Properties

Label 9065.2.a.bd.1.20
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-6,42,-38,-8,0,-6,48,2,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0412902 q^{2} -1.58988 q^{3} -1.99830 q^{4} -1.00000 q^{5} +0.0656462 q^{6} +0.165090 q^{8} -0.472294 q^{9} +0.0412902 q^{10} +5.50113 q^{11} +3.17704 q^{12} +4.78243 q^{13} +1.58988 q^{15} +3.98977 q^{16} -5.25733 q^{17} +0.0195011 q^{18} +1.40799 q^{19} +1.99830 q^{20} -0.227143 q^{22} -5.30278 q^{23} -0.262473 q^{24} +1.00000 q^{25} -0.197467 q^{26} +5.52052 q^{27} -9.00328 q^{29} -0.0656462 q^{30} -7.92250 q^{31} -0.494919 q^{32} -8.74612 q^{33} +0.217076 q^{34} +0.943782 q^{36} -1.00000 q^{37} -0.0581363 q^{38} -7.60348 q^{39} -0.165090 q^{40} -0.195903 q^{41} +8.39361 q^{43} -10.9929 q^{44} +0.472294 q^{45} +0.218953 q^{46} -6.31043 q^{47} -6.34325 q^{48} -0.0412902 q^{50} +8.35850 q^{51} -9.55672 q^{52} +9.36408 q^{53} -0.227943 q^{54} -5.50113 q^{55} -2.23854 q^{57} +0.371747 q^{58} +9.60075 q^{59} -3.17704 q^{60} -7.49868 q^{61} +0.327121 q^{62} -7.95911 q^{64} -4.78243 q^{65} +0.361129 q^{66} -11.3096 q^{67} +10.5057 q^{68} +8.43076 q^{69} +16.1348 q^{71} -0.0779711 q^{72} +3.13716 q^{73} +0.0412902 q^{74} -1.58988 q^{75} -2.81359 q^{76} +0.313949 q^{78} +13.6088 q^{79} -3.98977 q^{80} -7.36006 q^{81} +0.00808886 q^{82} -5.52584 q^{83} +5.25733 q^{85} -0.346573 q^{86} +14.3141 q^{87} +0.908183 q^{88} -10.8370 q^{89} -0.0195011 q^{90} +10.5965 q^{92} +12.5958 q^{93} +0.260559 q^{94} -1.40799 q^{95} +0.786860 q^{96} +7.35709 q^{97} -2.59815 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 6 q^{3} + 42 q^{4} - 38 q^{5} - 8 q^{6} - 6 q^{8} + 48 q^{9} + 2 q^{10} + 34 q^{11} - 20 q^{12} - 22 q^{13} + 6 q^{15} + 46 q^{16} - 22 q^{17} - 36 q^{18} - 40 q^{19} - 42 q^{20} - 4 q^{22}+ \cdots + 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0412902 −0.0291966 −0.0145983 0.999893i \(-0.504647\pi\)
−0.0145983 + 0.999893i \(0.504647\pi\)
\(3\) −1.58988 −0.917915 −0.458958 0.888458i \(-0.651777\pi\)
−0.458958 + 0.888458i \(0.651777\pi\)
\(4\) −1.99830 −0.999148
\(5\) −1.00000 −0.447214
\(6\) 0.0656462 0.0268000
\(7\) 0 0
\(8\) 0.165090 0.0583682
\(9\) −0.472294 −0.157431
\(10\) 0.0412902 0.0130571
\(11\) 5.50113 1.65865 0.829327 0.558764i \(-0.188724\pi\)
0.829327 + 0.558764i \(0.188724\pi\)
\(12\) 3.17704 0.917133
\(13\) 4.78243 1.32641 0.663204 0.748438i \(-0.269196\pi\)
0.663204 + 0.748438i \(0.269196\pi\)
\(14\) 0 0
\(15\) 1.58988 0.410504
\(16\) 3.98977 0.997443
\(17\) −5.25733 −1.27509 −0.637545 0.770413i \(-0.720050\pi\)
−0.637545 + 0.770413i \(0.720050\pi\)
\(18\) 0.0195011 0.00459645
\(19\) 1.40799 0.323016 0.161508 0.986871i \(-0.448364\pi\)
0.161508 + 0.986871i \(0.448364\pi\)
\(20\) 1.99830 0.446832
\(21\) 0 0
\(22\) −0.227143 −0.0484270
\(23\) −5.30278 −1.10571 −0.552853 0.833279i \(-0.686461\pi\)
−0.552853 + 0.833279i \(0.686461\pi\)
\(24\) −0.262473 −0.0535771
\(25\) 1.00000 0.200000
\(26\) −0.197467 −0.0387266
\(27\) 5.52052 1.06242
\(28\) 0 0
\(29\) −9.00328 −1.67187 −0.835934 0.548831i \(-0.815073\pi\)
−0.835934 + 0.548831i \(0.815073\pi\)
\(30\) −0.0656462 −0.0119853
\(31\) −7.92250 −1.42292 −0.711462 0.702725i \(-0.751966\pi\)
−0.711462 + 0.702725i \(0.751966\pi\)
\(32\) −0.494919 −0.0874901
\(33\) −8.74612 −1.52250
\(34\) 0.217076 0.0372282
\(35\) 0 0
\(36\) 0.943782 0.157297
\(37\) −1.00000 −0.164399
\(38\) −0.0581363 −0.00943095
\(39\) −7.60348 −1.21753
\(40\) −0.165090 −0.0261031
\(41\) −0.195903 −0.0305949 −0.0152974 0.999883i \(-0.504870\pi\)
−0.0152974 + 0.999883i \(0.504870\pi\)
\(42\) 0 0
\(43\) 8.39361 1.28001 0.640007 0.768369i \(-0.278932\pi\)
0.640007 + 0.768369i \(0.278932\pi\)
\(44\) −10.9929 −1.65724
\(45\) 0.472294 0.0704054
\(46\) 0.218953 0.0322828
\(47\) −6.31043 −0.920471 −0.460236 0.887797i \(-0.652235\pi\)
−0.460236 + 0.887797i \(0.652235\pi\)
\(48\) −6.34325 −0.915569
\(49\) 0 0
\(50\) −0.0412902 −0.00583931
\(51\) 8.35850 1.17042
\(52\) −9.55672 −1.32528
\(53\) 9.36408 1.28625 0.643127 0.765759i \(-0.277637\pi\)
0.643127 + 0.765759i \(0.277637\pi\)
\(54\) −0.227943 −0.0310191
\(55\) −5.50113 −0.741772
\(56\) 0 0
\(57\) −2.23854 −0.296501
\(58\) 0.371747 0.0488128
\(59\) 9.60075 1.24991 0.624956 0.780660i \(-0.285117\pi\)
0.624956 + 0.780660i \(0.285117\pi\)
\(60\) −3.17704 −0.410154
\(61\) −7.49868 −0.960108 −0.480054 0.877239i \(-0.659383\pi\)
−0.480054 + 0.877239i \(0.659383\pi\)
\(62\) 0.327121 0.0415445
\(63\) 0 0
\(64\) −7.95911 −0.994889
\(65\) −4.78243 −0.593188
\(66\) 0.361129 0.0444519
\(67\) −11.3096 −1.38169 −0.690847 0.723001i \(-0.742762\pi\)
−0.690847 + 0.723001i \(0.742762\pi\)
\(68\) 10.5057 1.27400
\(69\) 8.43076 1.01494
\(70\) 0 0
\(71\) 16.1348 1.91485 0.957423 0.288689i \(-0.0932192\pi\)
0.957423 + 0.288689i \(0.0932192\pi\)
\(72\) −0.0779711 −0.00918898
\(73\) 3.13716 0.367177 0.183588 0.983003i \(-0.441229\pi\)
