Properties

Label 9065.2.a.bc.1.20
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,-2,10,30,-34,8,0,-6,28,2,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.559083 q^{2} +0.530934 q^{3} -1.68743 q^{4} -1.00000 q^{5} +0.296836 q^{6} -2.06158 q^{8} -2.71811 q^{9} -0.559083 q^{10} -2.04956 q^{11} -0.895912 q^{12} -1.94110 q^{13} -0.530934 q^{15} +2.22226 q^{16} -6.52022 q^{17} -1.51965 q^{18} +3.41391 q^{19} +1.68743 q^{20} -1.14588 q^{22} -1.41393 q^{23} -1.09456 q^{24} +1.00000 q^{25} -1.08524 q^{26} -3.03594 q^{27} -4.24571 q^{29} -0.296836 q^{30} +0.765169 q^{31} +5.36558 q^{32} -1.08818 q^{33} -3.64534 q^{34} +4.58661 q^{36} +1.00000 q^{37} +1.90866 q^{38} -1.03060 q^{39} +2.06158 q^{40} -8.48866 q^{41} -11.3123 q^{43} +3.45849 q^{44} +2.71811 q^{45} -0.790503 q^{46} -7.94442 q^{47} +1.17987 q^{48} +0.559083 q^{50} -3.46181 q^{51} +3.27547 q^{52} +1.16492 q^{53} -1.69734 q^{54} +2.04956 q^{55} +1.81256 q^{57} -2.37371 q^{58} +1.16578 q^{59} +0.895912 q^{60} +0.714569 q^{61} +0.427793 q^{62} -1.44471 q^{64} +1.94110 q^{65} -0.608385 q^{66} +7.56750 q^{67} +11.0024 q^{68} -0.750702 q^{69} -12.5740 q^{71} +5.60359 q^{72} -3.08360 q^{73} +0.559083 q^{74} +0.530934 q^{75} -5.76072 q^{76} -0.576190 q^{78} +9.66550 q^{79} -2.22226 q^{80} +6.54244 q^{81} -4.74587 q^{82} +14.6622 q^{83} +6.52022 q^{85} -6.32450 q^{86} -2.25419 q^{87} +4.22534 q^{88} -12.7892 q^{89} +1.51965 q^{90} +2.38590 q^{92} +0.406254 q^{93} -4.44159 q^{94} -3.41391 q^{95} +2.84877 q^{96} +13.0641 q^{97} +5.57094 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 2 q^{2} + 10 q^{3} + 30 q^{4} - 34 q^{5} + 8 q^{6} - 6 q^{8} + 28 q^{9} + 2 q^{10} - 30 q^{11} + 20 q^{12} + 18 q^{13} - 10 q^{15} + 18 q^{16} + 10 q^{17} + 40 q^{19} - 30 q^{20} - 4 q^{22} - 16 q^{23}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.559083 0.395332 0.197666 0.980269i \(-0.436664\pi\)
0.197666 + 0.980269i \(0.436664\pi\)
\(3\) 0.530934 0.306535 0.153267 0.988185i \(-0.451020\pi\)
0.153267 + 0.988185i \(0.451020\pi\)
\(4\) −1.68743 −0.843713
\(5\) −1.00000 −0.447214
\(6\) 0.296836 0.121183
\(7\) 0 0
\(8\) −2.06158 −0.728878
\(9\) −2.71811 −0.906036
\(10\) −0.559083 −0.176798
\(11\) −2.04956 −0.617967 −0.308983 0.951067i \(-0.599989\pi\)
−0.308983 + 0.951067i \(0.599989\pi\)
\(12\) −0.895912 −0.258627
\(13\) −1.94110 −0.538365 −0.269183 0.963089i \(-0.586754\pi\)
−0.269183 + 0.963089i \(0.586754\pi\)
\(14\) 0 0
\(15\) −0.530934 −0.137087
\(16\) 2.22226 0.555564
\(17\) −6.52022 −1.58138 −0.790692 0.612214i \(-0.790279\pi\)
−0.790692 + 0.612214i \(0.790279\pi\)
\(18\) −1.51965 −0.358185
\(19\) 3.41391 0.783204 0.391602 0.920135i \(-0.371921\pi\)
0.391602 + 0.920135i \(0.371921\pi\)
\(20\) 1.68743 0.377320
\(21\) 0 0
\(22\) −1.14588 −0.244302
\(23\) −1.41393 −0.294824 −0.147412 0.989075i \(-0.547094\pi\)
−0.147412 + 0.989075i \(0.547094\pi\)
\(24\) −1.09456 −0.223427
\(25\) 1.00000 0.200000
\(26\) −1.08524 −0.212833
\(27\) −3.03594 −0.584267
\(28\) 0 0
\(29\) −4.24571 −0.788409 −0.394204 0.919023i \(-0.628980\pi\)
−0.394204 + 0.919023i \(0.628980\pi\)
\(30\) −0.296836 −0.0541947
\(31\) 0.765169 0.137428 0.0687142 0.997636i \(-0.478110\pi\)
0.0687142 + 0.997636i \(0.478110\pi\)
\(32\) 5.36558 0.948510
\(33\) −1.08818 −0.189428
\(34\) −3.64534 −0.625171
\(35\) 0 0
\(36\) 4.58661 0.764435
\(37\) 1.00000 0.164399
\(38\) 1.90866 0.309625
\(39\) −1.03060 −0.165028
\(40\) 2.06158 0.325964
\(41\) −8.48866 −1.32571 −0.662853 0.748750i \(-0.730655\pi\)
−0.662853 + 0.748750i \(0.730655\pi\)
\(42\) 0 0
\(43\) −11.3123 −1.72510 −0.862552 0.505969i \(-0.831135\pi\)
−0.862552 + 0.505969i \(0.831135\pi\)
\(44\) 3.45849 0.521386
\(45\) 2.71811 0.405192
\(46\) −0.790503 −0.116553
\(47\) −7.94442 −1.15881 −0.579406 0.815039i \(-0.696715\pi\)
−0.579406 + 0.815039i \(0.696715\pi\)
\(48\) 1.17987 0.170300
\(49\) 0 0
\(50\) 0.559083 0.0790663
\(51\) −3.46181 −0.484750
\(52\) 3.27547 0.454226
\(53\) 1.16492 0.160014 0.0800069 0.996794i \(-0.474506\pi\)
0.0800069 + 0.996794i \(0.474506\pi\)
\(54\) −1.69734 −0.230979
\(55\) 2.04956 0.276363
\(56\) 0 0
\(57\) 1.81256 0.240080
\(58\) −2.37371 −0.311683
\(59\) 1.16578 0.151772 0.0758859 0.997117i \(-0.475822\pi\)
0.0758859 + 0.997117i \(0.475822\pi\)
\(60\) 0.895912 0.115662
\(61\) 0.714569 0.0914912 0.0457456 0.998953i \(-0.485434\pi\)
0.0457456 + 0.998953i \(0.485434\pi\)
\(62\) 0.427793 0.0543298
\(63\) 0 0
\(64\) −1.44471 −0.180588
\(65\) 1.94110 0.240764
\(66\) −0.608385 −0.0748870
\(67\) 7.56750 0.924517 0.462259 0.886745i \(-0.347039\pi\)
0.462259 + 0.886745i \(0.347039\pi\)
\(68\) 11.0024 1.33423
\(69\) −0.750702 −0.0903739
\(70\) 0 0
\(71\) −12.5740 −1.49226 −0.746130 0.665800i \(-0.768091\pi\)
−0.746130 + 0.665800i \(0.768091\pi\)
\(72\) 5.60359 0.660390
\(73\) −3.08360 −0.360908 −0.180454 0.983583i \(-0.557757\pi\)
