Properties

Label 9065.2.a.bc.1.13
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $0$
Dimension $34$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,-2,10,30,-34,8,0,-6,28,2,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.909782 q^{2} +0.118964 q^{3} -1.17230 q^{4} -1.00000 q^{5} -0.108231 q^{6} +2.88610 q^{8} -2.98585 q^{9} +0.909782 q^{10} -3.42513 q^{11} -0.139461 q^{12} -5.76743 q^{13} -0.118964 q^{15} -0.281123 q^{16} +2.77627 q^{17} +2.71647 q^{18} +1.36891 q^{19} +1.17230 q^{20} +3.11612 q^{22} +6.90159 q^{23} +0.343342 q^{24} +1.00000 q^{25} +5.24710 q^{26} -0.712100 q^{27} +0.231883 q^{29} +0.108231 q^{30} +5.09069 q^{31} -5.51643 q^{32} -0.407467 q^{33} -2.52580 q^{34} +3.50030 q^{36} +1.00000 q^{37} -1.24541 q^{38} -0.686116 q^{39} -2.88610 q^{40} -6.46459 q^{41} -7.93371 q^{43} +4.01527 q^{44} +2.98585 q^{45} -6.27894 q^{46} +5.19617 q^{47} -0.0334435 q^{48} -0.909782 q^{50} +0.330276 q^{51} +6.76114 q^{52} -14.3523 q^{53} +0.647856 q^{54} +3.42513 q^{55} +0.162851 q^{57} -0.210963 q^{58} -12.5786 q^{59} +0.139461 q^{60} -8.43298 q^{61} -4.63141 q^{62} +5.58100 q^{64} +5.76743 q^{65} +0.370706 q^{66} -4.29168 q^{67} -3.25461 q^{68} +0.821040 q^{69} -12.1484 q^{71} -8.61745 q^{72} -10.1017 q^{73} -0.909782 q^{74} +0.118964 q^{75} -1.60477 q^{76} +0.624216 q^{78} +5.38429 q^{79} +0.281123 q^{80} +8.87283 q^{81} +5.88136 q^{82} -5.36151 q^{83} -2.77627 q^{85} +7.21794 q^{86} +0.0275857 q^{87} -9.88526 q^{88} +13.1555 q^{89} -2.71647 q^{90} -8.09072 q^{92} +0.605608 q^{93} -4.72738 q^{94} -1.36891 q^{95} -0.656257 q^{96} -9.66100 q^{97} +10.2269 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q - 2 q^{2} + 10 q^{3} + 30 q^{4} - 34 q^{5} + 8 q^{6} - 6 q^{8} + 28 q^{9} + 2 q^{10} - 30 q^{11} + 20 q^{12} + 18 q^{13} - 10 q^{15} + 18 q^{16} + 10 q^{17} + 40 q^{19} - 30 q^{20} - 4 q^{22} - 16 q^{23}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909782 −0.643313 −0.321656 0.946856i \(-0.604240\pi\)
−0.321656 + 0.946856i \(0.604240\pi\)
\(3\) 0.118964 0.0686839 0.0343419 0.999410i \(-0.489066\pi\)
0.0343419 + 0.999410i \(0.489066\pi\)
\(4\) −1.17230 −0.586149
\(5\) −1.00000 −0.447214
\(6\) −0.108231 −0.0441852
\(7\) 0 0
\(8\) 2.88610 1.02039
\(9\) −2.98585 −0.995283
\(10\) 0.909782 0.287698
\(11\) −3.42513 −1.03272 −0.516358 0.856373i \(-0.672713\pi\)
−0.516358 + 0.856373i \(0.672713\pi\)
\(12\) −0.139461 −0.0402590
\(13\) −5.76743 −1.59960 −0.799799 0.600268i \(-0.795060\pi\)
−0.799799 + 0.600268i \(0.795060\pi\)
\(14\) 0 0
\(15\) −0.118964 −0.0307164
\(16\) −0.281123 −0.0702808
\(17\) 2.77627 0.673344 0.336672 0.941622i \(-0.390699\pi\)
0.336672 + 0.941622i \(0.390699\pi\)
\(18\) 2.71647 0.640278
\(19\) 1.36891 0.314050 0.157025 0.987595i \(-0.449810\pi\)
0.157025 + 0.987595i \(0.449810\pi\)
\(20\) 1.17230 0.262134
\(21\) 0 0
\(22\) 3.11612 0.664359
\(23\) 6.90159 1.43908 0.719540 0.694451i \(-0.244353\pi\)
0.719540 + 0.694451i \(0.244353\pi\)
\(24\) 0.343342 0.0700843
\(25\) 1.00000 0.200000
\(26\) 5.24710 1.02904
\(27\) −0.712100 −0.137044
\(28\) 0 0
\(29\) 0.231883 0.0430595 0.0215298 0.999768i \(-0.493146\pi\)
0.0215298 + 0.999768i \(0.493146\pi\)
\(30\) 0.108231 0.0197602
\(31\) 5.09069 0.914314 0.457157 0.889386i \(-0.348868\pi\)
0.457157 + 0.889386i \(0.348868\pi\)
\(32\) −5.51643 −0.975177
\(33\) −0.407467 −0.0709309
\(34\) −2.52580 −0.433171
\(35\) 0 0
\(36\) 3.50030 0.583384
\(37\) 1.00000 0.164399
\(38\) −1.24541 −0.202032
\(39\) −0.686116 −0.109867
\(40\) −2.88610 −0.456332
\(41\) −6.46459 −1.00960 −0.504799 0.863237i \(-0.668434\pi\)
−0.504799 + 0.863237i \(0.668434\pi\)
\(42\) 0 0
\(43\) −7.93371 −1.20988 −0.604940 0.796271i \(-0.706803\pi\)
−0.604940 + 0.796271i \(0.706803\pi\)
\(44\) 4.01527 0.605325
\(45\) 2.98585 0.445104
\(46\) −6.27894 −0.925779
\(47\) 5.19617 0.757939 0.378969 0.925409i \(-0.376279\pi\)
0.378969 + 0.925409i \(0.376279\pi\)
\(48\) −0.0334435 −0.00482716
\(49\) 0 0
\(50\) −0.909782 −0.128663
\(51\) 0.330276 0.0462479
\(52\) 6.76114 0.937602
\(53\) −14.3523 −1.97144 −0.985722 0.168381i \(-0.946146\pi\)
−0.985722 + 0.168381i \(0.946146\pi\)
\(54\) 0.647856 0.0881620
\(55\) 3.42513 0.461844
\(56\) 0 0
\(57\) 0.162851 0.0215701
\(58\) −0.210963 −0.0277007
\(59\) −12.5786 −1.63759 −0.818795 0.574087i \(-0.805357\pi\)
−0.818795 + 0.574087i \(0.805357\pi\)
\(60\) 0.139461 0.0180044
\(61\) −8.43298 −1.07973 −0.539866 0.841751i \(-0.681525\pi\)
−0.539866 + 0.841751i \(0.681525\pi\)
\(62\) −4.63141 −0.588190
\(63\) 0 0
\(64\) 5.58100 0.697625
\(65\) 5.76743 0.715362
\(66\) 0.370706 0.0456307
\(67\) −4.29168 −0.524313 −0.262156 0.965025i \(-0.584434\pi\)
−0.262156 + 0.965025i \(0.584434\pi\)
\(68\) −3.25461 −0.394680
\(69\) 0.821040 0.0988416