0.183588 + 0.983003i \(0.441229\pi\)
\(74\) 0.0412902 0.00479988
\(75\) −1.58988 −0.183583
\(76\) −2.81359 −0.322741
\(77\) 0 0
\(78\) 0.313949 0.0355477
\(79\) 13.6088 1.53111 0.765553 0.643373i \(-0.222466\pi\)
0.765553 + 0.643373i \(0.222466\pi\)
\(80\) −3.98977 −0.446070
\(81\) −7.36006 −0.817784
\(82\) 0.00808886 0.000893266 0
\(83\) −5.52584 −0.606539 −0.303270 0.952905i \(-0.598078\pi\)
−0.303270 + 0.952905i \(0.598078\pi\)
\(84\) 0 0
\(85\) 5.25733 0.570237
\(86\) −0.346573 −0.0373720
\(87\) 14.3141 1.53463
\(88\) 0.908183 0.0968127
\(89\) −10.8370 −1.14871 −0.574357 0.818605i \(-0.694748\pi\)
−0.574357 + 0.818605i \(0.694748\pi\)
\(90\) −0.0195011 −0.00205559
\(91\) 0 0
\(92\) 10.5965 1.10476
\(93\) 12.5958 1.30612
\(94\) 0.260559 0.0268746
\(95\) −1.40799 −0.144457
\(96\) 0.786860 0.0803085
\(97\) 7.35709 0.746999 0.373499 0.927630i \(-0.378158\pi\)
0.373499 + 0.927630i \(0.378158\pi\)
\(98\) 0 0
\(99\) −2.59815 −0.261124
\(100\) −1.99830 −0.199830
\(101\) 5.43209 0.540513 0.270256 0.962788i \(-0.412892\pi\)
0.270256 + 0.962788i \(0.412892\pi\)
\(102\) −0.345124 −0.0341724
\(103\) −6.39829 −0.630442 −0.315221 0.949018i \(-0.602079\pi\)
−0.315221 + 0.949018i \(0.602079\pi\)
\(104\) 0.789533 0.0774201
\(105\) 0 0
\(106\) −0.386644 −0.0375542
\(107\) −0.925139 −0.0894366 −0.0447183 0.999000i \(-0.514239\pi\)
−0.0447183 + 0.999000i \(0.514239\pi\)
\(108\) −11.0316 −1.06152
\(109\) 2.26627 0.217069 0.108535 0.994093i \(-0.465384\pi\)
0.108535 + 0.994093i \(0.465384\pi\)
\(110\) 0.227143 0.0216572
\(111\) 1.58988 0.150904
\(112\) 0 0
\(113\) 13.4738 1.26751 0.633753 0.773535i \(-0.281513\pi\)
0.633753 + 0.773535i \(0.281513\pi\)
\(114\) 0.0924295 0.00865682
\(115\) 5.30278 0.494487
\(116\) 17.9912 1.67044
\(117\) −2.25871 −0.208818
\(118\) −0.396417 −0.0364931
\(119\) 0 0
\(120\) 0.262473 0.0239604
\(121\) 19.2624 1.75113
\(122\) 0.309622 0.0280318
\(123\) 0.311461 0.0280835
\(124\) 15.8315 1.42171
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 11.5910 1.02854 0.514268 0.857630i \(-0.328064\pi\)
0.514268 + 0.857630i \(0.328064\pi\)
\(128\) 1.31847 0.116537
\(129\) −13.3448 −1.17494
\(130\) 0.197467 0.0173190
\(131\) 12.6123 1.10194 0.550970 0.834525i \(-0.314258\pi\)
0.550970 + 0.834525i \(0.314258\pi\)
\(132\) 17.4773 1.52121
\(133\) 0 0
\(134\) 0.466977 0.0403407
\(135\) −5.52052 −0.475130
\(136\) −0.867934 −0.0744247
\(137\) −17.9243 −1.53138 −0.765690 0.643210i \(-0.777602\pi\)
−0.765690 + 0.643210i \(0.777602\pi\)
\(138\) −0.348107 −0.0296329
\(139\) −6.99249 −0.593095 −0.296548 0.955018i \(-0.595835\pi\)
−0.296548 + 0.955018i \(0.595835\pi\)
\(140\) 0 0
\(141\) 10.0328 0.844915
\(142\) −0.666208 −0.0559069
\(143\) 26.3088 2.20005
\(144\) −1.88435 −0.157029
\(145\) 9.00328 0.747682
\(146\) −0.129534 −0.0107203
\(147\) 0 0
\(148\) 1.99830 0.164259
\(149\) 8.79235 0.720297 0.360149 0.932895i \(-0.382726\pi\)
0.360149 + 0.932895i \(0.382726\pi\)
\(150\) 0.0656462 0.00535999
\(151\) −13.2328 −1.07687 −0.538437 0.842666i \(-0.680985\pi\)
−0.538437 + 0.842666i \(0.680985\pi\)
\(152\) 0.232446 0.0188539
\(153\) 2.48300 0.200739
\(154\) 0 0
\(155\) 7.92250 0.636351
\(156\) 15.1940 1.21649
\(157\) −11.6787 −0.932060 −0.466030 0.884769i \(-0.654316\pi\)
−0.466030 + 0.884769i \(0.654316\pi\)
\(158\) −0.561908 −0.0447030
\(159\) −14.8877 −1.18067
\(160\) 0.494919 0.0391268
\(161\) 0 0
\(162\) 0.303898 0.0238765
\(163\) −12.4831 −0.977751 −0.488876 0.872354i \(-0.662593\pi\)
−0.488876 + 0.872354i \(0.662593\pi\)
\(164\) 0.391472 0.0305688
\(165\) 8.74612 0.680884
\(166\) 0.228163 0.0177089
\(167\) 4.48947 0.347405 0.173703 0.984798i \(-0.444427\pi\)
0.173703 + 0.984798i \(0.444427\pi\)
\(168\) 0 0
\(169\) 9.87168 0.759360
\(170\) −0.217076 −0.0166490
\(171\) −0.664987 −0.0508528
\(172\) −16.7729 −1.27892
\(173\) 11.4643 0.871613 0.435807 0.900040i \(-0.356463\pi\)
0.435807 + 0.900040i \(0.356463\pi\)
\(174\) −0.591032 −0.0448060
\(175\) 0 0
\(176\) 21.9483 1.65441
\(177\) −15.2640 −1.14731
\(178\) 0.447459 0.0335385
\(179\) 18.2813 1.36641 0.683204 0.730227i \(-0.260586\pi\)
0.683204 + 0.730227i \(0.260586\pi\)
\(180\) −0.943782 −0.0703454
\(181\) 2.03170 0.151015 0.0755075 0.997145i \(-0.475942\pi\)
0.0755075 + 0.997145i \(0.475942\pi\)
\(182\) 0 0
\(183\) 11.9220 0.881298
\(184\) −0.875437 −0.0645381
\(185\) 1.00000 0.0735215
\(186\) −0.520082 −0.0381343
\(187\) −28.9213 −2.11493
\(188\) 12.6101 0.919687
\(189\) 0 0
\(190\) 0.0581363 0.00421765
\(191\) 0.614192 0.0444413 0.0222207 0.999753i \(-0.492926\pi\)
0.0222207 + 0.999753i \(0.492926\pi\)
\(192\) 12.6540 0.913224
\(193\) −7.79593 −0.561163 −0.280582 0.959830i \(-0.590527\pi\)
−0.280582 + 0.959830i \(0.590527\pi\)
\(194\) −0.303775 −0.0218098
\(195\) 7.60348 0.544496
\(196\) 0 0
\(197\) −4.93761 −0.351790 −0.175895 0.984409i \(-0.556282\pi\)
−0.175895 + 0.984409i \(0.556282\pi\)
\(198\) 0.107278 0.00762392