−0.180454 + 0.983583i \(0.557757\pi\)
\(74\) 0.559083 0.0649921
\(75\) 0.530934 0.0613070
\(76\) −5.76072 −0.660800
\(77\) 0 0
\(78\) −0.576190 −0.0652407
\(79\) 9.66550 1.08745 0.543727 0.839262i \(-0.317013\pi\)
0.543727 + 0.839262i \(0.317013\pi\)
\(80\) −2.22226 −0.248456
\(81\) 6.54244 0.726938
\(82\) −4.74587 −0.524093
\(83\) 14.6622 1.60939 0.804695 0.593688i \(-0.202329\pi\)
0.804695 + 0.593688i \(0.202329\pi\)
\(84\) 0 0
\(85\) 6.52022 0.707217
\(86\) −6.32450 −0.681988
\(87\) −2.25419 −0.241675
\(88\) 4.22534 0.450422
\(89\) −12.7892 −1.35565 −0.677826 0.735222i \(-0.737078\pi\)
−0.677826 + 0.735222i \(0.737078\pi\)
\(90\) 1.51965 0.160185
\(91\) 0 0
\(92\) 2.38590 0.248747
\(93\) 0.406254 0.0421266
\(94\) −4.44159 −0.458115
\(95\) −3.41391 −0.350260
\(96\) 2.84877 0.290751
\(97\) 13.0641 1.32646 0.663229 0.748416i \(-0.269185\pi\)
0.663229 + 0.748416i \(0.269185\pi\)
\(98\) 0 0
\(99\) 5.57094 0.559900
\(100\) −1.68743 −0.168743
\(101\) −14.0771 −1.40072 −0.700362 0.713788i \(-0.746978\pi\)
−0.700362 + 0.713788i \(0.746978\pi\)
\(102\) −1.93544 −0.191637
\(103\) −8.28546 −0.816390 −0.408195 0.912895i \(-0.633842\pi\)
−0.408195 + 0.912895i \(0.633842\pi\)
\(104\) 4.00174 0.392403
\(105\) 0 0
\(106\) 0.651286 0.0632585
\(107\) −7.63947 −0.738535 −0.369268 0.929323i \(-0.620391\pi\)
−0.369268 + 0.929323i \(0.620391\pi\)
\(108\) 5.12292 0.492953
\(109\) 18.8621 1.80667 0.903333 0.428941i \(-0.141113\pi\)
0.903333 + 0.428941i \(0.141113\pi\)
\(110\) 1.14588 0.109255
\(111\) 0.530934 0.0503940
\(112\) 0 0
\(113\) −18.1624 −1.70857 −0.854287 0.519802i \(-0.826006\pi\)
−0.854287 + 0.519802i \(0.826006\pi\)
\(114\) 1.01337 0.0949110
\(115\) 1.41393 0.131849
\(116\) 7.16432 0.665191
\(117\) 5.27613 0.487779
\(118\) 0.651769 0.0600002
\(119\) 0 0
\(120\) 1.09456 0.0999194
\(121\) −6.79929 −0.618117
\(122\) 0.399504 0.0361694
\(123\) −4.50692 −0.406375
\(124\) −1.29117 −0.115950
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.206562 −0.0183294 −0.00916471 0.999958i \(-0.502917\pi\)
−0.00916471 + 0.999958i \(0.502917\pi\)
\(128\) −11.5389 −1.01990
\(129\) −6.00607 −0.528805
\(130\) 1.08524 0.0951817
\(131\) 8.13609 0.710853 0.355427 0.934704i \(-0.384336\pi\)
0.355427 + 0.934704i \(0.384336\pi\)
\(132\) 1.83623 0.159823
\(133\) 0 0
\(134\) 4.23086 0.365491
\(135\) 3.03594 0.261292
\(136\) 13.4419 1.15264
\(137\) 7.70137 0.657972 0.328986 0.944335i \(-0.393293\pi\)
0.328986 + 0.944335i \(0.393293\pi\)
\(138\) −0.419705 −0.0357276
\(139\) 2.06381 0.175050 0.0875249 0.996162i \(-0.472104\pi\)
0.0875249 + 0.996162i \(0.472104\pi\)
\(140\) 0 0
\(141\) −4.21796 −0.355216
\(142\) −7.02992 −0.589938
\(143\) 3.97842 0.332692
\(144\) −6.04034 −0.503362
\(145\) 4.24571 0.352587
\(146\) −1.72399 −0.142678
\(147\) 0 0
\(148\) −1.68743 −0.138706
\(149\) 12.8881 1.05584 0.527919 0.849295i \(-0.322973\pi\)
0.527919 + 0.849295i \(0.322973\pi\)
\(150\) 0.296836 0.0242366
\(151\) −8.28453 −0.674185 −0.337093 0.941471i \(-0.609444\pi\)
−0.337093 + 0.941471i \(0.609444\pi\)
\(152\) −7.03804 −0.570860
\(153\) 17.7227 1.43279
\(154\) 0 0
\(155\) −0.765169 −0.0614598
\(156\) 1.73906 0.139236
\(157\) 14.7065 1.17371 0.586855 0.809692i \(-0.300366\pi\)
0.586855 + 0.809692i \(0.300366\pi\)
\(158\) 5.40382 0.429905
\(159\) 0.618494 0.0490498
\(160\) −5.36558 −0.424187
\(161\) 0 0
\(162\) 3.65777 0.287382
\(163\) 9.40725 0.736833 0.368416 0.929661i \(-0.379900\pi\)
0.368416 + 0.929661i \(0.379900\pi\)
\(164\) 14.3240 1.11852
\(165\) 1.08818 0.0847149
\(166\) 8.19742 0.636243
\(167\) 14.4956 1.12170 0.560851 0.827917i \(-0.310474\pi\)
0.560851 + 0.827917i \(0.310474\pi\)
\(168\) 0 0
\(169\) −9.23212 −0.710163
\(170\) 3.64534 0.279585
\(171\) −9.27938 −0.709612
\(172\) 19.0886 1.45549
\(173\) 20.6766 1.57201 0.786006 0.618219i \(-0.212146\pi\)
0.786006 + 0.618219i \(0.212146\pi\)
\(174\) −1.26028 −0.0955417
\(175\) 0 0
\(176\) −4.55466 −0.343320
\(177\) 0.618953 0.0465234
\(178\) −7.15023 −0.535932
\(179\) −1.73706 −0.129834 −0.0649169 0.997891i \(-0.520678\pi\)
−0.0649169 + 0.997891i \(0.520678\pi\)
\(180\) −4.58661 −0.341866
\(181\) −7.03225 −0.522703 −0.261352 0.965244i \(-0.584168\pi\)
−0.261352 + 0.965244i \(0.584168\pi\)
\(182\) 0 0
\(183\) 0.379389 0.0280452
\(184\) 2.91492 0.214891
\(185\) −1.00000 −0.0735215
\(186\) 0.227130 0.0166540
\(187\) 13.3636 0.977243
\(188\) 13.4056 0.977705
\(189\) 0 0
\(190\) −1.90866 −0.138469
\(191\) −8.42607 −0.609689 −0.304844 0.952402i \(-0.598604\pi\)
−0.304844 + 0.952402i \(0.598604\pi\)
\(192\) −0.767044 −0.0553566
\(193\) −0.773093 −0.0556485 −0.0278242 0.999613i \(-0.508858\pi\)
−0.0278242 + 0.999613i \(0.508858\pi\)
\(194\) 7.30392 0.524391
\(195\) 1.03060 0.0738027
\(196\) 0 0
\(197\) 4.93747 0.351780 0.175890 0.984410i \(-0.443720\pi\)
0.175890 + 0.984410i \(0.443720\pi\)
