Properties

Label 9065.2.a.bc.1.7
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,-2,10,30,-34,8,0,-6,28,2,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.01175 q^{2} +2.93465 q^{3} +2.04715 q^{4} -1.00000 q^{5} -5.90379 q^{6} -0.0948516 q^{8} +5.61216 q^{9} +2.01175 q^{10} -6.42740 q^{11} +6.00766 q^{12} +1.56383 q^{13} -2.93465 q^{15} -3.90348 q^{16} +6.42248 q^{17} -11.2903 q^{18} +8.25786 q^{19} -2.04715 q^{20} +12.9303 q^{22} -4.74009 q^{23} -0.278356 q^{24} +1.00000 q^{25} -3.14604 q^{26} +7.66577 q^{27} +4.27563 q^{29} +5.90379 q^{30} +5.78128 q^{31} +8.04254 q^{32} -18.8621 q^{33} -12.9204 q^{34} +11.4889 q^{36} +1.00000 q^{37} -16.6128 q^{38} +4.58929 q^{39} +0.0948516 q^{40} -6.72419 q^{41} +3.24018 q^{43} -13.1578 q^{44} -5.61216 q^{45} +9.53589 q^{46} -4.06467 q^{47} -11.4553 q^{48} -2.01175 q^{50} +18.8477 q^{51} +3.20139 q^{52} +8.37228 q^{53} -15.4216 q^{54} +6.42740 q^{55} +24.2339 q^{57} -8.60151 q^{58} +9.12809 q^{59} -6.00766 q^{60} -4.90749 q^{61} -11.6305 q^{62} -8.37264 q^{64} -1.56383 q^{65} +37.9460 q^{66} +12.8008 q^{67} +13.1478 q^{68} -13.9105 q^{69} -3.76509 q^{71} -0.532322 q^{72} -12.3423 q^{73} -2.01175 q^{74} +2.93465 q^{75} +16.9051 q^{76} -9.23252 q^{78} -8.26105 q^{79} +3.90348 q^{80} +5.65987 q^{81} +13.5274 q^{82} -8.13625 q^{83} -6.42248 q^{85} -6.51843 q^{86} +12.5475 q^{87} +0.609649 q^{88} -6.14981 q^{89} +11.2903 q^{90} -9.70367 q^{92} +16.9660 q^{93} +8.17710 q^{94} -8.25786 q^{95} +23.6020 q^{96} -2.23767 q^{97} -36.0716 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 2 q^{2} + 10 q^{3} + 30 q^{4} - 34 q^{5} + 8 q^{6} - 6 q^{8} + 28 q^{9} + 2 q^{10} - 30 q^{11} + 20 q^{12} + 18 q^{13} - 10 q^{15} + 18 q^{16} + 10 q^{17} + 40 q^{19} - 30 q^{20} - 4 q^{22} - 16 q^{23}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.01175 −1.42252 −0.711262 0.702927i \(-0.751876\pi\)
−0.711262 + 0.702927i \(0.751876\pi\)
\(3\) 2.93465 1.69432 0.847160 0.531338i \(-0.178311\pi\)
0.847160 + 0.531338i \(0.178311\pi\)
\(4\) 2.04715 1.02357
\(5\) −1.00000 −0.447214
\(6\) −5.90379 −2.41021
\(7\) 0 0
\(8\) −0.0948516 −0.0335351
\(9\) 5.61216 1.87072
\(10\) 2.01175 0.636172
\(11\) −6.42740 −1.93793 −0.968966 0.247192i \(-0.920492\pi\)
−0.968966 + 0.247192i \(0.920492\pi\)
\(12\) 6.00766 1.73426
\(13\) 1.56383 0.433728 0.216864 0.976202i \(-0.430417\pi\)
0.216864 + 0.976202i \(0.430417\pi\)
\(14\) 0 0
\(15\) −2.93465 −0.757723
\(16\) −3.90348 −0.975870
\(17\) 6.42248 1.55768 0.778840 0.627223i \(-0.215808\pi\)
0.778840 + 0.627223i \(0.215808\pi\)
\(18\) −11.2903 −2.66114
\(19\) 8.25786 1.89448 0.947242 0.320519i \(-0.103857\pi\)
0.947242 + 0.320519i \(0.103857\pi\)
\(20\) −2.04715 −0.457756
\(21\) 0 0
\(22\) 12.9303 2.75676
\(23\) −4.74009 −0.988377 −0.494188 0.869355i \(-0.664535\pi\)
−0.494188 + 0.869355i \(0.664535\pi\)
\(24\) −0.278356 −0.0568192
\(25\) 1.00000 0.200000
\(26\) −3.14604 −0.616989
\(27\) 7.66577 1.47528
\(28\) 0 0
\(29\) 4.27563 0.793964 0.396982 0.917826i \(-0.370058\pi\)
0.396982 + 0.917826i \(0.370058\pi\)
\(30\) 5.90379 1.07788
\(31\) 5.78128 1.03835 0.519174 0.854668i \(-0.326240\pi\)
0.519174 + 0.854668i \(0.326240\pi\)
\(32\) 8.04254 1.42173
\(33\) −18.8621 −3.28348
\(34\) −12.9204 −2.21584
\(35\) 0 0
\(36\) 11.4889 1.91482
\(37\) 1.00000 0.164399
\(38\) −16.6128 −2.69495
\(39\) 4.58929 0.734875
\(40\) 0.0948516 0.0149974
\(41\) −6.72419 −1.05014 −0.525071 0.851059i \(-0.675961\pi\)
−0.525071 + 0.851059i \(0.675961\pi\)
\(42\) 0 0
\(43\) 3.24018 0.494122 0.247061 0.969000i \(-0.420535\pi\)
0.247061 + 0.969000i \(0.420535\pi\)
\(44\) −13.1578 −1.98362
\(45\) −5.61216 −0.836612
\(46\) 9.53589 1.40599
\(47\) −4.06467 −0.592893 −0.296446 0.955050i \(-0.595802\pi\)
−0.296446 + 0.955050i \(0.595802\pi\)
\(48\) −11.4553 −1.65344
\(49\) 0 0
\(50\) −2.01175 −0.284505
\(51\) 18.8477 2.63921
\(52\) 3.20139 0.443953
\(53\) 8.37228 1.15002 0.575011 0.818146i \(-0.304998\pi\)
0.575011 + 0.818146i \(0.304998\pi\)
\(54\) −15.4216 −2.09862
\(55\) 6.42740 0.866670
\(56\) 0 0
\(57\) 24.2339 3.20986
\(58\) −8.60151 −1.12943
\(59\) 9.12809 1.18838 0.594188 0.804326i \(-0.297473\pi\)
0.594188 + 0.804326i \(0.297473\pi\)
\(60\) −6.00766 −0.775586
\(61\) −4.90749 −0.628339 −0.314170 0.949367i \(-0.601726\pi\)
−0.314170 + 0.949367i \(0.601726\pi\)
\(62\) −11.6305 −1.47708
\(63\) 0 0
\(64\) −8.37264 −1.04658
\(65\) −1.56383 −0.193969
\(66\) 37.9460 4.67083
\(67\) 12.8008 1.56387 0.781933 0.623363i \(-0.214234\pi\)
0.781933 + 0.623363i \(0.214234\pi\)
\(68\) 13.1478 1.59440
\(69\) −13.9105 −1.67463
\(70\) 0 0
\(71\) −3.76509 −0.446834 −0.223417 0.974723i \(-0.571721\pi\)
−0.223417 + 0.974723i \(0.571721\pi\)
\(72\) −0.532322 −0.0627348
\(73\) −12.3423 −1.44455 −0.722276 0.691605i \(-0.756904\pi\)
