \(-0.328650\pi\)
0.512688 + 0.858575i \(0.328650\pi\)
\(942\) −71.2612 −2.32181
\(943\) −0.439917 −0.0143257
\(944\) −9.25720 −0.301296
\(945\) 0 0
\(946\) −31.2859 −1.01719
\(947\) −2.62121 −0.0851778 −0.0425889 0.999093i \(-0.513561\pi\)
−0.0425889 + 0.999093i \(0.513561\pi\)
\(948\) −56.9875 −1.85087
\(949\) 16.1637 0.524696
\(950\) 2.06893 0.0671250
\(951\) 26.8679 0.871250
\(952\) 0 0
\(953\) −56.7897 −1.83960 −0.919799 0.392390i \(-0.871648\pi\)
−0.919799 + 0.392390i \(0.871648\pi\)
\(954\) 32.6338 1.05656
\(955\) 0.396923 0.0128441
\(956\) 73.3853 2.37345
\(957\) 34.6570 1.12030
\(958\) −46.9934 −1.51829
\(959\) 0 0
\(960\) 24.6049 0.794119
\(961\) −30.7178 −0.990895
\(962\) 12.3816 0.399200
\(963\) 6.93829 0.223583
\(964\) 12.5012 0.402638
\(965\) −7.71941 −0.248497
\(966\) 0 0
\(967\) 2.20757 0.0709906 0.0354953 0.999370i \(-0.488699\pi\)
0.0354953 + 0.999370i \(0.488699\pi\)
\(968\) −22.9467 −0.737535
\(969\) −6.86967 −0.220685
\(970\) −23.6429 −0.759127
\(971\) 43.7537 1.40412 0.702062 0.712116i \(-0.252263\pi\)
0.702062 + 0.712116i \(0.252263\pi\)
\(972\) −33.8099 −1.08445
\(973\) 0 0
\(974\) 51.8495 1.66137
\(975\) −10.5756 −0.338690
\(976\) 5.08282 0.162697
\(977\) 3.79551 0.121429 0.0607146 0.998155i \(-0.480662\pi\)
0.0607146 + 0.998155i \(0.480662\pi\)
\(978\) 1.69174 0.0540959
\(979\) −26.3483 −0.842095
\(980\) 0 0
\(981\) −16.8162 −0.536899
\(982\) −26.9536 −0.860124
\(983\) 0.344706 0.0109944 0.00549721 0.999985i \(-0.498250\pi\)
0.00549721 + 0.999985i \(0.498250\pi\)
\(984\) 3.99650 0.127404
\(985\) 3.78696 0.120663
\(986\) 76.6622 2.44142
\(987\) 0 0
\(988\) −16.2201 −0.516030
\(989\) −4.84809 −0.154160
\(990\) 4.69734 0.149291
\(991\) 3.79464 0.120541 0.0602704 0.998182i \(-0.480804\pi\)
0.0602704 + 0.998182i \(0.480804\pi\)
\(992\) 2.34553 0.0744708
\(993\) −67.9168 −2.15527
\(994\) 0 0
\(995\) 14.3388 0.454569
\(996\) −85.2798 −2.70219
\(997\) −45.8738 −1.45284 −0.726419 0.687252i \(-0.758817\pi\)
−0.726419 + 0.687252i \(0.758817\pi\)
\(998\) 76.3104 2.41556
\(999\) 4.03327 0.127607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bd.1.34 38
7.6 odd 2 9065.2.a.be.1.34 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bd.1.34 38 1.1 even 1 trivial
9065.2.a.be.1.34 yes 38 7.6 odd 2