\(198\) 3.11462 0.221346
\(199\) 14.0397 0.995250 0.497625 0.867392i \(-0.334206\pi\)
0.497625 + 0.867392i \(0.334206\pi\)
\(200\) −2.06158 −0.145776
\(201\) 4.01784 0.283397
\(202\) −7.87027 −0.553750
\(203\) 0 0
\(204\) 5.84154 0.408990
\(205\) 8.48866 0.592874
\(206\) −4.63226 −0.322745
\(207\) 3.84321 0.267121
\(208\) −4.31363 −0.299097
\(209\) −6.99702 −0.483994
\(210\) 0 0
\(211\) 2.70448 0.186184 0.0930920 0.995658i \(-0.470325\pi\)
0.0930920 + 0.995658i \(0.470325\pi\)
\(212\) −1.96571 −0.135006
\(213\) −6.67597 −0.457430
\(214\) −4.27110 −0.291966
\(215\) 11.3123 0.771490
\(216\) 6.25883 0.425859
\(217\) 0 0
\(218\) 10.5455 0.714232
\(219\) −1.63719 −0.110631
\(220\) −3.45849 −0.233171
\(221\) 12.6564 0.851363
\(222\) 0.296836 0.0199224
\(223\) −16.8820 −1.13050 −0.565252 0.824918i \(-0.691221\pi\)
−0.565252 + 0.824918i \(0.691221\pi\)
\(224\) 0 0
\(225\) −2.71811 −0.181207
\(226\) −10.1543 −0.675453
\(227\) 14.7448 0.978645 0.489323 0.872103i \(-0.337244\pi\)
0.489323 + 0.872103i \(0.337244\pi\)
\(228\) −3.05856 −0.202558
\(229\) 19.1552 1.26581 0.632905 0.774229i \(-0.281862\pi\)
0.632905 + 0.774229i \(0.281862\pi\)
\(230\) 0.790503 0.0521242
\(231\) 0 0
\(232\) 8.75287 0.574654
\(233\) 15.2833 1.00125 0.500623 0.865666i \(-0.333104\pi\)
0.500623 + 0.865666i \(0.333104\pi\)
\(234\) 2.94980 0.192834
\(235\) 7.94442 0.518237
\(236\) −1.96717 −0.128052
\(237\) 5.13174 0.333342
\(238\) 0 0
\(239\) −26.8358 −1.73586 −0.867931 0.496684i \(-0.834551\pi\)
−0.867931 + 0.496684i \(0.834551\pi\)
\(240\) −1.17987 −0.0761604
\(241\) 13.9409 0.898013 0.449007 0.893528i \(-0.351778\pi\)
0.449007 + 0.893528i \(0.351778\pi\)
\(242\) −3.80137 −0.244361
\(243\) 12.5814 0.807099
\(244\) −1.20578 −0.0771923
\(245\) 0 0
\(246\) −2.51974 −0.160653
\(247\) −6.62675 −0.421650
\(248\) −1.57746 −0.100169
\(249\) 7.78469 0.493335
\(250\) −0.559083 −0.0353595
\(251\) 4.63233 0.292390 0.146195 0.989256i \(-0.453297\pi\)
0.146195 + 0.989256i \(0.453297\pi\)
\(252\) 0 0
\(253\) 2.89793 0.182191
\(254\) −0.115485 −0.00724620
\(255\) 3.46181 0.216787
\(256\) −3.56178 −0.222611
\(257\) −0.286330 −0.0178608 −0.00893039 0.999960i \(-0.502843\pi\)
−0.00893039 + 0.999960i \(0.502843\pi\)
\(258\) −3.35789 −0.209053
\(259\) 0 0
\(260\) −3.27547 −0.203136
\(261\) 11.5403 0.714327
\(262\) 4.54875 0.281023
\(263\) −0.925895 −0.0570931 −0.0285466 0.999592i \(-0.509088\pi\)
−0.0285466 + 0.999592i \(0.509088\pi\)
\(264\) 2.24337 0.138070
\(265\) −1.16492 −0.0715603
\(266\) 0 0
\(267\) −6.79022 −0.415555
\(268\) −12.7696 −0.780027
\(269\) 2.43167 0.148261 0.0741307 0.997249i \(-0.476382\pi\)
0.0741307 + 0.997249i \(0.476382\pi\)
\(270\) 1.69734 0.103297
\(271\) −5.01816 −0.304832 −0.152416 0.988316i \(-0.548705\pi\)
−0.152416 + 0.988316i \(0.548705\pi\)
\(272\) −14.4896 −0.878561
\(273\) 0 0
\(274\) 4.30571 0.260117
\(275\) −2.04956 −0.123593
\(276\) 1.26675 0.0762496
\(277\) −2.35639 −0.141582 −0.0707908 0.997491i \(-0.522552\pi\)
−0.0707908 + 0.997491i \(0.522552\pi\)
\(278\) 1.15384 0.0692027
\(279\) −2.07981 −0.124515
\(280\) 0 0
\(281\) −15.5879 −0.929896 −0.464948 0.885338i \(-0.653927\pi\)
−0.464948 + 0.885338i \(0.653927\pi\)
\(282\) −2.35819 −0.140428
\(283\) 6.56274 0.390114 0.195057 0.980792i \(-0.437511\pi\)
0.195057 + 0.980792i \(0.437511\pi\)
\(284\) 21.2177 1.25904
\(285\) −1.81256 −0.107367
\(286\) 2.22427 0.131524
\(287\) 0 0
\(288\) −14.5842 −0.859385
\(289\) 25.5132 1.50078
\(290\) 2.37371 0.139389
\(291\) 6.93618 0.406606
\(292\) 5.20335 0.304503
\(293\) 7.67703 0.448497 0.224248 0.974532i \(-0.428007\pi\)
0.224248 + 0.974532i \(0.428007\pi\)
\(294\) 0 0
\(295\) −1.16578 −0.0678744
\(296\) −2.06158 −0.119827
\(297\) 6.22235 0.361057
\(298\) 7.20554 0.417406
\(299\) 2.74458 0.158723
\(300\) −0.895912 −0.0517255
\(301\) 0 0
\(302\) −4.63174 −0.266527
\(303\) −7.47401 −0.429371
\(304\) 7.58659 0.435121
\(305\) −0.714569 −0.0409161
\(306\) 9.90844 0.566428
\(307\) 24.3428 1.38932 0.694659 0.719339i \(-0.255555\pi\)
0.694659 + 0.719339i \(0.255555\pi\)
\(308\) 0 0
\(309\) −4.39903 −0.250252
\(310\) −0.427793 −0.0242970
\(311\) 11.1874 0.634381 0.317191 0.948362i \(-0.397261\pi\)
0.317191 + 0.948362i \(0.397261\pi\)
\(312\) 2.12466 0.120285
\(313\) 16.0894 0.909425 0.454713 0.890638i \(-0.349742\pi\)
0.454713 + 0.890638i \(0.349742\pi\)
\(314\) 8.22218 0.464004
\(315\) 0 0
\(316\) −16.3098 −0.917498
\(317\) −4.90702 −0.275605 −0.137803 0.990460i \(-0.544004\pi\)
−0.137803 + 0.990460i \(0.544004\pi\)
\(318\) 0.345790 0.0193909
\(319\) 8.70186 0.487210
\(320\) 1.44471 0.0807616
\(321\) −4.05605 −0.226387
\(322\) 0 0
\(323\) −22.2594 −1.23855
\(324\) −11.0399 −0.613327
\(325\) −1.94110 −0.107673
\(326\) 5.25944 0.291293
\(327\) 10.0146 0.553806
\(328\) 17.5000 0.966278
\(329\) 0 0
\(330\) 0.608385 0.0334905