−0.722276 + 0.691605i \(0.756904\pi\)
\(74\) −2.01175 −0.233861
\(75\) 2.93465 0.338864
\(76\) 16.9051 1.93915
\(77\) 0 0
\(78\) −9.23252 −1.04538
\(79\) −8.26105 −0.929441 −0.464720 0.885457i \(-0.653845\pi\)
−0.464720 + 0.885457i \(0.653845\pi\)
\(80\) 3.90348 0.436422
\(81\) 5.65987 0.628874
\(82\) 13.5274 1.49385
\(83\) −8.13625 −0.893069 −0.446534 0.894766i \(-0.647342\pi\)
−0.446534 + 0.894766i \(0.647342\pi\)
\(84\) 0 0
\(85\) −6.42248 −0.696616
\(86\) −6.51843 −0.702901
\(87\) 12.5475 1.34523
\(88\) 0.609649 0.0649888
\(89\) −6.14981 −0.651879 −0.325940 0.945391i \(-0.605681\pi\)
−0.325940 + 0.945391i \(0.605681\pi\)
\(90\) 11.2903 1.19010
\(91\) 0 0
\(92\) −9.70367 −1.01168
\(93\) 16.9660 1.75929
\(94\) 8.17710 0.843404
\(95\) −8.25786 −0.847239
\(96\) 23.6020 2.40887
\(97\) −2.23767 −0.227201 −0.113600 0.993527i \(-0.536238\pi\)
−0.113600 + 0.993527i \(0.536238\pi\)
\(98\) 0 0
\(99\) −36.0716 −3.62533
\(100\) 2.04715 0.204715
\(101\) −0.289835 −0.0288396 −0.0144198 0.999896i \(-0.504590\pi\)
−0.0144198 + 0.999896i \(0.504590\pi\)
\(102\) −37.9169 −3.75434
\(103\) 1.66793 0.164346 0.0821729 0.996618i \(-0.473814\pi\)
0.0821729 + 0.996618i \(0.473814\pi\)
\(104\) −0.148332 −0.0145451
\(105\) 0 0
\(106\) −16.8430 −1.63593
\(107\) 3.56513 0.344654 0.172327 0.985040i \(-0.444871\pi\)
0.172327 + 0.985040i \(0.444871\pi\)
\(108\) 15.6930 1.51006
\(109\) 12.5860 1.20552 0.602759 0.797923i \(-0.294068\pi\)
0.602759 + 0.797923i \(0.294068\pi\)
\(110\) −12.9303 −1.23286
\(111\) 2.93465 0.278545
\(112\) 0 0
\(113\) −2.71289 −0.255208 −0.127604 0.991825i \(-0.540729\pi\)
−0.127604 + 0.991825i \(0.540729\pi\)
\(114\) −48.7527 −4.56611
\(115\) 4.74009 0.442016
\(116\) 8.75285 0.812681
\(117\) 8.77646 0.811384
\(118\) −18.3635 −1.69049
\(119\) 0 0
\(120\) 0.278356 0.0254103
\(121\) 30.3114 2.75558
\(122\) 9.87265 0.893828
\(123\) −19.7331 −1.77928
\(124\) 11.8351 1.06283
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −3.13941 −0.278578 −0.139289 0.990252i \(-0.544482\pi\)
−0.139289 + 0.990252i \(0.544482\pi\)
\(128\) 0.758602 0.0670516
\(129\) 9.50878 0.837201
\(130\) 3.14604 0.275926
\(131\) −16.0759 −1.40456 −0.702281 0.711900i \(-0.747835\pi\)
−0.702281 + 0.711900i \(0.747835\pi\)
\(132\) −38.6136 −3.36088
\(133\) 0 0
\(134\) −25.7520 −2.22464
\(135\) −7.66577 −0.659765
\(136\) −0.609182 −0.0522369
\(137\) −6.90058 −0.589556 −0.294778 0.955566i \(-0.595246\pi\)
−0.294778 + 0.955566i \(0.595246\pi\)
\(138\) 27.9845 2.38220
\(139\) 13.5523 1.14949 0.574747 0.818331i \(-0.305100\pi\)
0.574747 + 0.818331i \(0.305100\pi\)
\(140\) 0 0
\(141\) −11.9284 −1.00455
\(142\) 7.57443 0.635632
\(143\) −10.0514 −0.840536
\(144\) −21.9070 −1.82558
\(145\) −4.27563 −0.355072
\(146\) 24.8296 2.05491
\(147\) 0 0
\(148\) 2.04715 0.168275
\(149\) 9.90556 0.811495 0.405747 0.913985i \(-0.367011\pi\)
0.405747 + 0.913985i \(0.367011\pi\)
\(150\) −5.90379 −0.482042
\(151\) 4.63753 0.377397 0.188699 0.982035i \(-0.439573\pi\)
0.188699 + 0.982035i \(0.439573\pi\)
\(152\) −0.783271 −0.0635317
\(153\) 36.0440 2.91398
\(154\) 0 0
\(155\) −5.78128 −0.464364
\(156\) 9.39496 0.752199
\(157\) −10.7674 −0.859329 −0.429665 0.902989i \(-0.641368\pi\)
−0.429665 + 0.902989i \(0.641368\pi\)
\(158\) 16.6192 1.32215
\(159\) 24.5697 1.94850
\(160\) −8.04254 −0.635818
\(161\) 0 0
\(162\) −11.3863 −0.894589
\(163\) 7.56859 0.592818 0.296409 0.955061i \(-0.404211\pi\)
0.296409 + 0.955061i \(0.404211\pi\)
\(164\) −13.7654 −1.07490
\(165\) 18.8621 1.46842
\(166\) 16.3681 1.27041
\(167\) −25.0686 −1.93987 −0.969933 0.243371i \(-0.921747\pi\)
−0.969933 + 0.243371i \(0.921747\pi\)
\(168\) 0 0
\(169\) −10.5544 −0.811880
\(170\) 12.9204 0.990952
\(171\) 46.3445 3.54405
\(172\) 6.63312 0.505771
\(173\) 10.6891 0.812679 0.406340 0.913722i \(-0.366805\pi\)
0.406340 + 0.913722i \(0.366805\pi\)
\(174\) −25.2424 −1.91362
\(175\) 0 0
\(176\) 25.0892 1.89117
\(177\) 26.7877 2.01349
\(178\) 12.3719 0.927314
\(179\) 11.8676 0.887027 0.443513 0.896268i \(-0.353732\pi\)
0.443513 + 0.896268i \(0.353732\pi\)
\(180\) −11.4889 −0.856334
\(181\) 12.4641 0.926452 0.463226 0.886240i \(-0.346692\pi\)
0.463226 + 0.886240i \(0.346692\pi\)
\(182\) 0 0
\(183\) −14.4017 −1.06461
\(184\) 0.449605 0.0331453
\(185\) −1.00000 −0.0735215
\(186\) −34.1314 −2.50264
\(187\) −41.2798 −3.01868
\(188\) −8.32098 −0.606870
\(189\) 0 0
\(190\) 16.6128 1.20522
\(191\) 14.3266 1.03663 0.518317 0.855188i \(-0.326559\pi\)
0.518317 + 0.855188i \(0.326559\pi\)
\(192\) −24.5708 −1.77324
\(193\) −2.69030 −0.193652 −0.0968259 0.995301i \(-0.530869\pi\)
−0.0968259 + 0.995301i \(0.530869\pi\)
\(194\) 4.50163 0.323198
\(195\) −4.58929 −0.328646
\(196\) 0 0
\(197\) 9.87464 0.703539 0.351769 0.936087i \(-0.385580\pi\)
0.351769 + 0.936087i \(0.385580\pi\)