\(70\) 0 0
\(71\) −12.1484 −1.44175 −0.720875 0.693065i \(-0.756260\pi\)
−0.720875 + 0.693065i \(0.756260\pi\)
\(72\) −8.61745 −1.01558
\(73\) −10.1017 −1.18232 −0.591160 0.806555i \(-0.701330\pi\)
−0.591160 + 0.806555i \(0.701330\pi\)
\(74\) −0.909782 −0.105760
\(75\) 0.118964 0.0137368
\(76\) −1.60477 −0.184080
\(77\) 0 0
\(78\) 0.624216 0.0706785
\(79\) 5.38429 0.605780 0.302890 0.953025i \(-0.402048\pi\)
0.302890 + 0.953025i \(0.402048\pi\)
\(80\) 0.281123 0.0314305
\(81\) 8.87283 0.985870
\(82\) 5.88136 0.649488
\(83\) −5.36151 −0.588502 −0.294251 0.955728i \(-0.595070\pi\)
−0.294251 + 0.955728i \(0.595070\pi\)
\(84\) 0 0
\(85\) −2.77627 −0.301129
\(86\) 7.21794 0.778331
\(87\) 0.0275857 0.00295750
\(88\) −9.88526 −1.05377
\(89\) 13.1555 1.39448 0.697240 0.716837i \(-0.254411\pi\)
0.697240 + 0.716837i \(0.254411\pi\)
\(90\) −2.71647 −0.286341
\(91\) 0 0
\(92\) −8.09072 −0.843515
\(93\) 0.605608 0.0627986
\(94\) −4.72738 −0.487592
\(95\) −1.36891 −0.140447
\(96\) −0.656257 −0.0669789
\(97\) −9.66100 −0.980926 −0.490463 0.871462i \(-0.663172\pi\)
−0.490463 + 0.871462i \(0.663172\pi\)
\(98\) 0 0
\(99\) 10.2269 1.02784
\(100\) −1.17230 −0.117230
\(101\) −13.5023 −1.34353 −0.671763 0.740766i \(-0.734463\pi\)
−0.671763 + 0.740766i \(0.734463\pi\)
\(102\) −0.300479 −0.0297519
\(103\) 1.09413 0.107808 0.0539038 0.998546i \(-0.482834\pi\)
0.0539038 + 0.998546i \(0.482834\pi\)
\(104\) −16.6454 −1.63221
\(105\) 0 0
\(106\) 13.0575 1.26825
\(107\) −5.92325 −0.572622 −0.286311 0.958137i \(-0.592429\pi\)
−0.286311 + 0.958137i \(0.592429\pi\)
\(108\) 0.834793 0.0803280
\(109\) −7.48184 −0.716631 −0.358315 0.933601i \(-0.616649\pi\)
−0.358315 + 0.933601i \(0.616649\pi\)
\(110\) −3.11612 −0.297110
\(111\) 0.118964 0.0112916
\(112\) 0 0
\(113\) 18.0278 1.69591 0.847957 0.530064i \(-0.177832\pi\)
0.847957 + 0.530064i \(0.177832\pi\)
\(114\) −0.148159 −0.0138763
\(115\) −6.90159 −0.643576
\(116\) −0.271835 −0.0252393
\(117\) 17.2207 1.59205
\(118\) 11.4437 1.05348
\(119\) 0 0
\(120\) −0.343342 −0.0313427
\(121\) 0.731514 0.0665013
\(122\) 7.67217 0.694605
\(123\) −0.769053 −0.0693432
\(124\) −5.96780 −0.535924
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.5894 −1.73827 −0.869137 0.494571i \(-0.835325\pi\)
−0.869137 + 0.494571i \(0.835325\pi\)
\(128\) 5.95538 0.526386
\(129\) −0.943825 −0.0830992
\(130\) −5.24710 −0.460201
\(131\) −13.2963 −1.16170 −0.580852 0.814009i \(-0.697281\pi\)
−0.580852 + 0.814009i \(0.697281\pi\)
\(132\) 0.477673 0.0415761
\(133\) 0 0
\(134\) 3.90450 0.337297
\(135\) 0.712100 0.0612878
\(136\) 8.01258 0.687073
\(137\) −7.05082 −0.602392 −0.301196 0.953562i \(-0.597386\pi\)
−0.301196 + 0.953562i \(0.597386\pi\)
\(138\) −0.746967 −0.0635861
\(139\) 8.61941 0.731089 0.365545 0.930794i \(-0.380883\pi\)
0.365545 + 0.930794i \(0.380883\pi\)
\(140\) 0 0
\(141\) 0.618157 0.0520582
\(142\) 11.0524 0.927496
\(143\) 19.7542 1.65193
\(144\) 0.839391 0.0699493
\(145\) −0.231883 −0.0192568
\(146\) 9.19038 0.760601
\(147\) 0 0
\(148\) −1.17230 −0.0963623
\(149\) 14.6470 1.19993 0.599963 0.800028i \(-0.295182\pi\)
0.599963 + 0.800028i \(0.295182\pi\)
\(150\) −0.108231 −0.00883704
\(151\) −4.06092 −0.330473 −0.165236 0.986254i \(-0.552839\pi\)
−0.165236 + 0.986254i \(0.552839\pi\)
\(152\) 3.95081 0.320453
\(153\) −8.28952 −0.670168
\(154\) 0 0
\(155\) −5.09069 −0.408894
\(156\) 0.804333 0.0643981
\(157\) −2.15028 −0.171611 −0.0858055 0.996312i \(-0.527346\pi\)
−0.0858055 + 0.996312i \(0.527346\pi\)
\(158\) −4.89853 −0.389706
\(159\) −1.70741 −0.135406
\(160\) 5.51643 0.436112
\(161\) 0 0
\(162\) −8.07234 −0.634223
\(163\) −16.4404 −1.28771 −0.643857 0.765146i \(-0.722667\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(164\) 7.57842 0.591775
\(165\) 0.407467 0.0317213
\(166\) 4.87780 0.378591
\(167\) 9.45862 0.731930 0.365965 0.930629i \(-0.380739\pi\)
0.365965 + 0.930629i \(0.380739\pi\)
\(168\) 0 0
\(169\) 20.2633 1.55871
\(170\) 2.52580 0.193720
\(171\) −4.08736 −0.312568
\(172\) 9.30067 0.709169
\(173\) 21.6879 1.64890 0.824451 0.565934i \(-0.191484\pi\)
0.824451 + 0.565934i \(0.191484\pi\)
\(174\) −0.0250969 −0.00190259
\(175\) 0 0
\(176\) 0.962884 0.0725801
\(177\) −1.49640 −0.112476
\(178\) −11.9686 −0.897087
\(179\) 21.7559 1.62611 0.813055 0.582187i \(-0.197803\pi\)
0.813055 + 0.582187i \(0.197803\pi\)
\(180\) −3.50030 −0.260897
\(181\) 15.8771 1.18014 0.590069 0.807353i \(-0.299101\pi\)
0.590069 + 0.807353i \(0.299101\pi\)
\(182\) 0 0
\(183\) −1.00322 −0.0741602
\(184\) 19.9187 1.46842
\(185\) −1.00000 −0.0735215
\(186\) −0.550971 −0.0403992
\(187\) −9.50908 −0.695373
\(188\) −6.09145 −0.444265
\(189\) 0 0
\(190\) 1.24541 0.0903515
\(191\) −5.39945 −0.390690 −0.195345 0.980735i \(-0.562583\pi\)