\(331\) 19.4934 1.07146 0.535728 0.844391i \(-0.320037\pi\)
0.535728 + 0.844391i \(0.320037\pi\)
\(332\) −24.7415 −1.35786
\(333\) −2.71811 −0.148951
\(334\) 8.10424 0.443444
\(335\) −7.56750 −0.413457
\(336\) 0 0
\(337\) −8.12725 −0.442720 −0.221360 0.975192i \(-0.571050\pi\)
−0.221360 + 0.975192i \(0.571050\pi\)
\(338\) −5.16152 −0.280750
\(339\) −9.64303 −0.523737
\(340\) −11.0024 −0.596688
\(341\) −1.56826 −0.0849262
\(342\) −5.18794 −0.280532
\(343\) 0 0
\(344\) 23.3211 1.25739
\(345\) 0.750702 0.0404164
\(346\) 11.5599 0.621466
\(347\) −13.2178 −0.709568 −0.354784 0.934948i \(-0.615446\pi\)
−0.354784 + 0.934948i \(0.615446\pi\)
\(348\) 3.80378 0.203904
\(349\) −21.6956 −1.16134 −0.580670 0.814139i \(-0.697210\pi\)
−0.580670 + 0.814139i \(0.697210\pi\)
\(350\) 0 0
\(351\) 5.89307 0.314549
\(352\) −10.9971 −0.586148
\(353\) −4.42366 −0.235448 −0.117724 0.993046i \(-0.537560\pi\)
−0.117724 + 0.993046i \(0.537560\pi\)
\(354\) 0.346046 0.0183922
\(355\) 12.5740 0.667359
\(356\) 21.5808 1.14378
\(357\) 0 0
\(358\) −0.971160 −0.0513274
\(359\) −23.7797 −1.25504 −0.627521 0.778599i \(-0.715930\pi\)
−0.627521 + 0.778599i \(0.715930\pi\)
\(360\) −5.60359 −0.295335
\(361\) −7.34522 −0.386591
\(362\) −3.93161 −0.206641
\(363\) −3.60997 −0.189475
\(364\) 0 0
\(365\) 3.08360 0.161403
\(366\) 0.212110 0.0110872
\(367\) 0.945229 0.0493406 0.0246703 0.999696i \(-0.492146\pi\)
0.0246703 + 0.999696i \(0.492146\pi\)
\(368\) −3.14211 −0.163794
\(369\) 23.0731 1.20114
\(370\) −0.559083 −0.0290654
\(371\) 0 0
\(372\) −0.685524 −0.0355428
\(373\) −35.2595 −1.82567 −0.912834 0.408330i \(-0.866111\pi\)
−0.912834 + 0.408330i \(0.866111\pi\)
\(374\) 7.47137 0.386335
\(375\) −0.530934 −0.0274173
\(376\) 16.3780 0.844633
\(377\) 8.24137 0.424452
\(378\) 0 0
\(379\) 25.6281 1.31643 0.658215 0.752830i \(-0.271312\pi\)
0.658215 + 0.752830i \(0.271312\pi\)
\(380\) 5.76072 0.295519
\(381\) −0.109671 −0.00561861
\(382\) −4.71087 −0.241029
\(383\) −5.73686 −0.293140 −0.146570 0.989200i \(-0.546823\pi\)
−0.146570 + 0.989200i \(0.546823\pi\)
\(384\) −6.12638 −0.312636
\(385\) 0 0
\(386\) −0.432224 −0.0219996
\(387\) 30.7480 1.56301
\(388\) −22.0447 −1.11915
\(389\) 5.46951 0.277315 0.138658 0.990340i \(-0.455721\pi\)
0.138658 + 0.990340i \(0.455721\pi\)
\(390\) 0.576190 0.0291765
\(391\) 9.21911 0.466230
\(392\) 0 0
\(393\) 4.31973 0.217901
\(394\) 2.76046 0.139070
\(395\) −9.66550 −0.486324
\(396\) −9.40054 −0.472395
\(397\) −2.39397 −0.120150 −0.0600751 0.998194i \(-0.519134\pi\)
−0.0600751 + 0.998194i \(0.519134\pi\)
\(398\) 7.84938 0.393454
\(399\) 0 0
\(400\) 2.22226 0.111113
\(401\) 15.7007 0.784053 0.392027 0.919954i \(-0.371774\pi\)
0.392027 + 0.919954i \(0.371774\pi\)
\(402\) 2.24631 0.112036
\(403\) −1.48527 −0.0739867
\(404\) 23.7541 1.18181
\(405\) −6.54244 −0.325097
\(406\) 0 0
\(407\) −2.04956 −0.101593
\(408\) 7.13678 0.353323
\(409\) 24.5582 1.21432 0.607162 0.794578i \(-0.292308\pi\)
0.607162 + 0.794578i \(0.292308\pi\)
\(410\) 4.74587 0.234382
\(411\) 4.08892 0.201692
\(412\) 13.9811 0.688799
\(413\) 0 0
\(414\) 2.14867 0.105601
\(415\) −14.6622 −0.719741
\(416\) −10.4152 −0.510645
\(417\) 1.09574 0.0536589
\(418\) −3.91192 −0.191338
\(419\) 1.58546 0.0774549 0.0387275 0.999250i \(-0.487670\pi\)
0.0387275 + 0.999250i \(0.487670\pi\)
\(420\) 0 0
\(421\) 40.0569 1.95225 0.976127 0.217202i \(-0.0696931\pi\)
0.976127 + 0.217202i \(0.0696931\pi\)
\(422\) 1.51203 0.0736044
\(423\) 21.5938 1.04993
\(424\) −2.40157 −0.116631
\(425\) −6.52022 −0.316277
\(426\) −3.73242 −0.180837
\(427\) 0 0
\(428\) 12.8910 0.623112
\(429\) 2.11228 0.101982
\(430\) 6.32450 0.304994
\(431\) −11.7106 −0.564080 −0.282040 0.959403i \(-0.591011\pi\)
−0.282040 + 0.959403i \(0.591011\pi\)
\(432\) −6.74664 −0.324598
\(433\) 11.6998 0.562257 0.281128 0.959670i \(-0.409291\pi\)
0.281128 + 0.959670i \(0.409291\pi\)
\(434\) 0 0
\(435\) 2.25419 0.108080
\(436\) −31.8285 −1.52431
\(437\) −4.82702 −0.230907
\(438\) −0.915325 −0.0437359
\(439\) 26.1184 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(440\) −4.22534 −0.201435
\(441\) 0 0
\(442\) 7.07599 0.336571
\(443\) −24.6031 −1.16893 −0.584465 0.811419i \(-0.698695\pi\)
−0.584465 + 0.811419i \(0.698695\pi\)
\(444\) −0.895912 −0.0425181
\(445\) 12.7892 0.606266
\(446\) −9.43846 −0.446924
\(447\) 6.84275 0.323651
\(448\) 0 0
\(449\) −36.4551 −1.72042 −0.860212 0.509937i \(-0.829669\pi\)
−0.860212 + 0.509937i \(0.829669\pi\)
\(450\) −1.51965 −0.0716370
\(451\) 17.3980 0.819242
\(452\) 30.6477 1.44155
\(453\) −4.39854 −0.206661
\(454\) 8.24356 0.386889
\(455\) 0 0
\(456\) −3.73674 −0.174989
\(457\) −31.0886 −1.45426 −0.727132 0.686497i \(-0.759147\pi\)
−0.727132 + 0.686497i \(0.759147\pi\)
\(458\) 10.7093 0.500415
\(459\) 19.7950 0.923951
\(460\) −2.38590 −0.111243
\(461\) −28.0059 −1.30437 −0.652183 0.758061i \(-0.726147\pi\)