\(198\) 72.5671 5.15712
\(199\) 24.4248 1.73143 0.865713 0.500541i \(-0.166865\pi\)
0.865713 + 0.500541i \(0.166865\pi\)
\(200\) −0.0948516 −0.00670702
\(201\) 37.5658 2.64969
\(202\) 0.583076 0.0410251
\(203\) 0 0
\(204\) 38.5841 2.70143
\(205\) 6.72419 0.469637
\(206\) −3.35546 −0.233786
\(207\) −26.6021 −1.84898
\(208\) −6.10438 −0.423262
\(209\) −53.0766 −3.67138
\(210\) 0 0
\(211\) −20.5880 −1.41734 −0.708668 0.705542i \(-0.750704\pi\)
−0.708668 + 0.705542i \(0.750704\pi\)
\(212\) 17.1393 1.17713
\(213\) −11.0492 −0.757080
\(214\) −7.17216 −0.490279
\(215\) −3.24018 −0.220978
\(216\) −0.727111 −0.0494736
\(217\) 0 0
\(218\) −25.3199 −1.71488
\(219\) −36.2202 −2.44753
\(220\) 13.1578 0.887101
\(221\) 10.0437 0.675610
\(222\) −5.90379 −0.396236
\(223\) 4.33966 0.290605 0.145303 0.989387i \(-0.453584\pi\)
0.145303 + 0.989387i \(0.453584\pi\)
\(224\) 0 0
\(225\) 5.61216 0.374144
\(226\) 5.45767 0.363039
\(227\) 1.51458 0.100526 0.0502631 0.998736i \(-0.483994\pi\)
0.0502631 + 0.998736i \(0.483994\pi\)
\(228\) 49.6105 3.28553
\(229\) 24.9060 1.64583 0.822916 0.568162i \(-0.192345\pi\)
0.822916 + 0.568162i \(0.192345\pi\)
\(230\) −9.53589 −0.628778
\(231\) 0 0
\(232\) −0.405550 −0.0266257
\(233\) −1.66186 −0.108872 −0.0544361 0.998517i \(-0.517336\pi\)
−0.0544361 + 0.998517i \(0.517336\pi\)
\(234\) −17.6561 −1.15421
\(235\) 4.06467 0.265150
\(236\) 18.6866 1.21639
\(237\) −24.2433 −1.57477
\(238\) 0 0
\(239\) 21.3246 1.37938 0.689688 0.724107i \(-0.257748\pi\)
0.689688 + 0.724107i \(0.257748\pi\)
\(240\) 11.4553 0.739439
\(241\) 2.86268 0.184401 0.0922007 0.995740i \(-0.470610\pi\)
0.0922007 + 0.995740i \(0.470610\pi\)
\(242\) −60.9791 −3.91988
\(243\) −6.38760 −0.409764
\(244\) −10.0464 −0.643152
\(245\) 0 0
\(246\) 39.6982 2.53106
\(247\) 12.9139 0.821691
\(248\) −0.548363 −0.0348211
\(249\) −23.8770 −1.51314
\(250\) 2.01175 0.127234
\(251\) −3.59322 −0.226802 −0.113401 0.993549i \(-0.536174\pi\)
−0.113401 + 0.993549i \(0.536174\pi\)
\(252\) 0 0
\(253\) 30.4664 1.91541
\(254\) 6.31572 0.396284
\(255\) −18.8477 −1.18029
\(256\) 15.2192 0.951197
\(257\) 6.27930 0.391692 0.195846 0.980635i \(-0.437255\pi\)
0.195846 + 0.980635i \(0.437255\pi\)
\(258\) −19.1293 −1.19094
\(259\) 0 0
\(260\) −3.20139 −0.198542
\(261\) 23.9955 1.48528
\(262\) 32.3408 1.99802
\(263\) 8.21428 0.506514 0.253257 0.967399i \(-0.418498\pi\)
0.253257 + 0.967399i \(0.418498\pi\)
\(264\) 1.78910 0.110112
\(265\) −8.37228 −0.514305
\(266\) 0 0
\(267\) −18.0475 −1.10449
\(268\) 26.2051 1.60073
\(269\) 16.3316 0.995755 0.497877 0.867247i \(-0.334113\pi\)
0.497877 + 0.867247i \(0.334113\pi\)
\(270\) 15.4216 0.938531
\(271\) 3.07096 0.186548 0.0932739 0.995640i \(-0.470267\pi\)
0.0932739 + 0.995640i \(0.470267\pi\)
\(272\) −25.0700 −1.52009
\(273\) 0 0
\(274\) 13.8823 0.838657
\(275\) −6.42740 −0.387587
\(276\) −28.4769 −1.71411
\(277\) 20.3242 1.22116 0.610581 0.791954i \(-0.290936\pi\)
0.610581 + 0.791954i \(0.290936\pi\)
\(278\) −27.2639 −1.63518
\(279\) 32.4455 1.94246
\(280\) 0 0
\(281\) −21.8771 −1.30508 −0.652538 0.757756i \(-0.726296\pi\)
−0.652538 + 0.757756i \(0.726296\pi\)
\(282\) 23.9969 1.42900
\(283\) −25.3898 −1.50927 −0.754633 0.656147i \(-0.772185\pi\)
−0.754633 + 0.656147i \(0.772185\pi\)
\(284\) −7.70770 −0.457368
\(285\) −24.2339 −1.43549
\(286\) 20.2208 1.19568
\(287\) 0 0
\(288\) 45.1360 2.65967
\(289\) 24.2482 1.42637
\(290\) 8.60151 0.505098
\(291\) −6.56677 −0.384951
\(292\) −25.2664 −1.47861
\(293\) 27.4406 1.60310 0.801550 0.597928i \(-0.204009\pi\)
0.801550 + 0.597928i \(0.204009\pi\)
\(294\) 0 0
\(295\) −9.12809 −0.531458
\(296\) −0.0948516 −0.00551314
\(297\) −49.2710 −2.85899
\(298\) −19.9275 −1.15437
\(299\) −7.41269 −0.428687
\(300\) 6.00766 0.346853
\(301\) 0 0
\(302\) −9.32957 −0.536856
\(303\) −0.850563 −0.0488636
\(304\) −32.2344 −1.84877
\(305\) 4.90749 0.281002
\(306\) −72.5116 −4.14521
\(307\) 19.7184 1.12539 0.562696 0.826664i \(-0.309764\pi\)
0.562696 + 0.826664i \(0.309764\pi\)
\(308\) 0 0
\(309\) 4.89478 0.278454
\(310\) 11.6305 0.660568
\(311\) 22.7298 1.28889 0.644445 0.764651i \(-0.277088\pi\)
0.644445 + 0.764651i \(0.277088\pi\)
\(312\) −0.435301 −0.0246441
\(313\) −16.2641 −0.919301 −0.459650 0.888100i \(-0.652025\pi\)
−0.459650 + 0.888100i \(0.652025\pi\)
\(314\) 21.6613 1.22242
\(315\) 0 0
\(316\) −16.9116 −0.951352
\(317\) −28.3073 −1.58989 −0.794947 0.606679i \(-0.792501\pi\)
−0.794947 + 0.606679i \(0.792501\pi\)
\(318\) −49.4282 −2.77179
\(319\) −27.4812 −1.53865
\(320\) 8.37264 0.468045
\(321\) 10.4624 0.583954
\(322\) 0 0
\(323\) 53.0360 2.95100
\(324\) 11.5866 0.643700
\(325\) 1.56383 0.0867457
\(326\) −15.2261 −0.843297
\(327\) 36.9354 2.04253
\(328\) 0.637800 0.0352166
\(329\) 0 0
\(330\) −37.9460 −2.08886