\(199\) 9.86235 0.699123 0.349562 0.936913i \(-0.386331\pi\)
0.349562 + 0.936913i \(0.386331\pi\)
\(200\) 0.165090 0.0116736
\(201\) 17.9809 1.26828
\(202\) −0.224292 −0.0157811
\(203\) 0 0
\(204\) −16.7028 −1.16943
\(205\) 0.195903 0.0136825
\(206\) 0.264186 0.0184067
\(207\) 2.50447 0.174073
\(208\) 19.0808 1.32302
\(209\) 7.74556 0.535772
\(210\) 0 0
\(211\) −9.93956 −0.684267 −0.342134 0.939651i \(-0.611150\pi\)
−0.342134 + 0.939651i \(0.611150\pi\)
\(212\) −18.7122 −1.28516
\(213\) −25.6523 −1.75767
\(214\) 0.0381991 0.00261124
\(215\) −8.39361 −0.572439
\(216\) 0.911384 0.0620118
\(217\) 0 0
\(218\) −0.0935746 −0.00633767
\(219\) −4.98769 −0.337037
\(220\) 10.9929 0.741140
\(221\) −25.1428 −1.69129
\(222\) −0.0656462 −0.00440589
\(223\) 12.5793 0.842372 0.421186 0.906974i \(-0.361614\pi\)
0.421186 + 0.906974i \(0.361614\pi\)
\(224\) 0 0
\(225\) −0.472294 −0.0314863
\(226\) −0.556334 −0.0370068
\(227\) 7.01840 0.465828 0.232914 0.972497i \(-0.425174\pi\)
0.232914 + 0.972497i \(0.425174\pi\)
\(228\) 4.47326 0.296249
\(229\) −28.7647 −1.90083 −0.950413 0.310991i \(-0.899339\pi\)
−0.950413 + 0.310991i \(0.899339\pi\)
\(230\) −0.218953 −0.0144373
\(231\) 0 0
\(232\) −1.48635 −0.0975839
\(233\) 11.0795 0.725839 0.362920 0.931820i \(-0.381780\pi\)
0.362920 + 0.931820i \(0.381780\pi\)
\(234\) 0.0932627 0.00609677
\(235\) 6.31043 0.411647
\(236\) −19.1851 −1.24885
\(237\) −21.6362 −1.40543
\(238\) 0 0
\(239\) 3.76867 0.243775 0.121887 0.992544i \(-0.461105\pi\)
0.121887 + 0.992544i \(0.461105\pi\)
\(240\) 6.34325 0.409455
\(241\) −24.9441 −1.60679 −0.803397 0.595444i \(-0.796976\pi\)
−0.803397 + 0.595444i \(0.796976\pi\)
\(242\) −0.795350 −0.0511270
\(243\) −4.85997 −0.311767
\(244\) 14.9846 0.959290
\(245\) 0 0
\(246\) −0.0128603 −0.000819942 0
\(247\) 6.73364 0.428451
\(248\) −1.30793 −0.0830535
\(249\) 8.78540 0.556752
\(250\) 0.0412902 0.00261142
\(251\) −1.49287 −0.0942291 −0.0471146 0.998889i \(-0.515003\pi\)
−0.0471146 + 0.998889i \(0.515003\pi\)
\(252\) 0 0
\(253\) −29.1713 −1.83398
\(254\) −0.478595 −0.0300297
\(255\) −8.35850 −0.523430
\(256\) 15.8638 0.991487
\(257\) −15.7647 −0.983376 −0.491688 0.870771i \(-0.663620\pi\)
−0.491688 + 0.870771i \(0.663620\pi\)
\(258\) 0.551009 0.0343043
\(259\) 0 0
\(260\) 9.55672 0.592682
\(261\) 4.25219 0.263204
\(262\) −0.520763 −0.0321728
\(263\) 2.76898 0.170742 0.0853712 0.996349i \(-0.472792\pi\)
0.0853712 + 0.996349i \(0.472792\pi\)
\(264\) −1.44390 −0.0888658
\(265\) −9.36408 −0.575231
\(266\) 0 0
\(267\) 17.2294 1.05442
\(268\) 22.6000 1.38052
\(269\) −25.9399 −1.58159 −0.790793 0.612084i \(-0.790332\pi\)
−0.790793 + 0.612084i \(0.790332\pi\)
\(270\) 0.227943 0.0138722
\(271\) 2.35321 0.142947 0.0714737 0.997442i \(-0.477230\pi\)
0.0714737 + 0.997442i \(0.477230\pi\)
\(272\) −20.9756 −1.27183
\(273\) 0 0
\(274\) 0.740099 0.0447110
\(275\) 5.50113 0.331731
\(276\) −16.8471 −1.01408
\(277\) 5.92183 0.355808 0.177904 0.984048i \(-0.443068\pi\)
0.177904 + 0.984048i \(0.443068\pi\)
\(278\) 0.288721 0.0173163
\(279\) 3.74175 0.224013
\(280\) 0 0
\(281\) 32.8398 1.95906 0.979528 0.201307i \(-0.0645188\pi\)
0.979528 + 0.201307i \(0.0645188\pi\)
\(282\) −0.414256 −0.0246686
\(283\) −11.4540 −0.680872 −0.340436 0.940268i \(-0.610575\pi\)
−0.340436 + 0.940268i \(0.610575\pi\)
\(284\) −32.2421 −1.91321
\(285\) 2.23854 0.132599
\(286\) −1.08629 −0.0642339
\(287\) 0 0
\(288\) 0.233747 0.0137737
\(289\) 10.6395 0.625854
\(290\) −0.371747 −0.0218297
\(291\) −11.6969 −0.685682
\(292\) −6.26897 −0.366864
\(293\) −12.8139 −0.748595 −0.374298 0.927309i \(-0.622116\pi\)
−0.374298 + 0.927309i \(0.622116\pi\)
\(294\) 0 0
\(295\) −9.60075 −0.558977
\(296\) −0.165090 −0.00959568
\(297\) 30.3691 1.76219
\(298\) −0.363037 −0.0210302
\(299\) −25.3602 −1.46662
\(300\) 3.17704 0.183427
\(301\) 0 0
\(302\) 0.546386 0.0314410
\(303\) −8.63635 −0.496145
\(304\) 5.61758 0.322190
\(305\) 7.49868 0.429373
\(306\) −0.102524 −0.00586089
\(307\) −8.99752 −0.513515 −0.256758 0.966476i \(-0.582654\pi\)
−0.256758 + 0.966476i \(0.582654\pi\)
\(308\) 0 0
\(309\) 10.1725 0.578692
\(310\) −0.327121 −0.0185792
\(311\) −0.140522 −0.00796829 −0.00398414 0.999992i \(-0.501268\pi\)
−0.00398414 + 0.999992i \(0.501268\pi\)
\(312\) −1.25526 −0.0710651
\(313\) −13.5231 −0.764369 −0.382185 0.924086i \(-0.624828\pi\)
−0.382185 + 0.924086i \(0.624828\pi\)
\(314\) 0.482215 0.0272129
\(315\) 0 0
\(316\) −27.1943 −1.52980
\(317\) −30.6688 −1.72253 −0.861266 0.508154i \(-0.830328\pi\)
−0.861266 + 0.508154i \(0.830328\pi\)
\(318\) 0.614716 0.0344716
\(319\) −49.5282 −2.77305
\(320\) 7.95911 0.444928
\(321\) 1.47086 0.0820952
\(322\) 0 0
\(323\) −7.40229 −0.411874
\(324\) 14.7076 0.817087
\(325\) 4.78243 0.265282
\(326\) 0.515429 0.0285470
\(327\) −3.60309 −0.199251
\(328\) −0.0323417 −0.00178577
\(329\) 0 0
\(330\) −0.361129 −0.0198795