−0.652183 + 0.758061i \(0.726147\pi\)
\(462\) 0 0
\(463\) −29.1126 −1.35298 −0.676488 0.736454i \(-0.736499\pi\)
−0.676488 + 0.736454i \(0.736499\pi\)
\(464\) −9.43507 −0.438012
\(465\) −0.406254 −0.0188396
\(466\) 8.54466 0.395824
\(467\) −27.0864 −1.25341 −0.626704 0.779257i \(-0.715597\pi\)
−0.626704 + 0.779257i \(0.715597\pi\)
\(468\) −8.90308 −0.411545
\(469\) 0 0
\(470\) 4.44159 0.204875
\(471\) 7.80820 0.359783
\(472\) −2.40335 −0.110623
\(473\) 23.1852 1.06606
\(474\) 2.86907 0.131781
\(475\) 3.41391 0.156641
\(476\) 0 0
\(477\) −3.16637 −0.144978
\(478\) −15.0034 −0.686241
\(479\) −21.3239 −0.974312 −0.487156 0.873315i \(-0.661966\pi\)
−0.487156 + 0.873315i \(0.661966\pi\)
\(480\) −2.84877 −0.130028
\(481\) −1.94110 −0.0885067
\(482\) 7.79413 0.355013
\(483\) 0 0
\(484\) 11.4733 0.521513
\(485\) −13.0641 −0.593210
\(486\) 7.03406 0.319072
\(487\) 16.7544 0.759213 0.379606 0.925148i \(-0.376059\pi\)
0.379606 + 0.925148i \(0.376059\pi\)
\(488\) −1.47314 −0.0666859
\(489\) 4.99463 0.225865
\(490\) 0 0
\(491\) −32.2228 −1.45419 −0.727096 0.686535i \(-0.759131\pi\)
−0.727096 + 0.686535i \(0.759131\pi\)
\(492\) 7.60509 0.342864
\(493\) 27.6830 1.24678
\(494\) −3.70491 −0.166692
\(495\) −5.57094 −0.250395
\(496\) 1.70040 0.0763503
\(497\) 0 0
\(498\) 4.35229 0.195031
\(499\) 12.9362 0.579103 0.289552 0.957162i \(-0.406494\pi\)
0.289552 + 0.957162i \(0.406494\pi\)
\(500\) 1.68743 0.0754640
\(501\) 7.69620 0.343841
\(502\) 2.58986 0.115591
\(503\) −34.9710 −1.55928 −0.779641 0.626227i \(-0.784598\pi\)
−0.779641 + 0.626227i \(0.784598\pi\)
\(504\) 0 0
\(505\) 14.0771 0.626423
\(506\) 1.62019 0.0720260
\(507\) −4.90164 −0.217690
\(508\) 0.348558 0.0154648
\(509\) 0.726009 0.0321798 0.0160899 0.999871i \(-0.494878\pi\)
0.0160899 + 0.999871i \(0.494878\pi\)
\(510\) 1.93544 0.0857026
\(511\) 0 0
\(512\) 21.0864 0.931897
\(513\) −10.3644 −0.457600
\(514\) −0.160082 −0.00706093
\(515\) 8.28546 0.365101
\(516\) 10.1348 0.446159
\(517\) 16.2826 0.716107
\(518\) 0 0
\(519\) 10.9779 0.481876
\(520\) −4.00174 −0.175488
\(521\) 42.6678 1.86931 0.934656 0.355554i \(-0.115708\pi\)
0.934656 + 0.355554i \(0.115708\pi\)
\(522\) 6.45199 0.282396
\(523\) −25.3202 −1.10718 −0.553588 0.832791i \(-0.686742\pi\)
−0.553588 + 0.832791i \(0.686742\pi\)
\(524\) −13.7290 −0.599756
\(525\) 0 0
\(526\) −0.517652 −0.0225707
\(527\) −4.98907 −0.217327
\(528\) −2.41822 −0.105240
\(529\) −21.0008 −0.913079
\(530\) −0.651286 −0.0282901
\(531\) −3.16872 −0.137511
\(532\) 0 0
\(533\) 16.4774 0.713714
\(534\) −3.79630 −0.164282
\(535\) 7.63947 0.330283
\(536\) −15.6010 −0.673860
\(537\) −0.922263 −0.0397986
\(538\) 1.35951 0.0586124
\(539\) 0 0
\(540\) −5.12292 −0.220455
\(541\) −1.31457 −0.0565178 −0.0282589 0.999601i \(-0.508996\pi\)
−0.0282589 + 0.999601i \(0.508996\pi\)
\(542\) −2.80557 −0.120510
\(543\) −3.73366 −0.160227
\(544\) −34.9848 −1.49996
\(545\) −18.8621 −0.807965
\(546\) 0 0
\(547\) 8.18693 0.350048 0.175024 0.984564i \(-0.444000\pi\)
0.175024 + 0.984564i \(0.444000\pi\)
\(548\) −12.9955 −0.555140
\(549\) −1.94228 −0.0828943
\(550\) −1.14588 −0.0488603
\(551\) −14.4945 −0.617485
\(552\) 1.54763 0.0658715
\(553\) 0 0
\(554\) −1.31742 −0.0559717
\(555\) −0.530934 −0.0225369
\(556\) −3.48252 −0.147692
\(557\) 39.5746 1.67683 0.838415 0.545033i \(-0.183483\pi\)
0.838415 + 0.545033i \(0.183483\pi\)
\(558\) −1.16279 −0.0492248
\(559\) 21.9583 0.928736
\(560\) 0 0
\(561\) 7.09519 0.299559
\(562\) −8.71494 −0.367617
\(563\) −39.3820 −1.65975 −0.829877 0.557946i \(-0.811590\pi\)
−0.829877 + 0.557946i \(0.811590\pi\)
\(564\) 7.11750 0.299701
\(565\) 18.1624 0.764097
\(566\) 3.66912 0.154224
\(567\) 0 0
\(568\) 25.9223 1.08768
\(569\) −1.07337 −0.0449979 −0.0224989 0.999747i \(-0.507162\pi\)
−0.0224989 + 0.999747i \(0.507162\pi\)
\(570\) −1.01337 −0.0424455
\(571\) −44.0451 −1.84323 −0.921615 0.388106i \(-0.873130\pi\)
−0.921615 + 0.388106i \(0.873130\pi\)
\(572\) −6.71328 −0.280696
\(573\) −4.47369 −0.186891
\(574\) 0 0
\(575\) −1.41393 −0.0589648
\(576\) 3.92687 0.163620
\(577\) 15.7670 0.656391 0.328195 0.944610i \(-0.393560\pi\)
0.328195 + 0.944610i \(0.393560\pi\)
\(578\) 14.2640 0.593305
\(579\) −0.410462 −0.0170582
\(580\) −7.16432 −0.297482
\(581\) 0 0
\(582\) 3.87790 0.160744
\(583\) −2.38757 −0.0988832
\(584\) 6.35709 0.263058
\(585\) −5.27613 −0.218141
\(586\) 4.29210 0.177305
\(587\) 37.6543 1.55416 0.777080 0.629402i \(-0.216700\pi\)
0.777080 + 0.629402i \(0.216700\pi\)
\(588\) 0 0
\(589\) 2.61222 0.107635
\(590\) −0.651769 −0.0268329
\(591\) 2.62147 0.107833
\(592\) 2.22226 0.0913342
\(593\) 15.1328 0.621428 0.310714 0.950503i \(-0.399432\pi\)
0.310714 + 0.950503i \(0.399432\pi\)
\(594\) 3.47881 0.142737
\(595\) 0 0
\(596\) −21.7478 −0.890823
\(597\) 7.45417 0.305079
\(598\) 1.53445 0.0627482