\(331\) 2.68702 0.147692 0.0738460 0.997270i \(-0.476473\pi\)
0.0738460 + 0.997270i \(0.476473\pi\)
\(332\) −16.6561 −0.914122
\(333\) 5.61216 0.307545
\(334\) 50.4318 2.75951
\(335\) −12.8008 −0.699382
\(336\) 0 0
\(337\) 7.33690 0.399667 0.199833 0.979830i \(-0.435960\pi\)
0.199833 + 0.979830i \(0.435960\pi\)
\(338\) 21.2329 1.15492
\(339\) −7.96139 −0.432403
\(340\) −13.1478 −0.713038
\(341\) −37.1586 −2.01225
\(342\) −93.2336 −5.04150
\(343\) 0 0
\(344\) −0.307336 −0.0165704
\(345\) 13.9105 0.748916
\(346\) −21.5039 −1.15606
\(347\) 22.2481 1.19434 0.597170 0.802115i \(-0.296292\pi\)
0.597170 + 0.802115i \(0.296292\pi\)
\(348\) 25.6865 1.37694
\(349\) 26.0185 1.39274 0.696369 0.717684i \(-0.254798\pi\)
0.696369 + 0.717684i \(0.254798\pi\)
\(350\) 0 0
\(351\) 11.9880 0.639870
\(352\) −51.6926 −2.75522
\(353\) 33.0688 1.76007 0.880037 0.474905i \(-0.157517\pi\)
0.880037 + 0.474905i \(0.157517\pi\)
\(354\) −53.8903 −2.86424
\(355\) 3.76509 0.199830
\(356\) −12.5896 −0.667247
\(357\) 0 0
\(358\) −23.8747 −1.26182
\(359\) 11.1500 0.588476 0.294238 0.955732i \(-0.404934\pi\)
0.294238 + 0.955732i \(0.404934\pi\)
\(360\) 0.532322 0.0280558
\(361\) 49.1923 2.58907
\(362\) −25.0748 −1.31790
\(363\) 88.9534 4.66884
\(364\) 0 0
\(365\) 12.3423 0.646024
\(366\) 28.9728 1.51443
\(367\) 34.7949 1.81628 0.908141 0.418665i \(-0.137502\pi\)
0.908141 + 0.418665i \(0.137502\pi\)
\(368\) 18.5028 0.964527
\(369\) −37.7372 −1.96452
\(370\) 2.01175 0.104586
\(371\) 0 0
\(372\) 34.7320 1.80077
\(373\) −18.0042 −0.932224 −0.466112 0.884726i \(-0.654346\pi\)
−0.466112 + 0.884726i \(0.654346\pi\)
\(374\) 83.0448 4.29414
\(375\) −2.93465 −0.151545
\(376\) 0.385540 0.0198827
\(377\) 6.68635 0.344365
\(378\) 0 0
\(379\) 12.8719 0.661183 0.330592 0.943774i \(-0.392752\pi\)
0.330592 + 0.943774i \(0.392752\pi\)
\(380\) −16.9051 −0.867212
\(381\) −9.21308 −0.472000
\(382\) −28.8215 −1.47464
\(383\) −14.1145 −0.721219 −0.360609 0.932717i \(-0.617431\pi\)
−0.360609 + 0.932717i \(0.617431\pi\)
\(384\) 2.22623 0.113607
\(385\) 0 0
\(386\) 5.41221 0.275474
\(387\) 18.1844 0.924365
\(388\) −4.58084 −0.232557
\(389\) 12.0554 0.611235 0.305618 0.952154i \(-0.401137\pi\)
0.305618 + 0.952154i \(0.401137\pi\)
\(390\) 9.23252 0.467507
\(391\) −30.4431 −1.53957
\(392\) 0 0
\(393\) −47.1773 −2.37978
\(394\) −19.8653 −1.00080
\(395\) 8.26105 0.415659
\(396\) −73.8439 −3.71080
\(397\) 8.27549 0.415335 0.207668 0.978199i \(-0.433413\pi\)
0.207668 + 0.978199i \(0.433413\pi\)
\(398\) −49.1366 −2.46299
\(399\) 0 0
\(400\) −3.90348 −0.195174
\(401\) −4.03248 −0.201373 −0.100686 0.994918i \(-0.532104\pi\)
−0.100686 + 0.994918i \(0.532104\pi\)
\(402\) −75.5731 −3.76925
\(403\) 9.04094 0.450361
\(404\) −0.593335 −0.0295195
\(405\) −5.65987 −0.281241
\(406\) 0 0
\(407\) −6.42740 −0.318594
\(408\) −1.78774 −0.0885061
\(409\) −10.2150 −0.505101 −0.252550 0.967584i \(-0.581269\pi\)
−0.252550 + 0.967584i \(0.581269\pi\)
\(410\) −13.5274 −0.668071
\(411\) −20.2508 −0.998897
\(412\) 3.41449 0.168220
\(413\) 0 0
\(414\) 53.5169 2.63021
\(415\) 8.13625 0.399393
\(416\) 12.5772 0.616646
\(417\) 39.7713 1.94761
\(418\) 106.777 5.22263
\(419\) −23.2222 −1.13448 −0.567240 0.823553i \(-0.691989\pi\)
−0.567240 + 0.823553i \(0.691989\pi\)
\(420\) 0 0
\(421\) −14.1906 −0.691606 −0.345803 0.938307i \(-0.612393\pi\)
−0.345803 + 0.938307i \(0.612393\pi\)
\(422\) 41.4180 2.01620
\(423\) −22.8116 −1.10914
\(424\) −0.794124 −0.0385661
\(425\) 6.42248 0.311536
\(426\) 22.2283 1.07696
\(427\) 0 0
\(428\) 7.29835 0.352779
\(429\) −29.4972 −1.42414
\(430\) 6.51843 0.314347
\(431\) −6.09547 −0.293609 −0.146804 0.989166i \(-0.546899\pi\)
−0.146804 + 0.989166i \(0.546899\pi\)
\(432\) −29.9232 −1.43968
\(433\) 38.7673 1.86304 0.931520 0.363691i \(-0.118484\pi\)
0.931520 + 0.363691i \(0.118484\pi\)
\(434\) 0 0
\(435\) −12.5475 −0.601605
\(436\) 25.7654 1.23394
\(437\) −39.1430 −1.87246
\(438\) 72.8661 3.48168
\(439\) 26.9185 1.28475 0.642375 0.766390i \(-0.277949\pi\)
0.642375 + 0.766390i \(0.277949\pi\)
\(440\) −0.609649 −0.0290639
\(441\) 0 0
\(442\) −20.2054 −0.961071
\(443\) 25.4368 1.20854 0.604270 0.796780i \(-0.293465\pi\)
0.604270 + 0.796780i \(0.293465\pi\)
\(444\) 6.00766 0.285111
\(445\) 6.14981 0.291529
\(446\) −8.73033 −0.413393
\(447\) 29.0693 1.37493
\(448\) 0 0
\(449\) −0.175865 −0.00829959 −0.00414980 0.999991i \(-0.501321\pi\)
−0.00414980 + 0.999991i \(0.501321\pi\)
\(450\) −11.2903 −0.532229
\(451\) 43.2190 2.03510
\(452\) −5.55370 −0.261224
\(453\) 13.6095 0.639431
\(454\) −3.04696 −0.143001
\(455\) 0 0
\(456\) −2.29863 −0.107643
\(457\) −35.1594 −1.64469 −0.822344 0.568990i \(-0.807334\pi\)
−0.822344 + 0.568990i \(0.807334\pi\)
\(458\) −50.1047 −2.34124
\(459\) 49.2333 2.29801
\(460\) 9.70367 0.452436
\(461\) 28.2627 1.31633 0.658163 0.752876i \(-0.271334\pi\)