−0.195345 + 0.980735i \(0.562583\pi\)
\(192\) 0.663938 0.0479156
\(193\) 17.6972 1.27387 0.636936 0.770917i \(-0.280202\pi\)
0.636936 + 0.770917i \(0.280202\pi\)
\(194\) 8.78940 0.631042
\(195\) 0.686116 0.0491338
\(196\) 0 0
\(197\) −13.8079 −0.983771 −0.491885 0.870660i \(-0.663692\pi\)
−0.491885 + 0.870660i \(0.663692\pi\)
\(198\) −9.30426 −0.661225
\(199\) 6.38067 0.452314 0.226157 0.974091i \(-0.427384\pi\)
0.226157 + 0.974091i \(0.427384\pi\)
\(200\) 2.88610 0.204078
\(201\) −0.510556 −0.0360118
\(202\) 12.2841 0.864308
\(203\) 0 0
\(204\) −0.387182 −0.0271081
\(205\) 6.46459 0.451506
\(206\) −0.995417 −0.0693540
\(207\) −20.6071 −1.43229
\(208\) 1.62136 0.112421
\(209\) −4.68869 −0.324324
\(210\) 0 0
\(211\) 1.27993 0.0881141 0.0440571 0.999029i \(-0.485972\pi\)
0.0440571 + 0.999029i \(0.485972\pi\)
\(212\) 16.8252 1.15556
\(213\) −1.44522 −0.0990249
\(214\) 5.38886 0.368375
\(215\) 7.93371 0.541074
\(216\) −2.05519 −0.139838
\(217\) 0 0
\(218\) 6.80684 0.461018
\(219\) −1.20174 −0.0812063
\(220\) −4.01527 −0.270710
\(221\) −16.0119 −1.07708
\(222\) −0.108231 −0.00726400
\(223\) −1.30538 −0.0874150 −0.0437075 0.999044i \(-0.513917\pi\)
−0.0437075 + 0.999044i \(0.513917\pi\)
\(224\) 0 0
\(225\) −2.98585 −0.199057
\(226\) −16.4014 −1.09100
\(227\) −4.51518 −0.299683 −0.149842 0.988710i \(-0.547876\pi\)
−0.149842 + 0.988710i \(0.547876\pi\)
\(228\) −0.190910 −0.0126433
\(229\) 14.9064 0.985045 0.492522 0.870300i \(-0.336075\pi\)
0.492522 + 0.870300i \(0.336075\pi\)
\(230\) 6.27894 0.414021
\(231\) 0 0
\(232\) 0.669236 0.0439375
\(233\) 24.9005 1.63129 0.815644 0.578554i \(-0.196383\pi\)
0.815644 + 0.578554i \(0.196383\pi\)
\(234\) −15.6670 −1.02419
\(235\) −5.19617 −0.338961
\(236\) 14.7458 0.959871
\(237\) 0.640537 0.0416073
\(238\) 0 0
\(239\) 13.2821 0.859149 0.429574 0.903031i \(-0.358664\pi\)
0.429574 + 0.903031i \(0.358664\pi\)
\(240\) 0.0334435 0.00215877
\(241\) 23.5113 1.51450 0.757249 0.653126i \(-0.226543\pi\)
0.757249 + 0.653126i \(0.226543\pi\)
\(242\) −0.665518 −0.0427811
\(243\) 3.19185 0.204757
\(244\) 9.88596 0.632884
\(245\) 0 0
\(246\) 0.699670 0.0446093
\(247\) −7.89509 −0.502353
\(248\) 14.6922 0.932957
\(249\) −0.637826 −0.0404206
\(250\) 0.909782 0.0575396
\(251\) 4.74538 0.299526 0.149763 0.988722i \(-0.452149\pi\)
0.149763 + 0.988722i \(0.452149\pi\)
\(252\) 0 0
\(253\) −23.6388 −1.48616
\(254\) 17.8220 1.11825
\(255\) −0.330276 −0.0206827
\(256\) −16.5801 −1.03626
\(257\) −10.6488 −0.664253 −0.332127 0.943235i \(-0.607766\pi\)
−0.332127 + 0.943235i \(0.607766\pi\)
\(258\) 0.858675 0.0534588
\(259\) 0 0
\(260\) −6.76114 −0.419308
\(261\) −0.692366 −0.0428564
\(262\) 12.0967 0.747339
\(263\) 4.01470 0.247557 0.123778 0.992310i \(-0.460499\pi\)
0.123778 + 0.992310i \(0.460499\pi\)
\(264\) −1.17599 −0.0723772
\(265\) 14.3523 0.881657
\(266\) 0 0
\(267\) 1.56503 0.0957783
\(268\) 5.03113 0.307325
\(269\) 8.20712 0.500397 0.250198 0.968195i \(-0.419504\pi\)
0.250198 + 0.968195i \(0.419504\pi\)
\(270\) −0.647856 −0.0394272
\(271\) −18.1888 −1.10489 −0.552447 0.833548i \(-0.686306\pi\)
−0.552447 + 0.833548i \(0.686306\pi\)
\(272\) −0.780474 −0.0473232
\(273\) 0 0
\(274\) 6.41470 0.387526
\(275\) −3.42513 −0.206543
\(276\) −0.962504 −0.0579359
\(277\) −6.56435 −0.394414 −0.197207 0.980362i \(-0.563187\pi\)
−0.197207 + 0.980362i \(0.563187\pi\)
\(278\) −7.84178 −0.470319
\(279\) −15.2000 −0.910001
\(280\) 0 0
\(281\) 14.9195 0.890024 0.445012 0.895525i \(-0.353199\pi\)
0.445012 + 0.895525i \(0.353199\pi\)
\(282\) −0.562388 −0.0334897
\(283\) −10.6099 −0.630690 −0.315345 0.948977i \(-0.602120\pi\)
−0.315345 + 0.948977i \(0.602120\pi\)
\(284\) 14.2415 0.845080
\(285\) −0.162851 −0.00964646
\(286\) −17.9720 −1.06271
\(287\) 0 0
\(288\) 16.4712 0.970577
\(289\) −9.29233 −0.546608
\(290\) 0.210963 0.0123881
\(291\) −1.14931 −0.0673738
\(292\) 11.8422 0.693015
\(293\) −7.77341 −0.454127 −0.227064 0.973880i \(-0.572913\pi\)
−0.227064 + 0.973880i \(0.572913\pi\)
\(294\) 0 0
\(295\) 12.5786 0.732352
\(296\) 2.88610 0.167751
\(297\) 2.43904 0.141527
\(298\) −13.3255 −0.771928
\(299\) −39.8044 −2.30195
\(300\) −0.139461 −0.00805179
\(301\) 0 0
\(302\) 3.69455 0.212597
\(303\) −1.60628 −0.0922786
\(304\) −0.384833 −0.0220717
\(305\) 8.43298 0.482871
\(306\) 7.54165 0.431127
\(307\) 7.02522 0.400950 0.200475 0.979699i \(-0.435751\pi\)
0.200475 + 0.979699i \(0.435751\pi\)
\(308\) 0 0
\(309\) 0.130162 0.00740464
\(310\) 4.63141 0.263047
\(311\) 32.0804 1.81911 0.909555 0.415583i \(-0.136422\pi\)
0.909555 + 0.415583i \(0.136422\pi\)
\(312\) −1.98020 −0.112107
\(313\) 29.4689 1.66568 0.832840 0.553513i \(-0.186713\pi\)
0.832840 + 0.553513i \(0.186713\pi\)