\(331\) −2.82312 −0.155173 −0.0775863 0.996986i \(-0.524721\pi\)
−0.0775863 + 0.996986i \(0.524721\pi\)
\(332\) 11.0423 0.606022
\(333\) 0.472294 0.0258815
\(334\) −0.185371 −0.0101430
\(335\) 11.3096 0.617912
\(336\) 0 0
\(337\) 7.89171 0.429889 0.214944 0.976626i \(-0.431043\pi\)
0.214944 + 0.976626i \(0.431043\pi\)
\(338\) −0.407603 −0.0221707
\(339\) −21.4216 −1.16346
\(340\) −10.5057 −0.569751
\(341\) −43.5827 −2.36014
\(342\) 0.0274574 0.00148473
\(343\) 0 0
\(344\) 1.38570 0.0747121
\(345\) −8.43076 −0.453897
\(346\) −0.473362 −0.0254481
\(347\) 18.9912 1.01950 0.509751 0.860322i \(-0.329737\pi\)
0.509751 + 0.860322i \(0.329737\pi\)
\(348\) −28.6038 −1.53332
\(349\) 10.5651 0.565540 0.282770 0.959188i \(-0.408747\pi\)
0.282770 + 0.959188i \(0.408747\pi\)
\(350\) 0 0
\(351\) 26.4015 1.40921
\(352\) −2.72261 −0.145116
\(353\) −24.3520 −1.29613 −0.648063 0.761587i \(-0.724420\pi\)
−0.648063 + 0.761587i \(0.724420\pi\)
\(354\) 0.630253 0.0334976
\(355\) −16.1348 −0.856345
\(356\) 21.6554 1.14774
\(357\) 0 0
\(358\) −0.754838 −0.0398944
\(359\) 36.2736 1.91445 0.957225 0.289346i \(-0.0934378\pi\)
0.957225 + 0.289346i \(0.0934378\pi\)
\(360\) 0.0779711 0.00410944
\(361\) −17.0176 −0.895661
\(362\) −0.0838892 −0.00440912
\(363\) −30.6249 −1.60739
\(364\) 0 0
\(365\) −3.13716 −0.164206
\(366\) −0.492260 −0.0257309
\(367\) −32.2560 −1.68375 −0.841876 0.539671i \(-0.818549\pi\)
−0.841876 + 0.539671i \(0.818549\pi\)
\(368\) −21.1569 −1.10288
\(369\) 0.0925237 0.00481659
\(370\) −0.0412902 −0.00214657
\(371\) 0 0
\(372\) −25.1701 −1.30501
\(373\) −22.4092 −1.16030 −0.580151 0.814509i \(-0.697006\pi\)
−0.580151 + 0.814509i \(0.697006\pi\)
\(374\) 1.19416 0.0617487
\(375\) 1.58988 0.0821009
\(376\) −1.04179 −0.0537263
\(377\) −43.0576 −2.21758
\(378\) 0 0
\(379\) −19.7775 −1.01590 −0.507950 0.861387i \(-0.669597\pi\)
−0.507950 + 0.861387i \(0.669597\pi\)
\(380\) 2.81359 0.144334
\(381\) −18.4283 −0.944109
\(382\) −0.0253601 −0.00129753
\(383\) 13.0748 0.668089 0.334044 0.942557i \(-0.391586\pi\)
0.334044 + 0.942557i \(0.391586\pi\)
\(384\) −2.09621 −0.106972
\(385\) 0 0
\(386\) 0.321895 0.0163840
\(387\) −3.96425 −0.201514
\(388\) −14.7016 −0.746362
\(389\) 13.8368 0.701552 0.350776 0.936459i \(-0.385918\pi\)
0.350776 + 0.936459i \(0.385918\pi\)
\(390\) −0.313949 −0.0158974
\(391\) 27.8784 1.40987
\(392\) 0 0
\(393\) −20.0519 −1.01149
\(394\) 0.203875 0.0102711
\(395\) −13.6088 −0.684731
\(396\) 5.19187 0.260901
\(397\) 14.6229 0.733904 0.366952 0.930240i \(-0.380401\pi\)
0.366952 + 0.930240i \(0.380401\pi\)
\(398\) −0.407218 −0.0204120
\(399\) 0 0
\(400\) 3.98977 0.199489
\(401\) 18.7563 0.936644 0.468322 0.883558i \(-0.344859\pi\)
0.468322 + 0.883558i \(0.344859\pi\)
\(402\) −0.742436 −0.0370293
\(403\) −37.8888 −1.88738
\(404\) −10.8549 −0.540052
\(405\) 7.36006 0.365724
\(406\) 0 0
\(407\) −5.50113 −0.272681
\(408\) 1.37991 0.0683156
\(409\) 30.4024 1.50330 0.751650 0.659562i \(-0.229258\pi\)
0.751650 + 0.659562i \(0.229258\pi\)
\(410\) −0.00808886 −0.000399480 0
\(411\) 28.4975 1.40568
\(412\) 12.7857 0.629904
\(413\) 0 0
\(414\) −0.103410 −0.00508232
\(415\) 5.52584 0.271253
\(416\) −2.36692 −0.116048
\(417\) 11.1172 0.544411
\(418\) −0.319815 −0.0156427
\(419\) 2.58014 0.126048 0.0630241 0.998012i \(-0.479925\pi\)
0.0630241 + 0.998012i \(0.479925\pi\)
\(420\) 0 0
\(421\) −2.92375 −0.142495 −0.0712475 0.997459i \(-0.522698\pi\)
−0.0712475 + 0.997459i \(0.522698\pi\)
\(422\) 0.410406 0.0199782
\(423\) 2.98038 0.144911
\(424\) 1.54592 0.0750764
\(425\) −5.25733 −0.255018
\(426\) 1.05919 0.0513178
\(427\) 0 0
\(428\) 1.84870 0.0893603
\(429\) −41.8277 −2.01946
\(430\) 0.346573 0.0167133
\(431\) 38.8482 1.87125 0.935627 0.352990i \(-0.114835\pi\)
0.935627 + 0.352990i \(0.114835\pi\)
\(432\) 22.0256 1.05971
\(433\) −27.7134 −1.33182 −0.665911 0.746032i \(-0.731957\pi\)
−0.665911 + 0.746032i \(0.731957\pi\)
\(434\) 0 0
\(435\) −14.3141 −0.686309
\(436\) −4.52867 −0.216884
\(437\) −7.46628 −0.357161
\(438\) 0.205943 0.00984032
\(439\) −17.2384 −0.822743 −0.411372 0.911468i \(-0.634950\pi\)
−0.411372 + 0.911468i \(0.634950\pi\)
\(440\) −0.908183 −0.0432959
\(441\) 0 0
\(442\) 1.03815 0.0493798
\(443\) 24.3921 1.15890 0.579452 0.815007i \(-0.303267\pi\)
0.579452 + 0.815007i \(0.303267\pi\)
\(444\) −3.17704 −0.150776
\(445\) 10.8370 0.513721
\(446\) −0.519401 −0.0245944
\(447\) −13.9787 −0.661172
\(448\) 0 0
\(449\) −25.2738 −1.19275 −0.596373 0.802707i \(-0.703392\pi\)
−0.596373 + 0.802707i \(0.703392\pi\)
\(450\) 0.0195011 0.000919290 0
\(451\) −1.07769 −0.0507463
\(452\) −26.9246 −1.26643
\(453\) 21.0386 0.988479
\(454\) −0.289791 −0.0136006
\(455\) 0 0
\(456\) −0.369561 −0.0173063
\(457\) 20.0738 0.939013 0.469507 0.882929i \(-0.344432\pi\)
0.469507 + 0.882929i \(0.344432\pi\)
\(458\) 1.18770 0.0554975
\(459\) −29.0232 −1.35469
\(460\) −10.5965 −0.494065