0.658163 + 0.752876i \(0.271334\pi\)
\(462\) 0 0
\(463\) 27.8108 1.29248 0.646240 0.763135i \(-0.276341\pi\)
0.646240 + 0.763135i \(0.276341\pi\)
\(464\) −16.6898 −0.774806
\(465\) −16.9660 −0.786781
\(466\) 3.34325 0.154873
\(467\) 37.3591 1.72877 0.864386 0.502829i \(-0.167708\pi\)
0.864386 + 0.502829i \(0.167708\pi\)
\(468\) 17.9667 0.830512
\(469\) 0 0
\(470\) −8.17710 −0.377182
\(471\) −31.5984 −1.45598
\(472\) −0.865814 −0.0398523
\(473\) −20.8259 −0.957576
\(474\) 48.7715 2.24015
\(475\) 8.25786 0.378897
\(476\) 0 0
\(477\) 46.9866 2.15137
\(478\) −42.8999 −1.96219
\(479\) −34.9838 −1.59845 −0.799226 0.601031i \(-0.794757\pi\)
−0.799226 + 0.601031i \(0.794757\pi\)
\(480\) −23.6020 −1.07728
\(481\) 1.56383 0.0713045
\(482\) −5.75901 −0.262316
\(483\) 0 0
\(484\) 62.0520 2.82055
\(485\) 2.23767 0.101607
\(486\) 12.8503 0.582900
\(487\) 10.6963 0.484695 0.242347 0.970190i \(-0.422083\pi\)
0.242347 + 0.970190i \(0.422083\pi\)
\(488\) 0.465483 0.0210714
\(489\) 22.2111 1.00442
\(490\) 0 0
\(491\) 6.26832 0.282885 0.141443 0.989946i \(-0.454826\pi\)
0.141443 + 0.989946i \(0.454826\pi\)
\(492\) −40.3966 −1.82122
\(493\) 27.4601 1.23674
\(494\) −25.9796 −1.16888
\(495\) 36.0716 1.62130
\(496\) −22.5671 −1.01329
\(497\) 0 0
\(498\) 48.0347 2.15248
\(499\) −2.18333 −0.0977393 −0.0488697 0.998805i \(-0.515562\pi\)
−0.0488697 + 0.998805i \(0.515562\pi\)
\(500\) −2.04715 −0.0915513
\(501\) −73.5675 −3.28675
\(502\) 7.22867 0.322631
\(503\) 9.88222 0.440626 0.220313 0.975429i \(-0.429292\pi\)
0.220313 + 0.975429i \(0.429292\pi\)
\(504\) 0 0
\(505\) 0.289835 0.0128975
\(506\) −61.2909 −2.72471
\(507\) −30.9736 −1.37558
\(508\) −6.42685 −0.285145
\(509\) −26.0927 −1.15654 −0.578269 0.815846i \(-0.696272\pi\)
−0.578269 + 0.815846i \(0.696272\pi\)
\(510\) 37.9169 1.67899
\(511\) 0 0
\(512\) −32.1344 −1.42015
\(513\) 63.3029 2.79489
\(514\) −12.6324 −0.557191
\(515\) −1.66793 −0.0734976
\(516\) 19.4659 0.856938
\(517\) 26.1252 1.14899
\(518\) 0 0
\(519\) 31.3688 1.37694
\(520\) 0.148332 0.00650478
\(521\) −16.6498 −0.729440 −0.364720 0.931117i \(-0.618835\pi\)
−0.364720 + 0.931117i \(0.618835\pi\)
\(522\) −48.2730 −2.11285
\(523\) −13.6835 −0.598339 −0.299170 0.954200i \(-0.596710\pi\)
−0.299170 + 0.954200i \(0.596710\pi\)
\(524\) −32.9099 −1.43767
\(525\) 0 0
\(526\) −16.5251 −0.720529
\(527\) 37.1301 1.61741
\(528\) 73.6280 3.20425
\(529\) −0.531556 −0.0231111
\(530\) 16.8430 0.731611
\(531\) 51.2283 2.22312
\(532\) 0 0
\(533\) −10.5155 −0.455476
\(534\) 36.3072 1.57117
\(535\) −3.56513 −0.154134
\(536\) −1.21418 −0.0524444
\(537\) 34.8273 1.50291
\(538\) −32.8551 −1.41648
\(539\) 0 0
\(540\) −15.6930 −0.675318
\(541\) −39.7309 −1.70816 −0.854081 0.520139i \(-0.825880\pi\)
−0.854081 + 0.520139i \(0.825880\pi\)
\(542\) −6.17802 −0.265369
\(543\) 36.5779 1.56971
\(544\) 51.6530 2.21461
\(545\) −12.5860 −0.539124
\(546\) 0 0
\(547\) 8.11088 0.346796 0.173398 0.984852i \(-0.444525\pi\)
0.173398 + 0.984852i \(0.444525\pi\)
\(548\) −14.1265 −0.603454
\(549\) −27.5416 −1.17545
\(550\) 12.9303 0.551351
\(551\) 35.3076 1.50415
\(552\) 1.31943 0.0561588
\(553\) 0 0
\(554\) −40.8872 −1.73713
\(555\) −2.93465 −0.124569
\(556\) 27.7436 1.17659
\(557\) 33.7732 1.43102 0.715509 0.698604i \(-0.246195\pi\)
0.715509 + 0.698604i \(0.246195\pi\)
\(558\) −65.2723 −2.76320
\(559\) 5.06709 0.214315
\(560\) 0 0
\(561\) −121.142 −5.11461
\(562\) 44.0112 1.85650
\(563\) 15.1641 0.639093 0.319546 0.947571i \(-0.396470\pi\)
0.319546 + 0.947571i \(0.396470\pi\)
\(564\) −24.4191 −1.02823
\(565\) 2.71289 0.114132
\(566\) 51.0780 2.14697
\(567\) 0 0
\(568\) 0.357125 0.0149846
\(569\) 35.2915 1.47950 0.739748 0.672884i \(-0.234945\pi\)
0.739748 + 0.672884i \(0.234945\pi\)
\(570\) 48.7527 2.04202
\(571\) 23.2351 0.972360 0.486180 0.873859i \(-0.338390\pi\)
0.486180 + 0.873859i \(0.338390\pi\)
\(572\) −20.5766 −0.860352
\(573\) 42.0435 1.75639
\(574\) 0 0
\(575\) −4.74009 −0.197675
\(576\) −46.9886 −1.95786
\(577\) −29.2985 −1.21971 −0.609856 0.792512i \(-0.708773\pi\)
−0.609856 + 0.792512i \(0.708773\pi\)
\(578\) −48.7814 −2.02904
\(579\) −7.89507 −0.328108
\(580\) −8.75285 −0.363442
\(581\) 0 0
\(582\) 13.2107 0.547602
\(583\) −53.8120 −2.22866
\(584\) 1.17068 0.0484432
\(585\) −8.77646 −0.362862
\(586\) −55.2038 −2.28045
\(587\) −32.4500 −1.33935 −0.669677 0.742652i \(-0.733568\pi\)
−0.669677 + 0.742652i \(0.733568\pi\)
\(588\) 0 0
\(589\) 47.7410 1.96713
\(590\) 18.3635 0.756012
\(591\) 28.9786 1.19202
\(592\) −3.90348 −0.160432
\(593\) −10.7567 −0.441724 −0.220862 0.975305i \(-0.570887\pi\)
−0.220862 + 0.975305i \(0.570887\pi\)
\(594\) 99.1210 4.06698
\(595\) 0 0
\(596\) 20.2781 0.830625
\(597\) 71.6781 2.93359
\(598\) 14.9125 0.609818