\(314\) 1.95628 0.110400
\(315\) 0 0
\(316\) −6.31199 −0.355077
\(317\) −12.3292 −0.692475 −0.346237 0.938147i \(-0.612541\pi\)
−0.346237 + 0.938147i \(0.612541\pi\)
\(318\) 1.55337 0.0871087
\(319\) −0.794228 −0.0444682
\(320\) −5.58100 −0.311987
\(321\) −0.704653 −0.0393299
\(322\) 0 0
\(323\) 3.80046 0.211463
\(324\) −10.4016 −0.577866
\(325\) −5.76743 −0.319919
\(326\) 14.9572 0.828402
\(327\) −0.890070 −0.0492210
\(328\) −18.6574 −1.03018
\(329\) 0 0
\(330\) −0.370706 −0.0204067
\(331\) 0.635861 0.0349501 0.0174750 0.999847i \(-0.494437\pi\)
0.0174750 + 0.999847i \(0.494437\pi\)
\(332\) 6.28528 0.344950
\(333\) −2.98585 −0.163623
\(334\) −8.60528 −0.470860
\(335\) 4.29168 0.234480
\(336\) 0 0
\(337\) −16.8590 −0.918369 −0.459184 0.888341i \(-0.651858\pi\)
−0.459184 + 0.888341i \(0.651858\pi\)
\(338\) −18.4351 −1.00274
\(339\) 2.14466 0.116482
\(340\) 3.25461 0.176506
\(341\) −17.4363 −0.944226
\(342\) 3.71860 0.201079
\(343\) 0 0
\(344\) −22.8975 −1.23455
\(345\) −0.821040 −0.0442033
\(346\) −19.7313 −1.06076
\(347\) 13.9412 0.748402 0.374201 0.927348i \(-0.377917\pi\)
0.374201 + 0.927348i \(0.377917\pi\)
\(348\) −0.0323386 −0.00173353
\(349\) −18.9357 −1.01361 −0.506803 0.862062i \(-0.669173\pi\)
−0.506803 + 0.862062i \(0.669173\pi\)
\(350\) 0 0
\(351\) 4.10699 0.219215
\(352\) 18.8945 1.00708
\(353\) 15.4050 0.819928 0.409964 0.912102i \(-0.365541\pi\)
0.409964 + 0.912102i \(0.365541\pi\)
\(354\) 1.36139 0.0723572
\(355\) 12.1484 0.644770
\(356\) −15.4222 −0.817373
\(357\) 0 0
\(358\) −19.7931 −1.04610
\(359\) −23.0521 −1.21664 −0.608322 0.793690i \(-0.708157\pi\)
−0.608322 + 0.793690i \(0.708157\pi\)
\(360\) 8.61745 0.454179
\(361\) −17.1261 −0.901373
\(362\) −14.4447 −0.759198
\(363\) 0.0870238 0.00456756
\(364\) 0 0
\(365\) 10.1017 0.528749
\(366\) 0.912711 0.0477082
\(367\) −9.61073 −0.501676 −0.250838 0.968029i \(-0.580706\pi\)
−0.250838 + 0.968029i \(0.580706\pi\)
\(368\) −1.94020 −0.101140
\(369\) 19.3023 1.00484
\(370\) 0.909782 0.0472973
\(371\) 0 0
\(372\) −0.709953 −0.0368093
\(373\) 35.2555 1.82546 0.912731 0.408561i \(-0.133969\pi\)
0.912731 + 0.408561i \(0.133969\pi\)
\(374\) 8.65119 0.447342
\(375\) −0.118964 −0.00614327
\(376\) 14.9966 0.773393
\(377\) −1.33737 −0.0688779
\(378\) 0 0
\(379\) −3.05407 −0.156877 −0.0784384 0.996919i \(-0.524993\pi\)
−0.0784384 + 0.996919i \(0.524993\pi\)
\(380\) 1.60477 0.0823230
\(381\) −2.33043 −0.119391
\(382\) 4.91232 0.251336
\(383\) −1.57600 −0.0805298 −0.0402649 0.999189i \(-0.512820\pi\)
−0.0402649 + 0.999189i \(0.512820\pi\)
\(384\) 0.708476 0.0361543
\(385\) 0 0
\(386\) −16.1006 −0.819498
\(387\) 23.6888 1.20417
\(388\) 11.3256 0.574968
\(389\) −36.1055 −1.83062 −0.915310 0.402749i \(-0.868055\pi\)
−0.915310 + 0.402749i \(0.868055\pi\)
\(390\) −0.624216 −0.0316084
\(391\) 19.1607 0.968997
\(392\) 0 0
\(393\) −1.58178 −0.0797904
\(394\) 12.5622 0.632872
\(395\) −5.38429 −0.270913
\(396\) −11.9890 −0.602469
\(397\) −27.3834 −1.37433 −0.687167 0.726500i \(-0.741146\pi\)
−0.687167 + 0.726500i \(0.741146\pi\)
\(398\) −5.80502 −0.290979
\(399\) 0 0
\(400\) −0.281123 −0.0140562
\(401\) −3.26403 −0.162998 −0.0814990 0.996673i \(-0.525971\pi\)
−0.0814990 + 0.996673i \(0.525971\pi\)
\(402\) 0.464494 0.0231669
\(403\) −29.3602 −1.46253
\(404\) 15.8287 0.787507
\(405\) −8.87283 −0.440894
\(406\) 0 0
\(407\) −3.42513 −0.169777
\(408\) 0.953209 0.0471909
\(409\) 4.83761 0.239204 0.119602 0.992822i \(-0.461838\pi\)
0.119602 + 0.992822i \(0.461838\pi\)
\(410\) −5.88136 −0.290460
\(411\) −0.838793 −0.0413746
\(412\) −1.28264 −0.0631913
\(413\) 0 0
\(414\) 18.7480 0.921412
\(415\) 5.36151 0.263186
\(416\) 31.8157 1.55989
\(417\) 1.02540 0.0502140
\(418\) 4.26569 0.208642
\(419\) −19.0158 −0.928982 −0.464491 0.885578i \(-0.653763\pi\)
−0.464491 + 0.885578i \(0.653763\pi\)
\(420\) 0 0
\(421\) 5.11929 0.249499 0.124749 0.992188i \(-0.460187\pi\)
0.124749 + 0.992188i \(0.460187\pi\)
\(422\) −1.16446 −0.0566849
\(423\) −15.5150 −0.754363
\(424\) −41.4222 −2.01164
\(425\) 2.77627 0.134669
\(426\) 1.31484 0.0637040
\(427\) 0 0
\(428\) 6.94381 0.335642
\(429\) 2.35004 0.113461
\(430\) −7.21794 −0.348080
\(431\) −35.6342 −1.71644 −0.858219 0.513284i \(-0.828429\pi\)
−0.858219 + 0.513284i \(0.828429\pi\)
\(432\) 0.200188 0.00963155
\(433\) −6.22688 −0.299245 −0.149622 0.988743i \(-0.547806\pi\)
−0.149622 + 0.988743i \(0.547806\pi\)
\(434\) 0 0
\(435\) −0.0275857 −0.00132263
\(436\) 8.77095 0.420052
\(437\) 9.44765 0.451943
\(438\) 1.09332 0.0522410
\(439\) 3.22731 0.154031 0.0770156 0.997030i \(-0.475461\pi\)
0.0770156 + 0.997030i \(0.475461\pi\)
\(440\) 9.88526 0.471261
\(441\) 0 0
\(442\) 14.5674 0.692899
\(443\) −15.9417 −0.757415 −0.378707 0.925517i \(-0.623631\pi\)