\(461\) −22.9576 −1.06924 −0.534622 0.845091i \(-0.679546\pi\)
−0.534622 + 0.845091i \(0.679546\pi\)
\(462\) 0 0
\(463\) 8.13863 0.378234 0.189117 0.981955i \(-0.439437\pi\)
0.189117 + 0.981955i \(0.439437\pi\)
\(464\) −35.9211 −1.66759
\(465\) −12.5958 −0.584116
\(466\) −0.457472 −0.0211920
\(467\) 17.5697 0.813028 0.406514 0.913645i \(-0.366744\pi\)
0.406514 + 0.913645i \(0.366744\pi\)
\(468\) 4.51358 0.208640
\(469\) 0 0
\(470\) −0.260559 −0.0120187
\(471\) 18.5677 0.855552
\(472\) 1.58499 0.0729551
\(473\) 46.1743 2.12310
\(474\) 0.893364 0.0410336
\(475\) 1.40799 0.0646032
\(476\) 0 0
\(477\) −4.42260 −0.202497
\(478\) −0.155609 −0.00711739
\(479\) −28.8315 −1.31734 −0.658672 0.752430i \(-0.728881\pi\)
−0.658672 + 0.752430i \(0.728881\pi\)
\(480\) −0.786860 −0.0359151
\(481\) −4.78243 −0.218060
\(482\) 1.02995 0.0469128
\(483\) 0 0
\(484\) −38.4921 −1.74964
\(485\) −7.35709 −0.334068
\(486\) 0.200669 0.00910253
\(487\) 10.4111 0.471770 0.235885 0.971781i \(-0.424201\pi\)
0.235885 + 0.971781i \(0.424201\pi\)
\(488\) −1.23796 −0.0560398
\(489\) 19.8466 0.897493
\(490\) 0 0
\(491\) −29.0040 −1.30893 −0.654466 0.756091i \(-0.727106\pi\)
−0.654466 + 0.756091i \(0.727106\pi\)
\(492\) −0.622392 −0.0280596
\(493\) 47.3332 2.13178
\(494\) −0.278033 −0.0125093
\(495\) 2.59815 0.116778
\(496\) −31.6090 −1.41929
\(497\) 0 0
\(498\) −0.362750 −0.0162552
\(499\) −6.97740 −0.312351 −0.156176 0.987729i \(-0.549917\pi\)
−0.156176 + 0.987729i \(0.549917\pi\)
\(500\) 1.99830 0.0893665
\(501\) −7.13770 −0.318889
\(502\) 0.0616408 0.00275117
\(503\) −20.2329 −0.902138 −0.451069 0.892489i \(-0.648957\pi\)
−0.451069 + 0.892489i \(0.648957\pi\)
\(504\) 0 0
\(505\) −5.43209 −0.241725
\(506\) 1.20449 0.0535460
\(507\) −15.6947 −0.697028
\(508\) −23.1623 −1.02766
\(509\) 13.5623 0.601138 0.300569 0.953760i \(-0.402823\pi\)
0.300569 + 0.953760i \(0.402823\pi\)
\(510\) 0.345124 0.0152823
\(511\) 0 0
\(512\) −3.29196 −0.145485
\(513\) 7.77286 0.343180
\(514\) 0.650928 0.0287112
\(515\) 6.39829 0.281942
\(516\) 26.6668 1.17394
\(517\) −34.7145 −1.52674
\(518\) 0 0
\(519\) −18.2268 −0.800067
\(520\) −0.789533 −0.0346233
\(521\) −6.77322 −0.296740 −0.148370 0.988932i \(-0.547403\pi\)
−0.148370 + 0.988932i \(0.547403\pi\)
\(522\) −0.175574 −0.00768465
\(523\) −22.9436 −1.00325 −0.501626 0.865084i \(-0.667265\pi\)
−0.501626 + 0.865084i \(0.667265\pi\)
\(524\) −25.2030 −1.10100
\(525\) 0 0
\(526\) −0.114331 −0.00498509
\(527\) 41.6512 1.81435
\(528\) −34.8950 −1.51861
\(529\) 5.11945 0.222585
\(530\) 0.386644 0.0167948
\(531\) −4.53438 −0.196775
\(532\) 0 0
\(533\) −0.936893 −0.0405813
\(534\) −0.711405 −0.0307855
\(535\) 0.925139 0.0399972
\(536\) −1.86711 −0.0806470
\(537\) −29.0650 −1.25425
\(538\) 1.07106 0.0461769
\(539\) 0 0
\(540\) 11.0316 0.474725
\(541\) 9.06056 0.389544 0.194772 0.980849i \(-0.437603\pi\)
0.194772 + 0.980849i \(0.437603\pi\)
\(542\) −0.0971644 −0.00417357
\(543\) −3.23015 −0.138619
\(544\) 2.60195 0.111558
\(545\) −2.26627 −0.0970763
\(546\) 0 0
\(547\) −37.9458 −1.62245 −0.811223 0.584737i \(-0.801198\pi\)
−0.811223 + 0.584737i \(0.801198\pi\)
\(548\) 35.8181 1.53008
\(549\) 3.54158 0.151151
\(550\) −0.227143 −0.00968539
\(551\) −12.6766 −0.540040
\(552\) 1.39184 0.0592405
\(553\) 0 0
\(554\) −0.244513 −0.0103884
\(555\) −1.58988 −0.0674865
\(556\) 13.9731 0.592590
\(557\) 7.29853 0.309249 0.154624 0.987973i \(-0.450583\pi\)
0.154624 + 0.987973i \(0.450583\pi\)
\(558\) −0.154497 −0.00654040
\(559\) 40.1419 1.69782
\(560\) 0 0
\(561\) 45.9812 1.94133
\(562\) −1.35596 −0.0571977
\(563\) 4.18085 0.176202 0.0881010 0.996112i \(-0.471920\pi\)
0.0881010 + 0.996112i \(0.471920\pi\)
\(564\) −20.0485 −0.844195
\(565\) −13.4738 −0.566846
\(566\) 0.472939 0.0198791
\(567\) 0 0
\(568\) 2.66369 0.111766
\(569\) 6.43413 0.269733 0.134866 0.990864i \(-0.456939\pi\)
0.134866 + 0.990864i \(0.456939\pi\)
\(570\) −0.0924295 −0.00387145
\(571\) 3.94177 0.164958 0.0824790 0.996593i \(-0.473716\pi\)
0.0824790 + 0.996593i \(0.473716\pi\)
\(572\) −52.5728 −2.19818
\(573\) −0.976489 −0.0407934
\(574\) 0 0
\(575\) −5.30278 −0.221141
\(576\) 3.75904 0.156627
\(577\) −23.1440 −0.963495 −0.481748 0.876310i \(-0.659998\pi\)
−0.481748 + 0.876310i \(0.659998\pi\)
\(578\) −0.439307 −0.0182728
\(579\) 12.3946 0.515101
\(580\) −17.9912 −0.747044
\(581\) 0 0
\(582\) 0.482965 0.0200195
\(583\) 51.5130 2.13345
\(584\) 0.517914 0.0214314
\(585\) 2.25871 0.0933863
\(586\) 0.529088 0.0218564
\(587\) −34.0634 −1.40595 −0.702973 0.711217i \(-0.748144\pi\)
−0.702973 + 0.711217i \(0.748144\pi\)
\(588\) 0 0
\(589\) −11.1548 −0.459627
\(590\) 0.396417 0.0163202
\(591\) 7.85019 0.322914
\(592\) −3.98977 −0.163979
\(593\) 17.1113 0.702676 0.351338 0.936249i \(-0.385727\pi\)
0.351338 + 0.936249i \(0.385727\pi\)
\(594\) −1.25394 −0.0514500
\(595\) 0 0
\(596\) −17.5697 −0.719683
\(597\) −15.6799 −0.641736
\(598\) 1.04713 0.0428202