\(599\) −39.9189 −1.63104 −0.815521 0.578728i \(-0.803549\pi\)
−0.815521 + 0.578728i \(0.803549\pi\)
\(600\) −0.278356 −0.0113638
\(601\) −25.1479 −1.02580 −0.512901 0.858448i \(-0.671429\pi\)
−0.512901 + 0.858448i \(0.671429\pi\)
\(602\) 0 0
\(603\) 71.8401 2.92556
\(604\) 9.49372 0.386294
\(605\) −30.3114 −1.23233
\(606\) 1.71112 0.0695096
\(607\) 3.99083 0.161983 0.0809913 0.996715i \(-0.474191\pi\)
0.0809913 + 0.996715i \(0.474191\pi\)
\(608\) 66.4142 2.69345
\(609\) 0 0
\(610\) −9.87265 −0.399732
\(611\) −6.35645 −0.257154
\(612\) 73.7874 2.98268
\(613\) −14.4977 −0.585557 −0.292778 0.956180i \(-0.594580\pi\)
−0.292778 + 0.956180i \(0.594580\pi\)
\(614\) −39.6686 −1.60090
\(615\) 19.7331 0.795716
\(616\) 0 0
\(617\) −34.9942 −1.40882 −0.704408 0.709796i \(-0.748787\pi\)
−0.704408 + 0.709796i \(0.748787\pi\)
\(618\) −9.84708 −0.396108
\(619\) −30.3236 −1.21881 −0.609403 0.792860i \(-0.708591\pi\)
−0.609403 + 0.792860i \(0.708591\pi\)
\(620\) −11.8351 −0.475311
\(621\) −36.3365 −1.45813
\(622\) −45.7268 −1.83348
\(623\) 0 0
\(624\) −17.9142 −0.717142
\(625\) 1.00000 0.0400000
\(626\) 32.7193 1.30773
\(627\) −155.761 −6.22050
\(628\) −22.0424 −0.879587
\(629\) 6.42248 0.256081
\(630\) 0 0
\(631\) −39.0682 −1.55528 −0.777640 0.628710i \(-0.783583\pi\)
−0.777640 + 0.628710i \(0.783583\pi\)
\(632\) 0.783574 0.0311689
\(633\) −60.4186 −2.40142
\(634\) 56.9472 2.26166
\(635\) 3.13941 0.124584
\(636\) 50.2978 1.99444
\(637\) 0 0
\(638\) 55.2853 2.18877
\(639\) −21.1303 −0.835902
\(640\) −0.758602 −0.0299864
\(641\) −31.6127 −1.24863 −0.624313 0.781175i \(-0.714621\pi\)
−0.624313 + 0.781175i \(0.714621\pi\)
\(642\) −21.0478 −0.830689
\(643\) −39.2552 −1.54807 −0.774037 0.633140i \(-0.781766\pi\)
−0.774037 + 0.633140i \(0.781766\pi\)
\(644\) 0 0
\(645\) −9.50878 −0.374408
\(646\) −106.695 −4.19787
\(647\) 26.4858 1.04126 0.520632 0.853781i \(-0.325696\pi\)
0.520632 + 0.853781i \(0.325696\pi\)
\(648\) −0.536848 −0.0210894
\(649\) −58.6699 −2.30299
\(650\) −3.14604 −0.123398
\(651\) 0 0
\(652\) 15.4940 0.606793
\(653\) 25.4808 0.997139 0.498570 0.866850i \(-0.333859\pi\)
0.498570 + 0.866850i \(0.333859\pi\)
\(654\) −74.3050 −2.90555
\(655\) 16.0759 0.628139
\(656\) 26.2477 1.02480
\(657\) −69.2668 −2.70235
\(658\) 0 0
\(659\) 9.28315 0.361620 0.180810 0.983518i \(-0.442128\pi\)
0.180810 + 0.983518i \(0.442128\pi\)
\(660\) 38.6136 1.50303
\(661\) −35.7283 −1.38967 −0.694834 0.719170i \(-0.744522\pi\)
−0.694834 + 0.719170i \(0.744522\pi\)
\(662\) −5.40562 −0.210095
\(663\) 29.4746 1.14470
\(664\) 0.771736 0.0299492
\(665\) 0 0
\(666\) −11.2903 −0.437489
\(667\) −20.2669 −0.784736
\(668\) −51.3192 −1.98560
\(669\) 12.7354 0.492378
\(670\) 25.7520 0.994888
\(671\) 31.5424 1.21768
\(672\) 0 0
\(673\) 44.0035 1.69621 0.848105 0.529828i \(-0.177744\pi\)
0.848105 + 0.529828i \(0.177744\pi\)
\(674\) −14.7600 −0.568535
\(675\) 7.66577 0.295056
\(676\) −21.6065 −0.831019
\(677\) −15.3869 −0.591365 −0.295683 0.955286i \(-0.595547\pi\)
−0.295683 + 0.955286i \(0.595547\pi\)
\(678\) 16.0163 0.615104
\(679\) 0 0
\(680\) 0.609182 0.0233611
\(681\) 4.44476 0.170324
\(682\) 74.7539 2.86247
\(683\) 0.507034 0.0194011 0.00970055 0.999953i \(-0.496912\pi\)
0.00970055 + 0.999953i \(0.496912\pi\)
\(684\) 94.8740 3.62760
\(685\) 6.90058 0.263657
\(686\) 0 0
\(687\) 73.0903 2.78857
\(688\) −12.6480 −0.482199
\(689\) 13.0928 0.498797
\(690\) −27.9845 −1.06535
\(691\) 21.6468 0.823482 0.411741 0.911301i \(-0.364921\pi\)
0.411741 + 0.911301i \(0.364921\pi\)
\(692\) 21.8822 0.831838
\(693\) 0 0
\(694\) −44.7577 −1.69898
\(695\) −13.5523 −0.514069
\(696\) −1.19015 −0.0451124
\(697\) −43.1859 −1.63578
\(698\) −52.3427 −1.98120
\(699\) −4.87698 −0.184464
\(700\) 0 0
\(701\) −16.4723 −0.622151 −0.311075 0.950385i \(-0.600689\pi\)
−0.311075 + 0.950385i \(0.600689\pi\)
\(702\) −24.1168 −0.910231
\(703\) 8.25786 0.311451
\(704\) 53.8143 2.02820
\(705\) 11.9284 0.449248
\(706\) −66.5262 −2.50375
\(707\) 0 0
\(708\) 54.8385 2.06096
\(709\) −43.2714 −1.62509 −0.812547 0.582896i \(-0.801919\pi\)
−0.812547 + 0.582896i \(0.801919\pi\)
\(710\) −7.57443 −0.284263
\(711\) −46.3624 −1.73872
\(712\) 0.583320 0.0218608
\(713\) −27.4038 −1.02628
\(714\) 0 0
\(715\) 10.0514 0.375899
\(716\) 24.2948 0.907938
\(717\) 62.5803 2.33710
\(718\) −22.4311 −0.837121
\(719\) 13.0640 0.487203 0.243602 0.969875i \(-0.421671\pi\)
0.243602 + 0.969875i \(0.421671\pi\)
\(720\) 21.9070 0.816424
\(721\) 0 0
\(722\) −98.9628 −3.68301
\(723\) 8.40096 0.312435
\(724\) 25.5160 0.948293
\(725\) 4.27563 0.158793
\(726\) −178.952 −6.64154
\(727\) 19.8197 0.735071 0.367536 0.930009i \(-0.380202\pi\)
0.367536 + 0.930009i \(0.380202\pi\)
\(728\) 0 0
\(729\) −35.7250 −1.32315
\(730\) −24.8296 −0.918984
\(731\) 20.8100 0.769684
\(732\) −29.4825 −1.08971