−0.378707 + 0.925517i \(0.623631\pi\)
\(444\) −0.139461 −0.00661853
\(445\) −13.1555 −0.623631
\(446\) 1.18761 0.0562352
\(447\) 1.74246 0.0824156
\(448\) 0 0
\(449\) 8.88574 0.419344 0.209672 0.977772i \(-0.432760\pi\)
0.209672 + 0.977772i \(0.432760\pi\)
\(450\) 2.71647 0.128056
\(451\) 22.1420 1.04263
\(452\) −21.1340 −0.994058
\(453\) −0.483103 −0.0226981
\(454\) 4.10783 0.192790
\(455\) 0 0
\(456\) 0.470004 0.0220099
\(457\) 2.59196 0.121247 0.0606235 0.998161i \(-0.480691\pi\)
0.0606235 + 0.998161i \(0.480691\pi\)
\(458\) −13.5616 −0.633692
\(459\) −1.97698 −0.0922776
\(460\) 8.09072 0.377232
\(461\) −0.947535 −0.0441311 −0.0220655 0.999757i \(-0.507024\pi\)
−0.0220655 + 0.999757i \(0.507024\pi\)
\(462\) 0 0
\(463\) −27.6639 −1.28565 −0.642825 0.766013i \(-0.722238\pi\)
−0.642825 + 0.766013i \(0.722238\pi\)
\(464\) −0.0651876 −0.00302626
\(465\) −0.605608 −0.0280844
\(466\) −22.6541 −1.04943
\(467\) 41.0432 1.89925 0.949627 0.313381i \(-0.101462\pi\)
0.949627 + 0.313381i \(0.101462\pi\)
\(468\) −20.1877 −0.933179
\(469\) 0 0
\(470\) 4.72738 0.218058
\(471\) −0.255806 −0.0117869
\(472\) −36.3030 −1.67098
\(473\) 27.1740 1.24946
\(474\) −0.582748 −0.0267665
\(475\) 1.36891 0.0628099
\(476\) 0 0
\(477\) 42.8539 1.96214
\(478\) −12.0838 −0.552701
\(479\) 26.7087 1.22035 0.610176 0.792266i \(-0.291099\pi\)
0.610176 + 0.792266i \(0.291099\pi\)
\(480\) 0.656257 0.0299539
\(481\) −5.76743 −0.262972
\(482\) −21.3902 −0.974296
\(483\) 0 0
\(484\) −0.857552 −0.0389796
\(485\) 9.66100 0.438683
\(486\) −2.90388 −0.131723
\(487\) 26.3740 1.19512 0.597561 0.801824i \(-0.296137\pi\)
0.597561 + 0.801824i \(0.296137\pi\)
\(488\) −24.3384 −1.10175
\(489\) −1.95582 −0.0884451
\(490\) 0 0
\(491\) −5.68407 −0.256518 −0.128259 0.991741i \(-0.540939\pi\)
−0.128259 + 0.991741i \(0.540939\pi\)
\(492\) 0.901559 0.0406454
\(493\) 0.643769 0.0289939
\(494\) 7.18281 0.323170
\(495\) −10.2269 −0.459666
\(496\) −1.43111 −0.0642588
\(497\) 0 0
\(498\) 0.580282 0.0260031
\(499\) −16.8859 −0.755917 −0.377959 0.925822i \(-0.623374\pi\)
−0.377959 + 0.925822i \(0.623374\pi\)
\(500\) 1.17230 0.0524267
\(501\) 1.12523 0.0502718
\(502\) −4.31726 −0.192689
\(503\) 34.0097 1.51642 0.758210 0.652011i \(-0.226074\pi\)
0.758210 + 0.652011i \(0.226074\pi\)
\(504\) 0 0
\(505\) 13.5023 0.600844
\(506\) 21.5062 0.956066
\(507\) 2.41060 0.107058
\(508\) 22.9646 1.01889
\(509\) 31.1895 1.38245 0.691225 0.722639i \(-0.257071\pi\)
0.691225 + 0.722639i \(0.257071\pi\)
\(510\) 0.300479 0.0133054
\(511\) 0 0
\(512\) 3.17350 0.140250
\(513\) −0.974801 −0.0430385
\(514\) 9.68807 0.427323
\(515\) −1.09413 −0.0482130
\(516\) 1.10644 0.0487085
\(517\) −17.7975 −0.782735
\(518\) 0 0
\(519\) 2.58008 0.113253
\(520\) 16.6454 0.729948
\(521\) −23.7071 −1.03863 −0.519313 0.854584i \(-0.673812\pi\)
−0.519313 + 0.854584i \(0.673812\pi\)
\(522\) 0.629902 0.0275701
\(523\) 28.7392 1.25668 0.628339 0.777939i \(-0.283735\pi\)
0.628339 + 0.777939i \(0.283735\pi\)
\(524\) 15.5872 0.680932
\(525\) 0 0
\(526\) −3.65250 −0.159256
\(527\) 14.1331 0.615648
\(528\) 0.114548 0.00498508
\(529\) 24.6319 1.07095
\(530\) −13.0575 −0.567181
\(531\) 37.5577 1.62986
\(532\) 0 0
\(533\) 37.2841 1.61495
\(534\) −1.42384 −0.0616154
\(535\) 5.92325 0.256084
\(536\) −12.3862 −0.535003
\(537\) 2.58816 0.111688
\(538\) −7.46668 −0.321912
\(539\) 0 0
\(540\) −0.834793 −0.0359238
\(541\) 39.4701 1.69695 0.848476 0.529234i \(-0.177520\pi\)
0.848476 + 0.529234i \(0.177520\pi\)
\(542\) 16.5479 0.710792
\(543\) 1.88881 0.0810564
\(544\) −15.3151 −0.656630
\(545\) 7.48184 0.320487
\(546\) 0 0
\(547\) 44.0951 1.88537 0.942686 0.333682i \(-0.108291\pi\)
0.942686 + 0.333682i \(0.108291\pi\)
\(548\) 8.26565 0.353091
\(549\) 25.1796 1.07464
\(550\) 3.11612 0.132872
\(551\) 0.317426 0.0135228
\(552\) 2.36960 0.100857
\(553\) 0 0
\(554\) 5.97213 0.253731
\(555\) −0.118964 −0.00504974
\(556\) −10.1045 −0.428527
\(557\) −30.0805 −1.27455 −0.637275 0.770637i \(-0.719938\pi\)
−0.637275 + 0.770637i \(0.719938\pi\)
\(558\) 13.8287 0.585415
\(559\) 45.7571 1.93532
\(560\) 0 0
\(561\) −1.13124 −0.0477609
\(562\) −13.5735 −0.572564
\(563\) −18.7236 −0.789106 −0.394553 0.918873i \(-0.629100\pi\)
−0.394553 + 0.918873i \(0.629100\pi\)
\(564\) −0.724664 −0.0305138
\(565\) −18.0278 −0.758436
\(566\) 9.65265 0.405731
\(567\) 0 0
\(568\) −35.0615 −1.47115
\(569\) 27.5561 1.15521 0.577605 0.816316i \(-0.303987\pi\)
0.577605 + 0.816316i \(0.303987\pi\)
\(570\) 0.148159 0.00620569
\(571\) −14.5930 −0.610698 −0.305349 0.952240i \(-0.598773\pi\)
−0.305349 + 0.952240i \(0.598773\pi\)
\(572\) −23.1578 −0.968276
\(573\) −0.642340 −0.0268341
\(574\) 0 0
\(575\) 6.90159 0.287816
\(576\) −16.6640 −0.694334