\(599\) −25.5262 −1.04297 −0.521486 0.853260i \(-0.674622\pi\)
−0.521486 + 0.853260i \(0.674622\pi\)
\(600\) −0.262473 −0.0107154
\(601\) 24.0530 0.981141 0.490571 0.871401i \(-0.336788\pi\)
0.490571 + 0.871401i \(0.336788\pi\)
\(602\) 0 0
\(603\) 5.34148 0.217522
\(604\) 26.4431 1.07596
\(605\) −19.2624 −0.783130
\(606\) 0.356596 0.0144857
\(607\) −16.3270 −0.662692 −0.331346 0.943509i \(-0.607503\pi\)
−0.331346 + 0.943509i \(0.607503\pi\)
\(608\) −0.696843 −0.0282607
\(609\) 0 0
\(610\) −0.309622 −0.0125362
\(611\) −30.1792 −1.22092
\(612\) −4.96177 −0.200568
\(613\) −40.9135 −1.65248 −0.826239 0.563319i \(-0.809524\pi\)
−0.826239 + 0.563319i \(0.809524\pi\)
\(614\) 0.371509 0.0149929
\(615\) −0.311461 −0.0125593
\(616\) 0 0
\(617\) 17.3649 0.699086 0.349543 0.936920i \(-0.386337\pi\)
0.349543 + 0.936920i \(0.386337\pi\)
\(618\) −0.420023 −0.0168958
\(619\) 37.5432 1.50899 0.754495 0.656306i \(-0.227882\pi\)
0.754495 + 0.656306i \(0.227882\pi\)
\(620\) −15.8315 −0.635808
\(621\) −29.2741 −1.17473
\(622\) 0.00580219 0.000232647 0
\(623\) 0 0
\(624\) −30.3362 −1.21442
\(625\) 1.00000 0.0400000
\(626\) 0.558370 0.0223169
\(627\) −12.3145 −0.491793
\(628\) 23.3374 0.931266
\(629\) 5.25733 0.209623
\(630\) 0 0
\(631\) −38.1269 −1.51781 −0.758904 0.651202i \(-0.774265\pi\)
−0.758904 + 0.651202i \(0.774265\pi\)
\(632\) 2.24667 0.0893679
\(633\) 15.8027 0.628100
\(634\) 1.26632 0.0502920
\(635\) −11.5910 −0.459975
\(636\) 29.7501 1.17967
\(637\) 0 0
\(638\) 2.04503 0.0809635
\(639\) −7.62036 −0.301457
\(640\) −1.31847 −0.0521171
\(641\) −1.86184 −0.0735384 −0.0367692 0.999324i \(-0.511707\pi\)
−0.0367692 + 0.999324i \(0.511707\pi\)
\(642\) −0.0607319 −0.00239690
\(643\) 16.7644 0.661124 0.330562 0.943784i \(-0.392762\pi\)
0.330562 + 0.943784i \(0.392762\pi\)
\(644\) 0 0
\(645\) 13.3448 0.525451
\(646\) 0.305642 0.0120253
\(647\) 22.4902 0.884180 0.442090 0.896971i \(-0.354237\pi\)
0.442090 + 0.896971i \(0.354237\pi\)
\(648\) −1.21507 −0.0477326
\(649\) 52.8150 2.07317
\(650\) −0.197467 −0.00774531
\(651\) 0 0
\(652\) 24.9449 0.976918
\(653\) −0.117286 −0.00458974 −0.00229487 0.999997i \(-0.500730\pi\)
−0.00229487 + 0.999997i \(0.500730\pi\)
\(654\) 0.148772 0.00581744
\(655\) −12.6123 −0.492802
\(656\) −0.781608 −0.0305167
\(657\) −1.48166 −0.0578051
\(658\) 0 0
\(659\) −4.29295 −0.167230 −0.0836149 0.996498i \(-0.526647\pi\)
−0.0836149 + 0.996498i \(0.526647\pi\)
\(660\) −17.4773 −0.680304
\(661\) 28.3007 1.10077 0.550384 0.834911i \(-0.314481\pi\)
0.550384 + 0.834911i \(0.314481\pi\)
\(662\) 0.116567 0.00453050
\(663\) 39.9740 1.55246
\(664\) −0.912262 −0.0354026
\(665\) 0 0
\(666\) −0.0195011 −0.000755652 0
\(667\) 47.7424 1.84859
\(668\) −8.97128 −0.347109
\(669\) −19.9995 −0.773227
\(670\) −0.466977 −0.0180409
\(671\) −41.2512 −1.59249
\(672\) 0 0
\(673\) 20.9805 0.808739 0.404369 0.914596i \(-0.367491\pi\)
0.404369 + 0.914596i \(0.367491\pi\)
\(674\) −0.325850 −0.0125513
\(675\) 5.52052 0.212485
\(676\) −19.7265 −0.758713
\(677\) −17.5349 −0.673921 −0.336961 0.941519i \(-0.609399\pi\)
−0.336961 + 0.941519i \(0.609399\pi\)
\(678\) 0.884503 0.0339691
\(679\) 0 0
\(680\) 0.867934 0.0332837
\(681\) −11.1584 −0.427590
\(682\) 1.79954 0.0689079
\(683\) −48.4807 −1.85506 −0.927531 0.373746i \(-0.878073\pi\)
−0.927531 + 0.373746i \(0.878073\pi\)
\(684\) 1.32884 0.0508095
\(685\) 17.9243 0.684854
\(686\) 0 0
\(687\) 45.7323 1.74480
\(688\) 33.4886 1.27674
\(689\) 44.7831 1.70610
\(690\) 0.348107 0.0132522
\(691\) 12.9001 0.490742 0.245371 0.969429i \(-0.421090\pi\)
0.245371 + 0.969429i \(0.421090\pi\)
\(692\) −22.9090 −0.870870
\(693\) 0 0
\(694\) −0.784151 −0.0297660
\(695\) 6.99249 0.265240
\(696\) 2.36312 0.0895738
\(697\) 1.02993 0.0390112
\(698\) −0.436237 −0.0165118
\(699\) −17.6150 −0.666259
\(700\) 0 0
\(701\) 7.86699 0.297132 0.148566 0.988902i \(-0.452534\pi\)
0.148566 + 0.988902i \(0.452534\pi\)
\(702\) −1.09012 −0.0411440
\(703\) −1.40799 −0.0531035
\(704\) −43.7841 −1.65018
\(705\) −10.0328 −0.377857
\(706\) 1.00550 0.0378424
\(707\) 0 0
\(708\) 30.5020 1.14633
\(709\) 13.0037 0.488365 0.244183 0.969729i \(-0.421480\pi\)
0.244183 + 0.969729i \(0.421480\pi\)
\(710\) 0.666208 0.0250023
\(711\) −6.42733 −0.241044
\(712\) −1.78907 −0.0670484
\(713\) 42.0113 1.57333
\(714\) 0 0
\(715\) −26.3088 −0.983893
\(716\) −36.5314 −1.36524
\(717\) −5.99172 −0.223765
\(718\) −1.49774 −0.0558953
\(719\) −40.8141 −1.52211 −0.761055 0.648687i \(-0.775318\pi\)
−0.761055 + 0.648687i \(0.775318\pi\)
\(720\) 1.88435 0.0702254
\(721\) 0 0
\(722\) 0.702657 0.0261502
\(723\) 39.6581 1.47490
\(724\) −4.05993 −0.150886
\(725\) −9.00328 −0.334373
\(726\) 1.26451 0.0469303
\(727\) −42.2934 −1.56858 −0.784288 0.620397i \(-0.786971\pi\)
−0.784288 + 0.620397i \(0.786971\pi\)
\(728\) 0 0
\(729\) 29.8069 1.10396
\(730\) 0.129534 0.00479426
\(731\) −44.1280 −1.63213