\(733\) 8.21599 0.303465 0.151732 0.988422i \(-0.451515\pi\)
0.151732 + 0.988422i \(0.451515\pi\)
\(734\) −69.9988 −2.58370
\(735\) 0 0
\(736\) −38.1223 −1.40521
\(737\) −82.2758 −3.03067
\(738\) 75.9179 2.79458
\(739\) −11.6985 −0.430337 −0.215168 0.976577i \(-0.569030\pi\)
−0.215168 + 0.976577i \(0.569030\pi\)
\(740\) −2.04715 −0.0752547
\(741\) 37.8977 1.39221
\(742\) 0 0
\(743\) 3.80003 0.139410 0.0697049 0.997568i \(-0.477794\pi\)
0.0697049 + 0.997568i \(0.477794\pi\)
\(744\) −1.60925 −0.0589981
\(745\) −9.90556 −0.362911
\(746\) 36.2201 1.32611
\(747\) −45.6619 −1.67068
\(748\) −84.5059 −3.08984
\(749\) 0 0
\(750\) 5.90379 0.215576
\(751\) −7.81264 −0.285087 −0.142544 0.989789i \(-0.545528\pi\)
−0.142544 + 0.989789i \(0.545528\pi\)
\(752\) 15.8663 0.578586
\(753\) −10.5448 −0.384275
\(754\) −13.4513 −0.489867
\(755\) −4.63753 −0.168777
\(756\) 0 0
\(757\) 33.3188 1.21099 0.605495 0.795849i \(-0.292975\pi\)
0.605495 + 0.795849i \(0.292975\pi\)
\(758\) −25.8950 −0.940549
\(759\) 89.4083 3.24531
\(760\) 0.783271 0.0284122
\(761\) −2.78495 −0.100954 −0.0504771 0.998725i \(-0.516074\pi\)
−0.0504771 + 0.998725i \(0.516074\pi\)
\(762\) 18.5344 0.671432
\(763\) 0 0
\(764\) 29.3286 1.06107
\(765\) −36.0440 −1.30317
\(766\) 28.3949 1.02595
\(767\) 14.2748 0.515432
\(768\) 44.6629 1.61163
\(769\) 19.0285 0.686184 0.343092 0.939302i \(-0.388526\pi\)
0.343092 + 0.939302i \(0.388526\pi\)
\(770\) 0 0
\(771\) 18.4275 0.663651
\(772\) −5.50744 −0.198217
\(773\) 3.51173 0.126308 0.0631541 0.998004i \(-0.479884\pi\)
0.0631541 + 0.998004i \(0.479884\pi\)
\(774\) −36.5825 −1.31493
\(775\) 5.78128 0.207670
\(776\) 0.212246 0.00761920
\(777\) 0 0
\(778\) −24.2526 −0.869497
\(779\) −55.5274 −1.98948
\(780\) −9.39496 −0.336394
\(781\) 24.1997 0.865935
\(782\) 61.2440 2.19008
\(783\) 32.7760 1.17132
\(784\) 0 0
\(785\) 10.7674 0.384304
\(786\) 94.9090 3.38529
\(787\) 11.1812 0.398568 0.199284 0.979942i \(-0.436138\pi\)
0.199284 + 0.979942i \(0.436138\pi\)
\(788\) 20.2148 0.720124
\(789\) 24.1060 0.858197
\(790\) −16.6192 −0.591284
\(791\) 0 0
\(792\) 3.42145 0.121576
\(793\) −7.67447 −0.272529
\(794\) −16.6482 −0.590824
\(795\) −24.5697 −0.871397
\(796\) 50.0011 1.77224
\(797\) −36.8760 −1.30621 −0.653107 0.757266i \(-0.726535\pi\)
−0.653107 + 0.757266i \(0.726535\pi\)
\(798\) 0 0
\(799\) −26.1052 −0.923537
\(800\) 8.04254 0.284347
\(801\) −34.5138 −1.21948
\(802\) 8.11236 0.286457
\(803\) 79.3286 2.79945
\(804\) 76.9028 2.71215
\(805\) 0 0
\(806\) −18.1881 −0.640650
\(807\) 47.9275 1.68713
\(808\) 0.0274913 0.000967140 0
\(809\) 34.0851 1.19837 0.599185 0.800611i \(-0.295491\pi\)
0.599185 + 0.800611i \(0.295491\pi\)
\(810\) 11.3863 0.400072
\(811\) 5.90622 0.207395 0.103698 0.994609i \(-0.466933\pi\)
0.103698 + 0.994609i \(0.466933\pi\)
\(812\) 0 0
\(813\) 9.01220 0.316072
\(814\) 12.9303 0.453208
\(815\) −7.56859 −0.265116
\(816\) −73.5717 −2.57552
\(817\) 26.7569 0.936107
\(818\) 20.5501 0.718518
\(819\) 0 0
\(820\) 13.7654 0.480709
\(821\) −43.8664 −1.53095 −0.765474 0.643467i \(-0.777495\pi\)
−0.765474 + 0.643467i \(0.777495\pi\)
\(822\) 40.7395 1.42095
\(823\) −53.4406 −1.86282 −0.931412 0.363968i \(-0.881422\pi\)
−0.931412 + 0.363968i \(0.881422\pi\)
\(824\) −0.158205 −0.00551135
\(825\) −18.8621 −0.656696
\(826\) 0 0
\(827\) −7.66937 −0.266690 −0.133345 0.991070i \(-0.542572\pi\)
−0.133345 + 0.991070i \(0.542572\pi\)
\(828\) −54.4585 −1.89257
\(829\) 5.27338 0.183152 0.0915761 0.995798i \(-0.470810\pi\)
0.0915761 + 0.995798i \(0.470810\pi\)
\(830\) −16.3681 −0.568145
\(831\) 59.6443 2.06904
\(832\) −13.0934 −0.453931
\(833\) 0 0
\(834\) −80.0101 −2.77052
\(835\) 25.0686 0.867535
\(836\) −108.656 −3.75793
\(837\) 44.3180 1.53185
\(838\) 46.7174 1.61382
\(839\) −47.9270 −1.65462 −0.827312 0.561743i \(-0.810131\pi\)
−0.827312 + 0.561743i \(0.810131\pi\)
\(840\) 0 0
\(841\) −10.7190 −0.369621
\(842\) 28.5479 0.983826
\(843\) −64.2015 −2.21122
\(844\) −42.1467 −1.45075
\(845\) 10.5544 0.363084
\(846\) 45.8912 1.57777
\(847\) 0 0
\(848\) −32.6810 −1.12227
\(849\) −74.5101 −2.55718
\(850\) −12.9204 −0.443167
\(851\) −4.74009 −0.162488
\(852\) −22.6194 −0.774928
\(853\) 0.0680494 0.00232997 0.00116498 0.999999i \(-0.499629\pi\)
0.00116498 + 0.999999i \(0.499629\pi\)
\(854\) 0 0
\(855\) −46.3445 −1.58495
\(856\) −0.338158 −0.0115580
\(857\) −28.4492 −0.971805 −0.485903 0.874013i \(-0.661509\pi\)
−0.485903 + 0.874013i \(0.661509\pi\)
\(858\) 59.3411 2.02587
\(859\) −24.3584 −0.831097 −0.415549 0.909571i \(-0.636410\pi\)
−0.415549 + 0.909571i \(0.636410\pi\)
\(860\) −6.63312 −0.226188
\(861\) 0 0
\(862\) 12.2626 0.417665
\(863\) −1.38694 −0.0472121 −0.0236061 0.999721i \(-0.507515\pi\)
−0.0236061 + 0.999721i \(0.507515\pi\)
\(864\) 61.6523 2.09745
\(865\) −10.6891 −0.363441