\(577\) 23.9266 0.996077 0.498039 0.867155i \(-0.334054\pi\)
0.498039 + 0.867155i \(0.334054\pi\)
\(578\) 8.45399 0.351640
\(579\) 2.10533 0.0874945
\(580\) 0.271835 0.0112874
\(581\) 0 0
\(582\) 1.04562 0.0433424
\(583\) 49.1586 2.03594
\(584\) −29.1546 −1.20643
\(585\) −17.2207 −0.711987
\(586\) 7.07211 0.292146
\(587\) −35.2937 −1.45673 −0.728364 0.685190i \(-0.759719\pi\)
−0.728364 + 0.685190i \(0.759719\pi\)
\(588\) 0 0
\(589\) 6.96869 0.287140
\(590\) −11.4437 −0.471131
\(591\) −1.64264 −0.0675692
\(592\) −0.281123 −0.0115541
\(593\) 26.8803 1.10384 0.551921 0.833897i \(-0.313895\pi\)
0.551921 + 0.833897i \(0.313895\pi\)
\(594\) −2.21899 −0.0910462
\(595\) 0 0
\(596\) −17.1706 −0.703335
\(597\) 0.759070 0.0310667
\(598\) 36.2133 1.48087
\(599\) 35.4368 1.44791 0.723953 0.689849i \(-0.242323\pi\)
0.723953 + 0.689849i \(0.242323\pi\)
\(600\) 0.343342 0.0140169
\(601\) 38.2283 1.55936 0.779682 0.626175i \(-0.215380\pi\)
0.779682 + 0.626175i \(0.215380\pi\)
\(602\) 0 0
\(603\) 12.8143 0.521839
\(604\) 4.76060 0.193706
\(605\) −0.731514 −0.0297403
\(606\) 1.46137 0.0593640
\(607\) 26.6899 1.08331 0.541656 0.840601i \(-0.317798\pi\)
0.541656 + 0.840601i \(0.317798\pi\)
\(608\) −7.55150 −0.306254
\(609\) 0 0
\(610\) −7.67217 −0.310637
\(611\) −29.9685 −1.21240
\(612\) 9.71778 0.392818
\(613\) −38.3787 −1.55010 −0.775050 0.631900i \(-0.782275\pi\)
−0.775050 + 0.631900i \(0.782275\pi\)
\(614\) −6.39142 −0.257937
\(615\) 0.769053 0.0310112
\(616\) 0 0
\(617\) −6.74256 −0.271445 −0.135723 0.990747i \(-0.543336\pi\)
−0.135723 + 0.990747i \(0.543336\pi\)
\(618\) −0.118419 −0.00476350
\(619\) 31.6835 1.27347 0.636733 0.771084i \(-0.280285\pi\)
0.636733 + 0.771084i \(0.280285\pi\)
\(620\) 5.96780 0.239673
\(621\) −4.91462 −0.197217
\(622\) −29.1861 −1.17026
\(623\) 0 0
\(624\) 0.192883 0.00772151
\(625\) 1.00000 0.0400000
\(626\) −26.8103 −1.07155
\(627\) −0.557786 −0.0222758
\(628\) 2.52077 0.100590
\(629\) 2.77627 0.110697
\(630\) 0 0
\(631\) −32.2900 −1.28544 −0.642722 0.766099i \(-0.722195\pi\)
−0.642722 + 0.766099i \(0.722195\pi\)
\(632\) 15.5396 0.618132
\(633\) 0.152266 0.00605202
\(634\) 11.2168 0.445478
\(635\) 19.5894 0.777380
\(636\) 2.00159 0.0793683
\(637\) 0 0
\(638\) 0.722574 0.0286070
\(639\) 36.2733 1.43495
\(640\) −5.95538 −0.235407
\(641\) −4.80164 −0.189653 −0.0948267 0.995494i \(-0.530230\pi\)
−0.0948267 + 0.995494i \(0.530230\pi\)
\(642\) 0.641080 0.0253014
\(643\) 40.8091 1.60935 0.804677 0.593713i \(-0.202338\pi\)
0.804677 + 0.593713i \(0.202338\pi\)
\(644\) 0 0
\(645\) 0.943825 0.0371631
\(646\) −3.45759 −0.136037
\(647\) −44.2759 −1.74067 −0.870333 0.492464i \(-0.836096\pi\)
−0.870333 + 0.492464i \(0.836096\pi\)
\(648\) 25.6079 1.00597
\(649\) 43.0832 1.69116
\(650\) 5.24710 0.205808
\(651\) 0 0
\(652\) 19.2731 0.754792
\(653\) −48.5592 −1.90027 −0.950134 0.311843i \(-0.899054\pi\)
−0.950134 + 0.311843i \(0.899054\pi\)
\(654\) 0.809769 0.0316645
\(655\) 13.2963 0.519530
\(656\) 1.81735 0.0709554
\(657\) 30.1623 1.17674
\(658\) 0 0
\(659\) −24.9277 −0.971044 −0.485522 0.874224i \(-0.661370\pi\)
−0.485522 + 0.874224i \(0.661370\pi\)
\(660\) −0.477673 −0.0185934
\(661\) 31.0666 1.20835 0.604175 0.796851i \(-0.293503\pi\)
0.604175 + 0.796851i \(0.293503\pi\)
\(662\) −0.578495 −0.0224838
\(663\) −1.90484 −0.0739780
\(664\) −15.4738 −0.600501
\(665\) 0 0
\(666\) 2.71647 0.105261
\(667\) 1.60036 0.0619661
\(668\) −11.0883 −0.429020
\(669\) −0.155294 −0.00600400
\(670\) −3.90450 −0.150844
\(671\) 28.8840 1.11506
\(672\) 0 0
\(673\) 14.7397 0.568175 0.284088 0.958798i \(-0.408309\pi\)
0.284088 + 0.958798i \(0.408309\pi\)
\(674\) 15.3380 0.590798
\(675\) −0.712100 −0.0274087
\(676\) −23.7546 −0.913637
\(677\) 18.5304 0.712180 0.356090 0.934452i \(-0.384110\pi\)
0.356090 + 0.934452i \(0.384110\pi\)
\(678\) −1.95117 −0.0749343
\(679\) 0 0
\(680\) −8.01258 −0.307269
\(681\) −0.537144 −0.0205834
\(682\) 15.8632 0.607433
\(683\) −11.1961 −0.428407 −0.214204 0.976789i \(-0.568716\pi\)
−0.214204 + 0.976789i \(0.568716\pi\)
\(684\) 4.79160 0.183211
\(685\) 7.05082 0.269398
\(686\) 0 0
\(687\) 1.77333 0.0676567
\(688\) 2.23035 0.0850313
\(689\) 82.7761 3.15352
\(690\) 0.746967 0.0284366
\(691\) 21.3612 0.812617 0.406309 0.913736i \(-0.366816\pi\)
0.406309 + 0.913736i \(0.366816\pi\)
\(692\) −25.4247 −0.966502
\(693\) 0 0
\(694\) −12.6834 −0.481456
\(695\) −8.61941 −0.326953
\(696\) 0.0796150 0.00301780
\(697\) −17.9474 −0.679807
\(698\) 17.2274 0.652066
\(699\) 2.96227 0.112043
\(700\) 0 0
\(701\) −46.1611 −1.74348 −0.871739 0.489970i \(-0.837008\pi\)
−0.871739 + 0.489970i \(0.837008\pi\)
\(702\) −3.73646 −0.141024
\(703\) 1.36891 0.0516294
\(704\) −19.1156 −0.720448
\(705\) −0.618157 −0.0232811