\(732\) −23.8236 −0.880547
\(733\) 51.6129 1.90637 0.953183 0.302394i \(-0.0977859\pi\)
0.953183 + 0.302394i \(0.0977859\pi\)
\(734\) 1.33186 0.0491598
\(735\) 0 0
\(736\) 2.62444 0.0967383
\(737\) −62.2159 −2.29175
\(738\) −0.00382032 −0.000140628 0
\(739\) 6.37583 0.234539 0.117269 0.993100i \(-0.462586\pi\)
0.117269 + 0.993100i \(0.462586\pi\)
\(740\) −1.99830 −0.0734588
\(741\) −10.7057 −0.393282
\(742\) 0 0
\(743\) 15.1764 0.556767 0.278384 0.960470i \(-0.410201\pi\)
0.278384 + 0.960470i \(0.410201\pi\)
\(744\) 2.07944 0.0762361
\(745\) −8.79235 −0.322127
\(746\) 0.925277 0.0338768
\(747\) 2.60982 0.0954883
\(748\) 57.7932 2.11313
\(749\) 0 0
\(750\) −0.0656462 −0.00239706
\(751\) −22.7746 −0.831056 −0.415528 0.909580i \(-0.636403\pi\)
−0.415528 + 0.909580i \(0.636403\pi\)
\(752\) −25.1772 −0.918118
\(753\) 2.37348 0.0864944
\(754\) 1.77786 0.0647457
\(755\) 13.2328 0.481593
\(756\) 0 0
\(757\) 2.88003 0.104677 0.0523383 0.998629i \(-0.483333\pi\)
0.0523383 + 0.998629i \(0.483333\pi\)
\(758\) 0.816615 0.0296608
\(759\) 46.3787 1.68344
\(760\) −0.232446 −0.00843171
\(761\) −11.3790 −0.412489 −0.206244 0.978501i \(-0.566124\pi\)
−0.206244 + 0.978501i \(0.566124\pi\)
\(762\) 0.760906 0.0275647
\(763\) 0 0
\(764\) −1.22734 −0.0444035
\(765\) −2.48300 −0.0897732
\(766\) −0.539859 −0.0195059
\(767\) 45.9150 1.65789
\(768\) −25.2215 −0.910101
\(769\) −4.32930 −0.156119 −0.0780594 0.996949i \(-0.524872\pi\)
−0.0780594 + 0.996949i \(0.524872\pi\)
\(770\) 0 0
\(771\) 25.0640 0.902656
\(772\) 15.5786 0.560685
\(773\) 43.0317 1.54774 0.773872 0.633343i \(-0.218318\pi\)
0.773872 + 0.633343i \(0.218318\pi\)
\(774\) 0.163684 0.00588352
\(775\) −7.92250 −0.284585
\(776\) 1.21458 0.0436010
\(777\) 0 0
\(778\) −0.571322 −0.0204829
\(779\) −0.275830 −0.00988264
\(780\) −15.1940 −0.544032
\(781\) 88.7596 3.17607
\(782\) −1.15111 −0.0411634
\(783\) −49.7028 −1.77623
\(784\) 0 0
\(785\) 11.6787 0.416830
\(786\) 0.827948 0.0295319
\(787\) 40.7462 1.45244 0.726222 0.687460i \(-0.241274\pi\)
0.726222 + 0.687460i \(0.241274\pi\)
\(788\) 9.86680 0.351490
\(789\) −4.40233 −0.156727
\(790\) 0.561908 0.0199918
\(791\) 0 0
\(792\) −0.428929 −0.0152413
\(793\) −35.8620 −1.27350
\(794\) −0.603783 −0.0214275
\(795\) 14.8877 0.528013
\(796\) −19.7079 −0.698527
\(797\) −48.3137 −1.71136 −0.855680 0.517505i \(-0.826861\pi\)
−0.855680 + 0.517505i \(0.826861\pi\)
\(798\) 0 0
\(799\) 33.1760 1.17368
\(800\) −0.494919 −0.0174980
\(801\) 5.11822 0.180844
\(802\) −0.774450 −0.0273468
\(803\) 17.2579 0.609019
\(804\) −35.9312 −1.26720
\(805\) 0 0
\(806\) 1.56444 0.0551049
\(807\) 41.2413 1.45176
\(808\) 0.896785 0.0315488
\(809\) 12.7933 0.449790 0.224895 0.974383i \(-0.427796\pi\)
0.224895 + 0.974383i \(0.427796\pi\)
\(810\) −0.303898 −0.0106779
\(811\) 42.5579 1.49441 0.747206 0.664593i \(-0.231395\pi\)
0.747206 + 0.664593i \(0.231395\pi\)
\(812\) 0 0
\(813\) −3.74131 −0.131214
\(814\) 0.227143 0.00796134
\(815\) 12.4831 0.437264
\(816\) 33.3485 1.16743
\(817\) 11.8182 0.413465
\(818\) −1.25532 −0.0438912
\(819\) 0 0
\(820\) −0.391472 −0.0136708
\(821\) −49.3419 −1.72205 −0.861023 0.508566i \(-0.830176\pi\)
−0.861023 + 0.508566i \(0.830176\pi\)
\(822\) −1.17667 −0.0410409
\(823\) 37.9589 1.32316 0.661582 0.749873i \(-0.269885\pi\)
0.661582 + 0.749873i \(0.269885\pi\)
\(824\) −1.05629 −0.0367978
\(825\) −8.74612 −0.304501
\(826\) 0 0
\(827\) −43.7194 −1.52027 −0.760136 0.649764i \(-0.774868\pi\)
−0.760136 + 0.649764i \(0.774868\pi\)
\(828\) −5.00467 −0.173924
\(829\) −36.4725 −1.26674 −0.633371 0.773848i \(-0.718329\pi\)
−0.633371 + 0.773848i \(0.718329\pi\)
\(830\) −0.228163 −0.00791964
\(831\) −9.41497 −0.326602
\(832\) −38.0639 −1.31963
\(833\) 0 0
\(834\) −0.459031 −0.0158949
\(835\) −4.48947 −0.155364
\(836\) −15.4779 −0.535315
\(837\) −43.7363 −1.51175
\(838\) −0.106535 −0.00368017
\(839\) −36.5934 −1.26334 −0.631671 0.775236i \(-0.717631\pi\)
−0.631671 + 0.775236i \(0.717631\pi\)
\(840\) 0 0
\(841\) 52.0591 1.79514
\(842\) 0.120722 0.00416036
\(843\) −52.2112 −1.79825
\(844\) 19.8622 0.683684
\(845\) −9.87168 −0.339596
\(846\) −0.123060 −0.00423090
\(847\) 0 0
\(848\) 37.3605 1.28297
\(849\) 18.2105 0.624983
\(850\) 0.217076 0.00744564
\(851\) 5.30278 0.181777
\(852\) 51.2609 1.75617
\(853\) −24.3273 −0.832952 −0.416476 0.909147i \(-0.636735\pi\)
−0.416476 + 0.909147i \(0.636735\pi\)
\(854\) 0 0
\(855\) 0.664987 0.0227421
\(856\) −0.152731 −0.00522025
\(857\) 21.4304 0.732048 0.366024 0.930605i \(-0.380719\pi\)
0.366024 + 0.930605i \(0.380719\pi\)
\(858\) 1.72707 0.0589613
\(859\) 22.9170 0.781917 0.390959 0.920408i \(-0.372144\pi\)
0.390959 + 0.920408i \(0.372144\pi\)
\(860\) 16.7729 0.571951
\(861\) 0 0
\(862\) −1.60405 −0.0546342
\(863\) −27.8563 −0.948240 −0.474120 0.880460i \(-0.657234\pi\)
−0.474120 + 0.880460i \(0.657234\pi\)
\(864\) −2.73221 −0.0929516
\(865\) −11.4643 −0.389797