\(866\) −77.9903 −2.65022
\(867\) 71.1600 2.41672
\(868\) 0 0
\(869\) 53.0971 1.80119
\(870\) 25.2424 0.855797
\(871\) 20.0183 0.678293
\(872\) −1.19380 −0.0404272
\(873\) −12.5581 −0.425029
\(874\) 78.7461 2.66363
\(875\) 0 0
\(876\) −74.1481 −2.50523
\(877\) 23.2131 0.783850 0.391925 0.919997i \(-0.371809\pi\)
0.391925 + 0.919997i \(0.371809\pi\)
\(878\) −54.1534 −1.82759
\(879\) 80.5286 2.71616
\(880\) −25.0892 −0.845757
\(881\) −44.9553 −1.51458 −0.757291 0.653077i \(-0.773478\pi\)
−0.757291 + 0.653077i \(0.773478\pi\)
\(882\) 0 0
\(883\) 10.6613 0.358781 0.179390 0.983778i \(-0.442587\pi\)
0.179390 + 0.983778i \(0.442587\pi\)
\(884\) 20.5609 0.691537
\(885\) −26.7877 −0.900460
\(886\) −51.1726 −1.71918
\(887\) 28.4408 0.954949 0.477474 0.878646i \(-0.341552\pi\)
0.477474 + 0.878646i \(0.341552\pi\)
\(888\) −0.278356 −0.00934102
\(889\) 0 0
\(890\) −12.3719 −0.414707
\(891\) −36.3782 −1.21872
\(892\) 8.88393 0.297456
\(893\) −33.5655 −1.12323
\(894\) −58.4803 −1.95587
\(895\) −11.8676 −0.396690
\(896\) 0 0
\(897\) −21.7536 −0.726333
\(898\) 0.353797 0.0118064
\(899\) 24.7186 0.824411
\(900\) 11.4889 0.382964
\(901\) 53.7708 1.79136
\(902\) −86.9459 −2.89498
\(903\) 0 0
\(904\) 0.257322 0.00855841
\(905\) −12.4641 −0.414322
\(906\) −27.3790 −0.909607
\(907\) 60.0347 1.99342 0.996710 0.0810444i \(-0.0258256\pi\)
0.996710 + 0.0810444i \(0.0258256\pi\)
\(908\) 3.10057 0.102896
\(909\) −1.62660 −0.0539509
\(910\) 0 0
\(911\) 31.5719 1.04602 0.523011 0.852326i \(-0.324809\pi\)
0.523011 + 0.852326i \(0.324809\pi\)
\(912\) −94.5966 −3.13241
\(913\) 52.2949 1.73071
\(914\) 70.7321 2.33961
\(915\) 14.4017 0.476107
\(916\) 50.9862 1.68463
\(917\) 0 0
\(918\) −99.0452 −3.26898
\(919\) −2.55976 −0.0844388 −0.0422194 0.999108i \(-0.513443\pi\)
−0.0422194 + 0.999108i \(0.513443\pi\)
\(920\) −0.449605 −0.0148230
\(921\) 57.8667 1.90677
\(922\) −56.8576 −1.87250
\(923\) −5.88796 −0.193805
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −55.9485 −1.83858
\(927\) 9.36067 0.307445
\(928\) 34.3869 1.12881
\(929\) −26.2692 −0.861863 −0.430932 0.902385i \(-0.641815\pi\)
−0.430932 + 0.902385i \(0.641815\pi\)
\(930\) 34.1314 1.11921
\(931\) 0 0
\(932\) −3.40208 −0.111439
\(933\) 66.7040 2.18379
\(934\) −75.1572 −2.45922
\(935\) 41.2798 1.34999
\(936\) −0.832461 −0.0272099
\(937\) −35.7424 −1.16765 −0.583827 0.811878i \(-0.698445\pi\)
−0.583827 + 0.811878i \(0.698445\pi\)
\(938\) 0 0
\(939\) −47.7294 −1.55759
\(940\) 8.32098 0.271400
\(941\) 52.2926 1.70469 0.852344 0.522981i \(-0.175180\pi\)
0.852344 + 0.522981i \(0.175180\pi\)
\(942\) 63.5682 2.07116
\(943\) 31.8732 1.03794
\(944\) −35.6313 −1.15970
\(945\) 0 0
\(946\) 41.8966 1.36217
\(947\) 38.2613 1.24333 0.621663 0.783285i \(-0.286457\pi\)
0.621663 + 0.783285i \(0.286457\pi\)
\(948\) −49.6296 −1.61189
\(949\) −19.3012 −0.626543
\(950\) −16.6128 −0.538990
\(951\) −83.0719 −2.69379
\(952\) 0 0
\(953\) −32.4798 −1.05212 −0.526061 0.850447i \(-0.676332\pi\)
−0.526061 + 0.850447i \(0.676332\pi\)
\(954\) −94.5254 −3.06037
\(955\) −14.3266 −0.463597
\(956\) 43.6547 1.41189
\(957\) −80.6475 −2.60696
\(958\) 70.3788 2.27384
\(959\) 0 0
\(960\) 24.5708 0.793018
\(961\) 2.42320 0.0781677
\(962\) −3.14604 −0.101432
\(963\) 20.0081 0.644751
\(964\) 5.86033 0.188749
\(965\) 2.69030 0.0866037
\(966\) 0 0
\(967\) −28.4115 −0.913653 −0.456827 0.889556i \(-0.651014\pi\)
−0.456827 + 0.889556i \(0.651014\pi\)
\(968\) −2.87509 −0.0924088
\(969\) 155.642 4.99994
\(970\) −4.50163 −0.144539
\(971\) −1.56730 −0.0502969 −0.0251485 0.999684i \(-0.508006\pi\)
−0.0251485 + 0.999684i \(0.508006\pi\)
\(972\) −13.0764 −0.419424
\(973\) 0 0
\(974\) −21.5183 −0.689490
\(975\) 4.58929 0.146975
\(976\) 19.1563 0.613177
\(977\) −5.86619 −0.187676 −0.0938380 0.995587i \(-0.529914\pi\)
−0.0938380 + 0.995587i \(0.529914\pi\)
\(978\) −44.6833 −1.42882
\(979\) 39.5273 1.26330
\(980\) 0 0
\(981\) 70.6346 2.25519
\(982\) −12.6103 −0.402411
\(983\) 13.9774 0.445809 0.222905 0.974840i \(-0.428446\pi\)
0.222905 + 0.974840i \(0.428446\pi\)
\(984\) 1.87172 0.0596682
\(985\) −9.87464 −0.314632
\(986\) −55.2430 −1.75929
\(987\) 0 0
\(988\) 26.4367 0.841062
\(989\) −15.3587 −0.488379
\(990\) −72.5671 −2.30633
\(991\) 7.18943 0.228380 0.114190 0.993459i \(-0.463573\pi\)
0.114190 + 0.993459i \(0.463573\pi\)
\(992\) 46.4962 1.47625
\(993\) 7.88546 0.250237
\(994\) 0 0
\(995\) −24.4248 −0.774317
\(996\) −48.8798 −1.54882
\(997\) 20.2860 0.642464 0.321232 0.947000i \(-0.395903\pi\)
0.321232 + 0.947000i \(0.395903\pi\)
\(998\) 4.39232 0.139037
\(999\) 7.66577 0.242534
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bc.1.7 yes 34
7.6 odd 2 9065.2.a.bb.1.7 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bb.1.7 34 7.6 odd 2
9065.2.a.bc.1.7 yes 34 1.1 even 1 trivial