\(706\) −14.0152 −0.527470
\(707\) 0 0
\(708\) 1.75422 0.0659277
\(709\) 8.31765 0.312376 0.156188 0.987727i \(-0.450079\pi\)
0.156188 + 0.987727i \(0.450079\pi\)
\(710\) −11.0524 −0.414789
\(711\) −16.0767 −0.602922
\(712\) 37.9681 1.42291
\(713\) 35.1338 1.31577
\(714\) 0 0
\(715\) −19.7542 −0.738765
\(716\) −25.5043 −0.953142
\(717\) 1.58009 0.0590097
\(718\) 20.9724 0.782682
\(719\) −41.1217 −1.53358 −0.766790 0.641898i \(-0.778147\pi\)
−0.766790 + 0.641898i \(0.778147\pi\)
\(720\) −0.839391 −0.0312823
\(721\) 0 0
\(722\) 15.5810 0.579865
\(723\) 2.79700 0.104022
\(724\) −18.6127 −0.691736
\(725\) 0.231883 0.00861190
\(726\) −0.0791726 −0.00293837
\(727\) 26.2779 0.974592 0.487296 0.873237i \(-0.337983\pi\)
0.487296 + 0.873237i \(0.337983\pi\)
\(728\) 0 0
\(729\) −26.2388 −0.971806
\(730\) −9.19038 −0.340151
\(731\) −22.0261 −0.814665
\(732\) 1.17607 0.0434689
\(733\) 18.0969 0.668424 0.334212 0.942498i \(-0.391530\pi\)
0.334212 + 0.942498i \(0.391530\pi\)
\(734\) 8.74367 0.322735
\(735\) 0 0
\(736\) −38.0722 −1.40336
\(737\) 14.6996 0.541466
\(738\) −17.5608 −0.646424
\(739\) −16.3375 −0.600986 −0.300493 0.953784i \(-0.597151\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(740\) 1.17230 0.0430945
\(741\) −0.939232 −0.0345035
\(742\) 0 0
\(743\) 4.16469 0.152788 0.0763938 0.997078i \(-0.475659\pi\)
0.0763938 + 0.997078i \(0.475659\pi\)
\(744\) 1.74784 0.0640791
\(745\) −14.6470 −0.536623
\(746\) −32.0748 −1.17434
\(747\) 16.0086 0.585725
\(748\) 11.1475 0.407592
\(749\) 0 0
\(750\) 0.108231 0.00395205
\(751\) −5.35719 −0.195487 −0.0977433 0.995212i \(-0.531162\pi\)
−0.0977433 + 0.995212i \(0.531162\pi\)
\(752\) −1.46076 −0.0532686
\(753\) 0.564530 0.0205726
\(754\) 1.21671 0.0443100
\(755\) 4.06092 0.147792
\(756\) 0 0
\(757\) 14.4682 0.525857 0.262928 0.964815i \(-0.415312\pi\)
0.262928 + 0.964815i \(0.415312\pi\)
\(758\) 2.77853 0.100921
\(759\) −2.81217 −0.102075
\(760\) −3.95081 −0.143311
\(761\) −0.0352578 −0.00127809 −0.000639047 1.00000i \(-0.500203\pi\)
−0.000639047 1.00000i \(0.500203\pi\)
\(762\) 2.12018 0.0768060
\(763\) 0 0
\(764\) 6.32976 0.229003
\(765\) 8.28952 0.299708
\(766\) 1.43382 0.0518058
\(767\) 72.5460 2.61948
\(768\) −1.97243 −0.0711741
\(769\) −17.0129 −0.613502 −0.306751 0.951790i \(-0.599242\pi\)
−0.306751 + 0.951790i \(0.599242\pi\)
\(770\) 0 0
\(771\) −1.26682 −0.0456235
\(772\) −20.7464 −0.746679
\(773\) 8.57388 0.308381 0.154191 0.988041i \(-0.450723\pi\)
0.154191 + 0.988041i \(0.450723\pi\)
\(774\) −21.5517 −0.774659
\(775\) 5.09069 0.182863
\(776\) −27.8826 −1.00093
\(777\) 0 0
\(778\) 32.8481 1.17766
\(779\) −8.84944 −0.317064
\(780\) −0.804333 −0.0287997
\(781\) 41.6098 1.48892
\(782\) −17.4320 −0.623368
\(783\) −0.165124 −0.00590104
\(784\) 0 0
\(785\) 2.15028 0.0767468
\(786\) 1.43908 0.0513302
\(787\) 38.3303 1.36633 0.683164 0.730265i \(-0.260604\pi\)
0.683164 + 0.730265i \(0.260604\pi\)
\(788\) 16.1869 0.576636
\(789\) 0.477604 0.0170032
\(790\) 4.89853 0.174282
\(791\) 0 0
\(792\) 29.5159 1.04880
\(793\) 48.6366 1.72714
\(794\) 24.9129 0.884126
\(795\) 1.70741 0.0605556
\(796\) −7.48005 −0.265123
\(797\) 5.49628 0.194688 0.0973441 0.995251i \(-0.468965\pi\)
0.0973441 + 0.995251i \(0.468965\pi\)
\(798\) 0 0
\(799\) 14.4260 0.510354
\(800\) −5.51643 −0.195035
\(801\) −39.2803 −1.38790
\(802\) 2.96956 0.104859
\(803\) 34.5998 1.22100
\(804\) 0.598523 0.0211083
\(805\) 0 0
\(806\) 26.7113 0.940867
\(807\) 0.976351 0.0343692
\(808\) −38.9689 −1.37092
\(809\) 10.7887 0.379310 0.189655 0.981851i \(-0.439263\pi\)
0.189655 + 0.981851i \(0.439263\pi\)
\(810\) 8.07234 0.283633
\(811\) −10.2753 −0.360813 −0.180407 0.983592i \(-0.557741\pi\)
−0.180407 + 0.983592i \(0.557741\pi\)
\(812\) 0 0
\(813\) −2.16382 −0.0758883
\(814\) 3.11612 0.109220
\(815\) 16.4404 0.575883
\(816\) −0.0928483 −0.00325034
\(817\) −10.8605 −0.379962
\(818\) −4.40116 −0.153883
\(819\) 0 0
\(820\) −7.57842 −0.264650
\(821\) −16.7294 −0.583859 −0.291929 0.956440i \(-0.594297\pi\)
−0.291929 + 0.956440i \(0.594297\pi\)
\(822\) 0.763118 0.0266168
\(823\) −1.86444 −0.0649903 −0.0324952 0.999472i \(-0.510345\pi\)
−0.0324952 + 0.999472i \(0.510345\pi\)
\(824\) 3.15776 0.110006
\(825\) −0.407467 −0.0141862
\(826\) 0 0
\(827\) −9.92220 −0.345029 −0.172514 0.985007i \(-0.555189\pi\)
−0.172514 + 0.985007i \(0.555189\pi\)
\(828\) 24.1576 0.839536
\(829\) −15.6383 −0.543139 −0.271569 0.962419i \(-0.587543\pi\)
−0.271569 + 0.962419i \(0.587543\pi\)
\(830\) −4.87780 −0.169311
\(831\) −0.780921 −0.0270899
\(832\) −32.1880 −1.11592
\(833\) 0 0
\(834\) −0.932890 −0.0323033
\(835\) −9.45862 −0.327329
\(836\) 5.49655 0.190102
\(837\) −3.62508 −0.125301
\(838\) 17.3002 0.597626