\(866\) 1.14429 0.0388846
\(867\) −16.9155 −0.574481
\(868\) 0 0
\(869\) 74.8636 2.53957
\(870\) 0.591032 0.0200378
\(871\) −54.0877 −1.83269
\(872\) 0.374139 0.0126699
\(873\) −3.47471 −0.117601
\(874\) 0.308284 0.0104279
\(875\) 0 0
\(876\) 9.96688 0.336750
\(877\) −13.5344 −0.457023 −0.228511 0.973541i \(-0.573386\pi\)
−0.228511 + 0.973541i \(0.573386\pi\)
\(878\) 0.711776 0.0240213
\(879\) 20.3725 0.687147
\(880\) −21.9483 −0.739876
\(881\) 8.99878 0.303177 0.151588 0.988444i \(-0.451561\pi\)
0.151588 + 0.988444i \(0.451561\pi\)
\(882\) 0 0
\(883\) 4.55777 0.153381 0.0766906 0.997055i \(-0.475565\pi\)
0.0766906 + 0.997055i \(0.475565\pi\)
\(884\) 50.2428 1.68985
\(885\) 15.2640 0.513094
\(886\) −1.00715 −0.0338360
\(887\) 15.7142 0.527630 0.263815 0.964573i \(-0.415019\pi\)
0.263815 + 0.964573i \(0.415019\pi\)
\(888\) 0.262473 0.00880802
\(889\) 0 0
\(890\) −0.447459 −0.0149989
\(891\) −40.4886 −1.35642
\(892\) −25.1372 −0.841654
\(893\) −8.88506 −0.297327
\(894\) 0.577184 0.0193039
\(895\) −18.2813 −0.611077
\(896\) 0 0
\(897\) 40.3196 1.34623
\(898\) 1.04356 0.0348241
\(899\) 71.3285 2.37894
\(900\) 0.943782 0.0314594
\(901\) −49.2300 −1.64009
\(902\) 0.0444979 0.00148162
\(903\) 0 0
\(904\) 2.22439 0.0739821
\(905\) −2.03170 −0.0675360
\(906\) −0.868687 −0.0288602
\(907\) −35.2057 −1.16899 −0.584494 0.811398i \(-0.698707\pi\)
−0.584494 + 0.811398i \(0.698707\pi\)
\(908\) −14.0248 −0.465431
\(909\) −2.56554 −0.0850936
\(910\) 0 0
\(911\) −38.9632 −1.29091 −0.645455 0.763799i \(-0.723332\pi\)
−0.645455 + 0.763799i \(0.723332\pi\)
\(912\) −8.93125 −0.295743
\(913\) −30.3984 −1.00604
\(914\) −0.828851 −0.0274159
\(915\) −11.9220 −0.394128
\(916\) 57.4804 1.89921
\(917\) 0 0
\(918\) 1.19837 0.0395522
\(919\) 7.70471 0.254155 0.127077 0.991893i \(-0.459440\pi\)
0.127077 + 0.991893i \(0.459440\pi\)
\(920\) 0.875437 0.0288623
\(921\) 14.3049 0.471364
\(922\) 0.947925 0.0312182
\(923\) 77.1635 2.53987
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) −0.336045 −0.0110431
\(927\) 3.02187 0.0992512
\(928\) 4.45589 0.146272
\(929\) −32.6555 −1.07139 −0.535697 0.844410i \(-0.679951\pi\)
−0.535697 + 0.844410i \(0.679951\pi\)
\(930\) 0.520082 0.0170542
\(931\) 0 0
\(932\) −22.1400 −0.725220
\(933\) 0.223413 0.00731421
\(934\) −0.725455 −0.0237376
\(935\) 28.9213 0.945826
\(936\) −0.372892 −0.0121883
\(937\) 7.29911 0.238452 0.119226 0.992867i \(-0.461959\pi\)
0.119226 + 0.992867i \(0.461959\pi\)
\(938\) 0 0
\(939\) 21.5000 0.701626
\(940\) −12.6101 −0.411296
\(941\) −10.4128 −0.339448 −0.169724 0.985492i \(-0.554288\pi\)
−0.169724 + 0.985492i \(0.554288\pi\)
\(942\) −0.766661 −0.0249792
\(943\) 1.03883 0.0338289
\(944\) 38.3048 1.24672
\(945\) 0 0
\(946\) −1.90655 −0.0619872
\(947\) −18.1364 −0.589353 −0.294676 0.955597i \(-0.595212\pi\)
−0.294676 + 0.955597i \(0.595212\pi\)
\(948\) 43.2356 1.40423
\(949\) 15.0033 0.487026
\(950\) −0.0581363 −0.00188619
\(951\) 48.7596 1.58114
\(952\) 0 0
\(953\) −40.0089 −1.29602 −0.648008 0.761633i \(-0.724398\pi\)
−0.648008 + 0.761633i \(0.724398\pi\)
\(954\) 0.182610 0.00591221
\(955\) −0.614192 −0.0198748
\(956\) −7.53091 −0.243567
\(957\) 78.7438 2.54542
\(958\) 1.19046 0.0384619
\(959\) 0 0
\(960\) −12.6540 −0.408406
\(961\) 31.7660 1.02471
\(962\) 0.197467 0.00636661
\(963\) 0.436937 0.0140801
\(964\) 49.8458 1.60542
\(965\) 7.79593 0.250960
\(966\) 0 0
\(967\) −28.4278 −0.914176 −0.457088 0.889421i \(-0.651108\pi\)
−0.457088 + 0.889421i \(0.651108\pi\)
\(968\) 3.18004 0.102210
\(969\) 11.7687 0.378066
\(970\) 0.303775 0.00975364
\(971\) −32.4048 −1.03992 −0.519959 0.854191i \(-0.674053\pi\)
−0.519959 + 0.854191i \(0.674053\pi\)
\(972\) 9.71166 0.311502
\(973\) 0 0
\(974\) −0.429874 −0.0137741
\(975\) −7.60348 −0.243506
\(976\) −29.9180 −0.957653
\(977\) −45.0477 −1.44120 −0.720602 0.693349i \(-0.756134\pi\)
−0.720602 + 0.693349i \(0.756134\pi\)
\(978\) −0.819468 −0.0262037
\(979\) −59.6155 −1.90532
\(980\) 0 0
\(981\) −1.07034 −0.0341735
\(982\) 1.19758 0.0382163
\(983\) −3.97656 −0.126833 −0.0634163 0.997987i \(-0.520200\pi\)
−0.0634163 + 0.997987i \(0.520200\pi\)
\(984\) 0.0514192 0.00163919
\(985\) 4.93761 0.157325
\(986\) −1.95440 −0.0622406
\(987\) 0 0
\(988\) −13.4558 −0.428086
\(989\) −44.5094 −1.41532
\(990\) −0.107278 −0.00340952
\(991\) −55.2742 −1.75584 −0.877922 0.478804i \(-0.841070\pi\)
−0.877922 + 0.478804i \(0.841070\pi\)
\(992\) 3.92100 0.124492
\(993\) 4.48841 0.142435
\(994\) 0 0
\(995\) −9.86235 −0.312658
\(996\) −17.5558 −0.556277
\(997\) −54.3278 −1.72058 −0.860289 0.509807i \(-0.829717\pi\)
−0.860289 + 0.509807i \(0.829717\pi\)
\(998\) 0.288098 0.00911958
\(999\) −5.52052 −0.174661
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bd.1.20 38
7.6 odd 2 9065.2.a.be.1.20 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bd.1.20 38 1.1 even 1 trivial
9065.2.a.be.1.20 yes 38 7.6 odd 2