\(599\) −6.72505 −0.274778 −0.137389 0.990517i \(-0.543871\pi\)
−0.137389 + 0.990517i \(0.543871\pi\)
\(600\) −1.09456 −0.0446853
\(601\) −43.5725 −1.77736 −0.888680 0.458529i \(-0.848377\pi\)
−0.888680 + 0.458529i \(0.848377\pi\)
\(602\) 0 0
\(603\) −20.5693 −0.837646
\(604\) 13.9795 0.568819
\(605\) 6.79929 0.276430
\(606\) −4.17860 −0.169744
\(607\) 0.539111 0.0218819 0.0109409 0.999940i \(-0.496517\pi\)
0.0109409 + 0.999940i \(0.496517\pi\)
\(608\) 18.3176 0.742877
\(609\) 0 0
\(610\) −0.399504 −0.0161754
\(611\) 15.4209 0.623864
\(612\) −29.9057 −1.20887
\(613\) −33.4197 −1.34981 −0.674904 0.737906i \(-0.735815\pi\)
−0.674904 + 0.737906i \(0.735815\pi\)
\(614\) 13.6097 0.549241
\(615\) 4.50692 0.181736
\(616\) 0 0
\(617\) 39.7593 1.60065 0.800325 0.599566i \(-0.204660\pi\)
0.800325 + 0.599566i \(0.204660\pi\)
\(618\) −2.45943 −0.0989326
\(619\) −10.6841 −0.429431 −0.214715 0.976677i \(-0.568882\pi\)
−0.214715 + 0.976677i \(0.568882\pi\)
\(620\) 1.29117 0.0518545
\(621\) 4.29259 0.172256
\(622\) 6.25471 0.250791
\(623\) 0 0
\(624\) −2.29025 −0.0916836
\(625\) 1.00000 0.0400000
\(626\) 8.99530 0.359524
\(627\) −3.71496 −0.148361
\(628\) −24.8162 −0.990274
\(629\) −6.52022 −0.259978
\(630\) 0 0
\(631\) −28.6655 −1.14116 −0.570578 0.821243i \(-0.693281\pi\)
−0.570578 + 0.821243i \(0.693281\pi\)
\(632\) −19.9262 −0.792621
\(633\) 1.43590 0.0570719
\(634\) −2.74343 −0.108956
\(635\) 0.206562 0.00819716
\(636\) −1.04366 −0.0413840
\(637\) 0 0
\(638\) 4.86506 0.192610
\(639\) 34.1775 1.35204
\(640\) 11.5389 0.456114
\(641\) 2.21155 0.0873511 0.0436756 0.999046i \(-0.486093\pi\)
0.0436756 + 0.999046i \(0.486093\pi\)
\(642\) −2.26767 −0.0894978
\(643\) −24.7172 −0.974750 −0.487375 0.873193i \(-0.662046\pi\)
−0.487375 + 0.873193i \(0.662046\pi\)
\(644\) 0 0
\(645\) 6.00607 0.236489
\(646\) −12.4449 −0.489637
\(647\) −4.09476 −0.160981 −0.0804907 0.996755i \(-0.525649\pi\)
−0.0804907 + 0.996755i \(0.525649\pi\)
\(648\) −13.4878 −0.529849
\(649\) −2.38934 −0.0937899
\(650\) −1.08524 −0.0425666
\(651\) 0 0
\(652\) −15.8740 −0.621675
\(653\) 34.8286 1.36295 0.681474 0.731842i \(-0.261339\pi\)
0.681474 + 0.731842i \(0.261339\pi\)
\(654\) 5.59897 0.218937
\(655\) −8.13609 −0.317903
\(656\) −18.8640 −0.736515
\(657\) 8.38157 0.326996
\(658\) 0 0
\(659\) 43.6998 1.70230 0.851151 0.524922i \(-0.175905\pi\)
0.851151 + 0.524922i \(0.175905\pi\)
\(660\) −1.83623 −0.0714751
\(661\) 9.77749 0.380300 0.190150 0.981755i \(-0.439103\pi\)
0.190150 + 0.981755i \(0.439103\pi\)
\(662\) 10.8984 0.423580
\(663\) 6.71972 0.260972
\(664\) −30.2274 −1.17305
\(665\) 0 0
\(666\) −1.51965 −0.0588852
\(667\) 6.00312 0.232442
\(668\) −24.4602 −0.946394
\(669\) −8.96324 −0.346539
\(670\) −4.23086 −0.163453
\(671\) −1.46455 −0.0565385
\(672\) 0 0
\(673\) 23.1685 0.893080 0.446540 0.894764i \(-0.352656\pi\)
0.446540 + 0.894764i \(0.352656\pi\)
\(674\) −4.54381 −0.175021
\(675\) −3.03594 −0.116853
\(676\) 15.5785 0.599174
\(677\) 30.3950 1.16817 0.584087 0.811691i \(-0.301453\pi\)
0.584087 + 0.811691i \(0.301453\pi\)
\(678\) −5.39126 −0.207050
\(679\) 0 0
\(680\) −13.4419 −0.515475
\(681\) 7.82850 0.299989
\(682\) −0.876789 −0.0335740
\(683\) 16.7020 0.639083 0.319542 0.947572i \(-0.396471\pi\)
0.319542 + 0.947572i \(0.396471\pi\)
\(684\) 15.6583 0.598709
\(685\) −7.70137 −0.294254
\(686\) 0 0
\(687\) 10.1701 0.388015
\(688\) −25.1388 −0.958406
\(689\) −2.26123 −0.0861459
\(690\) 0.419705 0.0159779
\(691\) 29.6033 1.12616 0.563081 0.826402i \(-0.309616\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(692\) −34.8902 −1.32633
\(693\) 0 0
\(694\) −7.38985 −0.280515
\(695\) −2.06381 −0.0782846
\(696\) 4.64720 0.176151
\(697\) 55.3479 2.09645
\(698\) −12.1297 −0.459115
\(699\) 8.11445 0.306917
\(700\) 0 0
\(701\) 6.80969 0.257199 0.128599 0.991697i \(-0.458952\pi\)
0.128599 + 0.991697i \(0.458952\pi\)
\(702\) 3.29472 0.124351
\(703\) 3.41391 0.128758
\(704\) 2.96102 0.111598
\(705\) 4.21796 0.158858
\(706\) −2.47319 −0.0930799
\(707\) 0 0
\(708\) −1.04444 −0.0392524
\(709\) −17.6447 −0.662662 −0.331331 0.943515i \(-0.607498\pi\)
−0.331331 + 0.943515i \(0.607498\pi\)
\(710\) 7.02992 0.263828
\(711\) −26.2719 −0.985272
\(712\) 26.3659 0.988106
\(713\) −1.08189 −0.0405172
\(714\) 0 0
\(715\) −3.97842 −0.148784
\(716\) 2.93116 0.109542
\(717\) −14.2480 −0.532103
\(718\) −13.2948 −0.496158
\(719\) 44.4726 1.65855 0.829275 0.558841i \(-0.188754\pi\)
0.829275 + 0.558841i \(0.188754\pi\)
\(720\) 6.04034 0.225110
\(721\) 0 0
\(722\) −4.10659 −0.152832
\(723\) 7.40171 0.275272
\(724\) 11.8664 0.441011
\(725\) −4.24571 −0.157682
\(726\) −2.01828 −0.0749053
\(727\) −20.7667 −0.770194 −0.385097 0.922876i \(-0.625832\pi\)
−0.385097 + 0.922876i \(0.625832\pi\)
\(728\) 0 0
\(729\) −12.9474 −0.479534
\(730\) 1.72399 0.0638077
\(731\) 73.7584 2.72805
\(732\) −0.640191 −0.0236621
\(733\) −1.16963 −0.0432012 −0.0216006 0.999767i \(-0.506876\pi\)
−0.0216006 + 0.999767i \(0.506876\pi\)
\(734\) 0.528462 0.0195059
\(735\) 0 0
\(736\) −7.58654 −0.279644
\(737\) −15.5101 −0.571321
\(738\) 12.8998 0.474848
\(739\) 6.51308 0.239588 0.119794 0.992799i \(-0.461777\pi\)
0.119794 + 0.992799i \(0.461777\pi\)
\(740\) 1.68743 0.0620310
\(741\) −3.51837 −0.129250
\(742\) 0 0
\(743\) −25.0553 −0.919189 −0.459594 0.888129i \(-0.652005\pi\)
−0.459594 + 0.888129i \(0.652005\pi\)
\(744\) −0.837525 −0.0307052
\(745\) −12.8881 −0.472185
\(746\) −19.7130 −0.721744
\(747\) −39.8536 −1.45817
\(748\) −22.5501 −0.824513
\(749\) 0 0
\(750\) −0.296836 −0.0108389
\(751\) −8.79249 −0.320842 −0.160421 0.987049i \(-0.551285\pi\)
−0.160421 + 0.987049i \(0.551285\pi\)
\(752\) −17.6545 −0.643795
\(753\) 2.45946 0.0896278
\(754\) 4.60761 0.167799
\(755\) 8.28453 0.301505
\(756\) 0 0
\(757\) −11.1501 −0.405256 −0.202628 0.979256i \(-0.564948\pi\)
−0.202628 + 0.979256i \(0.564948\pi\)
\(758\) 14.3283 0.520426
\(759\) 1.53861 0.0558480
\(760\) 7.03804 0.255297
\(761\) 50.6613 1.83647 0.918236 0.396034i \(-0.129614\pi\)
0.918236 + 0.396034i \(0.129614\pi\)
\(762\) −0.0613151 −0.00222121
\(763\) 0 0
\(764\) 14.2184 0.514402
\(765\) −17.7227 −0.640764
\(766\) −3.20739 −0.115888
\(767\) −2.26290 −0.0817087
\(768\) −1.89107 −0.0682381
\(769\) 48.5250 1.74986 0.874928 0.484253i \(-0.160909\pi\)
0.874928 + 0.484253i \(0.160909\pi\)
\(770\) 0 0
\(771\) −0.152022 −0.00547496
\(772\) 1.30454 0.0469513
\(773\) 29.4931 1.06079 0.530396 0.847750i \(-0.322043\pi\)
0.530396 + 0.847750i \(0.322043\pi\)
\(774\) 17.1907 0.617906
\(775\) 0.765169 0.0274857
\(776\) −26.9327 −0.966827
\(777\) 0 0
\(778\) 3.05791 0.109631
\(779\) −28.9795 −1.03830
\(780\) −1.73906 −0.0622683
\(781\) 25.7712 0.922168
\(782\) 5.15425 0.184316
\(783\) 12.8897 0.460641
\(784\) 0 0
\(785\) −14.7065 −0.524899
\(786\) 2.41509 0.0861433
\(787\) −3.05645 −0.108951 −0.0544753 0.998515i \(-0.517349\pi\)
−0.0544753 + 0.998515i \(0.517349\pi\)
\(788\) −8.33161 −0.296801
\(789\) −0.491589 −0.0175010
\(790\) −5.40382 −0.192259
\(791\) 0 0
\(792\) −11.4849 −0.408099
\(793\) −1.38705 −0.0492557
\(794\) −1.33843 −0.0474991
\(795\) −0.618494 −0.0219357
\(796\) −23.6910 −0.839705
\(797\) −32.0649 −1.13580 −0.567899 0.823098i \(-0.692244\pi\)
−0.567899 + 0.823098i \(0.692244\pi\)
\(798\) 0 0
\(799\) 51.7993 1.83253
\(800\) 5.36558 0.189702
\(801\) 34.7624 1.22827
\(802\) 8.77798 0.309961
\(803\) 6.32004 0.223029
\(804\) −6.77981 −0.239106
\(805\) 0 0
\(806\) −0.830391 −0.0292493
\(807\) 1.29106 0.0454473
\(808\) 29.0210 1.02096
\(809\) 42.7337 1.50244 0.751219 0.660054i \(-0.229466\pi\)
0.751219 + 0.660054i \(0.229466\pi\)
\(810\) −3.65777 −0.128521
\(811\) 19.1945 0.674009 0.337004 0.941503i \(-0.390586\pi\)
0.337004 + 0.941503i \(0.390586\pi\)
\(812\) 0 0
\(813\) −2.66431 −0.0934415
\(814\) −1.14588 −0.0401630
\(815\) −9.40725 −0.329522
\(816\) −7.69302 −0.269310
\(817\) −38.6190 −1.35111
\(818\) 13.7301 0.480061
\(819\) 0 0
\(820\) −14.3240 −0.500215
\(821\) 29.1456 1.01719 0.508594 0.861007i \(-0.330166\pi\)
0.508594 + 0.861007i \(0.330166\pi\)
\(822\) 2.28605 0.0797350
\(823\) 27.1799 0.947431 0.473715 0.880678i \(-0.342913\pi\)
0.473715 + 0.880678i \(0.342913\pi\)
\(824\) 17.0811 0.595049
\(825\) −1.08818 −0.0378857
\(826\) 0 0
\(827\) −32.1445 −1.11777 −0.558887 0.829244i \(-0.688771\pi\)
−0.558887 + 0.829244i \(0.688771\pi\)
\(828\) −6.48512 −0.225374
\(829\) −5.82592 −0.202343 −0.101171 0.994869i \(-0.532259\pi\)
−0.101171 + 0.994869i \(0.532259\pi\)
\(830\) −8.19742 −0.284537
\(831\) −1.25109 −0.0433997
\(832\) 2.80433 0.0972225
\(833\) 0 0
\(834\) 0.612613 0.0212130
\(835\) −14.4956 −0.501640
\(836\) 11.8070 0.408352
\(837\) −2.32301 −0.0802948
\(838\) 0.886406 0.0306204
\(839\) 34.2430 1.18220 0.591101 0.806598i \(-0.298694\pi\)
0.591101 + 0.806598i \(0.298694\pi\)
\(840\) 0 0
\(841\) −10.9739 −0.378411
\(842\) 22.3951 0.771787
\(843\) −8.27615 −0.285046
\(844\) −4.56361 −0.157086
\(845\) 9.23212 0.317594
\(846\) 12.0727 0.415069
\(847\) 0 0
\(848\) 2.58875 0.0888979
\(849\) 3.48438 0.119584
\(850\) −3.64534 −0.125034
\(851\) −1.41393 −0.0484688
\(852\) 11.2652 0.385940
\(853\) 34.5143 1.18175 0.590874 0.806764i \(-0.298783\pi\)
0.590874 + 0.806764i \(0.298783\pi\)
\(854\) 0 0
\(855\) 9.27938 0.317348
\(856\) 15.7494 0.538302
\(857\) 21.4428 0.732471 0.366236 0.930522i \(-0.380646\pi\)
0.366236 + 0.930522i \(0.380646\pi\)
\(858\) 1.18094 0.0403166
\(859\) −36.9248 −1.25986 −0.629930 0.776652i \(-0.716916\pi\)
−0.629930 + 0.776652i \(0.716916\pi\)
\(860\) −19.0886 −0.650916
\(861\) 0 0
\(862\) −6.54721 −0.222999
\(863\) −35.4093 −1.20535 −0.602673 0.797988i \(-0.705898\pi\)
−0.602673 + 0.797988i \(0.705898\pi\)
\(864\) −16.2896 −0.554183
\(865\) −20.6766 −0.703025
\(866\) 6.54116 0.222278
\(867\) 13.5458 0.460041
\(868\) 0 0
\(869\) −19.8100 −0.672010
\(870\) 1.26028 0.0427276
\(871\) −14.6893 −0.497728
\(872\) −38.8858 −1.31684
\(873\) −35.5097 −1.20182
\(874\) −2.69870 −0.0912850
\(875\) 0 0
\(876\) 2.76264 0.0933408
\(877\) 26.2487 0.886357 0.443178 0.896433i \(-0.353851\pi\)
0.443178 + 0.896433i \(0.353851\pi\)
\(878\) 14.6024 0.492806
\(879\) 4.07599 0.137480
\(880\) 4.55466 0.153537
\(881\) −38.2803 −1.28969 −0.644847 0.764311i \(-0.723079\pi\)
−0.644847 + 0.764311i \(0.723079\pi\)
\(882\) 0 0
\(883\) −16.2982 −0.548477 −0.274239 0.961662i \(-0.588426\pi\)
−0.274239 + 0.961662i \(0.588426\pi\)
\(884\) −21.3568 −0.718306
\(885\) −0.618953 −0.0208059
\(886\) −13.7552 −0.462115
\(887\) 44.6702 1.49988 0.749938 0.661508i \(-0.230083\pi\)
0.749938 + 0.661508i \(0.230083\pi\)
\(888\) −1.09456 −0.0367311
\(889\) 0 0
\(890\) 7.15023 0.239676
\(891\) −13.4092 −0.449224
\(892\) 28.4872 0.953821
\(893\) −27.1215 −0.907587
\(894\) 3.82567 0.127949
\(895\) 1.73706 0.0580634
\(896\) 0 0
\(897\) 1.45719 0.0486541
\(898\) −20.3814 −0.680138
\(899\) −3.24869 −0.108350
\(900\) 4.58661 0.152887
\(901\) −7.59552 −0.253043
\(902\) 9.72696 0.323872
\(903\) 0 0
\(904\) 37.4432 1.24534
\(905\) 7.03225 0.233760
\(906\) −2.45915 −0.0816998
\(907\) −31.8439 −1.05736 −0.528680 0.848821i \(-0.677313\pi\)
−0.528680 + 0.848821i \(0.677313\pi\)
\(908\) −24.8807 −0.825696
\(909\) 38.2631 1.26911
\(910\) 0 0
\(911\) −46.2352 −1.53184 −0.765920 0.642936i \(-0.777716\pi\)
−0.765920 + 0.642936i \(0.777716\pi\)
\(912\) 4.02798 0.133380
\(913\) −30.0512 −0.994550
\(914\) −17.3811 −0.574917
\(915\) −0.379389 −0.0125422
\(916\) −32.3230 −1.06798
\(917\) 0 0
\(918\) 11.0670 0.365267
\(919\) 41.0722 1.35485 0.677424 0.735593i \(-0.263096\pi\)
0.677424 + 0.735593i \(0.263096\pi\)
\(920\) −2.91492 −0.0961020
\(921\) 12.9244 0.425875
\(922\) −15.6577 −0.515657
\(923\) 24.4075 0.803382
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −16.2763 −0.534874
\(927\) 22.5208 0.739679
\(928\) −22.7807 −0.747814
\(929\) 50.9719 1.67233 0.836167 0.548475i \(-0.184792\pi\)
0.836167 + 0.548475i \(0.184792\pi\)
\(930\) −0.227130 −0.00744788
\(931\) 0 0
\(932\) −25.7895 −0.844764
\(933\) 5.93979 0.194460
\(934\) −15.1435 −0.495512
\(935\) −13.3636 −0.437036
\(936\) −10.8772 −0.355531
\(937\) −36.8950 −1.20531 −0.602654 0.798003i \(-0.705890\pi\)
−0.602654 + 0.798003i \(0.705890\pi\)
\(938\) 0 0
\(939\) 8.54240 0.278771
\(940\) −13.4056 −0.437243
\(941\) −28.8694 −0.941116 −0.470558 0.882369i \(-0.655947\pi\)
−0.470558 + 0.882369i \(0.655947\pi\)
\(942\) 4.36544 0.142234
\(943\) 12.0023 0.390850
\(944\) 2.59067 0.0843190
\(945\) 0 0
\(946\) 12.9625 0.421446
\(947\) 12.0082 0.390213 0.195106 0.980782i \(-0.437495\pi\)
0.195106 + 0.980782i \(0.437495\pi\)
\(948\) −8.65943 −0.281245
\(949\) 5.98559 0.194300
\(950\) 1.90866 0.0619251
\(951\) −2.60530 −0.0844827
\(952\) 0 0
\(953\) −35.5463 −1.15146 −0.575728 0.817641i \(-0.695281\pi\)
−0.575728 + 0.817641i \(0.695281\pi\)
\(954\) −1.77027 −0.0573145
\(955\) 8.42607 0.272661
\(956\) 45.2834 1.46457
\(957\) 4.62011 0.149347
\(958\) −11.9218 −0.385177
\(959\) 0 0
\(960\) 0.767044 0.0247562
\(961\) −30.4145 −0.981113
\(962\) −1.08524 −0.0349895
\(963\) 20.7649 0.669140
\(964\) −23.5243 −0.757666
\(965\) 0.773093 0.0248868
\(966\) 0 0
\(967\) 27.9449 0.898648 0.449324 0.893369i \(-0.351665\pi\)
0.449324 + 0.893369i \(0.351665\pi\)
\(968\) 14.0173 0.450532
\(969\) −11.8183 −0.379658
\(970\) −7.30392 −0.234515
\(971\) −29.9589 −0.961425 −0.480713 0.876878i \(-0.659622\pi\)
−0.480713 + 0.876878i \(0.659622\pi\)
\(972\) −21.2302 −0.680960
\(973\) 0 0
\(974\) 9.36709 0.300141
\(975\) −1.03060 −0.0330056
\(976\) 1.58796 0.0508292
\(977\) −11.8853 −0.380246 −0.190123 0.981760i \(-0.560889\pi\)
−0.190123 + 0.981760i \(0.560889\pi\)
\(978\) 2.79242 0.0892916
\(979\) 26.2123 0.837748
\(980\) 0 0
\(981\) −51.2694 −1.63690
\(982\) −18.0152 −0.574888
\(983\) 19.9876 0.637507 0.318753 0.947838i \(-0.396736\pi\)
0.318753 + 0.947838i \(0.396736\pi\)
\(984\) 9.29136 0.296198
\(985\) −4.93747 −0.157321
\(986\) 15.4771 0.492891
\(987\) 0 0
\(988\) 11.1822 0.355752
\(989\) 15.9947 0.508602
\(990\) −3.11462 −0.0989891
\(991\) −17.7861 −0.564994 −0.282497 0.959268i \(-0.591163\pi\)
−0.282497 + 0.959268i \(0.591163\pi\)
\(992\) 4.10558 0.130352
\(993\) 10.3497 0.328439
\(994\) 0 0
\(995\) −14.0397 −0.445089
\(996\) −13.1361 −0.416233
\(997\) −38.4135 −1.21657 −0.608284 0.793719i \(-0.708142\pi\)
−0.608284 + 0.793719i \(0.708142\pi\)
\(998\) 7.23241 0.228938
\(999\) −3.03594 −0.0960529
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bc.1.20 yes 34
7.6 odd 2 9065.2.a.bb.1.20 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bb.1.20 34 7.6 odd 2
9065.2.a.bc.1.20 yes 34 1.1 even 1 trivial