\(839\) 23.0045 0.794204 0.397102 0.917774i \(-0.370016\pi\)
0.397102 + 0.917774i \(0.370016\pi\)
\(840\) 0 0
\(841\) −28.9462 −0.998146
\(842\) −4.65743 −0.160506
\(843\) 1.77489 0.0611303
\(844\) −1.50046 −0.0516480
\(845\) −20.2633 −0.697077
\(846\) 14.1152 0.485292
\(847\) 0 0
\(848\) 4.03477 0.138555
\(849\) −1.26219 −0.0433183
\(850\) −2.52580 −0.0866342
\(851\) 6.90159 0.236583
\(852\) 1.69423 0.0580434
\(853\) 31.4272 1.07605 0.538024 0.842930i \(-0.319171\pi\)
0.538024 + 0.842930i \(0.319171\pi\)
\(854\) 0 0
\(855\) 4.08736 0.139785
\(856\) −17.0951 −0.584298
\(857\) 40.0780 1.36904 0.684519 0.728995i \(-0.260012\pi\)
0.684519 + 0.728995i \(0.260012\pi\)
\(858\) −2.13802 −0.0729908
\(859\) −9.91020 −0.338132 −0.169066 0.985605i \(-0.554075\pi\)
−0.169066 + 0.985605i \(0.554075\pi\)
\(860\) −9.30067 −0.317150
\(861\) 0 0
\(862\) 32.4193 1.10421
\(863\) −8.09458 −0.275543 −0.137771 0.990464i \(-0.543994\pi\)
−0.137771 + 0.990464i \(0.543994\pi\)
\(864\) 3.92825 0.133642
\(865\) −21.6879 −0.737411
\(866\) 5.66510 0.192508
\(867\) −1.10545 −0.0375431
\(868\) 0 0
\(869\) −18.4419 −0.625599
\(870\) 0.0250969 0.000850866 0
\(871\) 24.7520 0.838689
\(872\) −21.5933 −0.731242
\(873\) 28.8463 0.976298
\(874\) −8.59530 −0.290740
\(875\) 0 0
\(876\) 1.40880 0.0475990
\(877\) 12.4206 0.419415 0.209707 0.977764i \(-0.432749\pi\)
0.209707 + 0.977764i \(0.432749\pi\)
\(878\) −2.93615 −0.0990902
\(879\) −0.924756 −0.0311912
\(880\) −0.962884 −0.0324588
\(881\) −44.0888 −1.48539 −0.742695 0.669630i \(-0.766453\pi\)
−0.742695 + 0.669630i \(0.766453\pi\)
\(882\) 0 0
\(883\) −15.2448 −0.513030 −0.256515 0.966540i \(-0.582574\pi\)
−0.256515 + 0.966540i \(0.582574\pi\)
\(884\) 18.7708 0.631329
\(885\) 1.49640 0.0503008
\(886\) 14.5035 0.487254
\(887\) 14.0153 0.470588 0.235294 0.971924i \(-0.424395\pi\)
0.235294 + 0.971924i \(0.424395\pi\)
\(888\) 0.343342 0.0115218
\(889\) 0 0
\(890\) 11.9686 0.401190
\(891\) −30.3906 −1.01812
\(892\) 1.53030 0.0512382
\(893\) 7.11309 0.238030
\(894\) −1.58526 −0.0530190
\(895\) −21.7559 −0.727218
\(896\) 0 0
\(897\) −4.73529 −0.158107
\(898\) −8.08408 −0.269769
\(899\) 1.18044 0.0393699
\(900\) 3.50030 0.116677
\(901\) −39.8459 −1.32746
\(902\) −20.1444 −0.670736
\(903\) 0 0
\(904\) 52.0301 1.73049
\(905\) −15.8771 −0.527774
\(906\) 0.439518 0.0146020
\(907\) 0.378018 0.0125519 0.00627594 0.999980i \(-0.498002\pi\)
0.00627594 + 0.999980i \(0.498002\pi\)
\(908\) 5.29314 0.175659
\(909\) 40.3157 1.33719
\(910\) 0 0
\(911\) −6.47689 −0.214589 −0.107295 0.994227i \(-0.534219\pi\)
−0.107295 + 0.994227i \(0.534219\pi\)
\(912\) −0.0457812 −0.00151597
\(913\) 18.3639 0.607755
\(914\) −2.35812 −0.0779997
\(915\) 1.00322 0.0331654
\(916\) −17.4748 −0.577383
\(917\) 0 0
\(918\) 1.79862 0.0593633
\(919\) −25.6946 −0.847588 −0.423794 0.905759i \(-0.639302\pi\)
−0.423794 + 0.905759i \(0.639302\pi\)
\(920\) −19.9187 −0.656699
\(921\) 0.835748 0.0275388
\(922\) 0.862050 0.0283901
\(923\) 70.0650 2.30622
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 25.1681 0.827075
\(927\) −3.26690 −0.107299
\(928\) −1.27917 −0.0419907
\(929\) −41.0136 −1.34561 −0.672806 0.739819i \(-0.734911\pi\)
−0.672806 + 0.739819i \(0.734911\pi\)
\(930\) 0.550971 0.0180671
\(931\) 0 0
\(932\) −29.1908 −0.956178
\(933\) 3.81641 0.124944
\(934\) −37.3404 −1.22181
\(935\) 9.50908 0.310980
\(936\) 49.7005 1.62451
\(937\) −26.9690 −0.881038 −0.440519 0.897743i \(-0.645205\pi\)
−0.440519 + 0.897743i \(0.645205\pi\)
\(938\) 0 0
\(939\) 3.50574 0.114405
\(940\) 6.09145 0.198681
\(941\) −46.2711 −1.50839 −0.754197 0.656648i \(-0.771974\pi\)
−0.754197 + 0.656648i \(0.771974\pi\)
\(942\) 0.232727 0.00758267
\(943\) −44.6159 −1.45289
\(944\) 3.53613 0.115091
\(945\) 0 0
\(946\) −24.7224 −0.803794
\(947\) −49.6807 −1.61440 −0.807202 0.590275i \(-0.799019\pi\)
−0.807202 + 0.590275i \(0.799019\pi\)
\(948\) −0.750900 −0.0243881
\(949\) 58.2611 1.89123
\(950\) −1.24541 −0.0404064
\(951\) −1.46673 −0.0475619
\(952\) 0 0
\(953\) −9.65313 −0.312696 −0.156348 0.987702i \(-0.549972\pi\)
−0.156348 + 0.987702i \(0.549972\pi\)
\(954\) −38.9877 −1.26227
\(955\) 5.39945 0.174722
\(956\) −15.5706 −0.503589
\(957\) −0.0944845 −0.00305425
\(958\) −24.2991 −0.785068
\(959\) 0 0
\(960\) −0.663938 −0.0214285
\(961\) −5.08492 −0.164030
\(962\) 5.24710 0.169173
\(963\) 17.6859 0.569921
\(964\) −27.5623 −0.887722
\(965\) −17.6972 −0.569693
\(966\) 0 0
\(967\) 54.6499 1.75742 0.878711 0.477354i \(-0.158404\pi\)
0.878711 + 0.477354i \(0.158404\pi\)
\(968\) 2.11122 0.0678572
\(969\) 0.452118 0.0145241
\(970\) −8.78940 −0.282210
\(971\) −4.72360 −0.151588 −0.0757938 0.997124i \(-0.524149\pi\)
−0.0757938 + 0.997124i \(0.524149\pi\)
\(972\) −3.74179 −0.120018
\(973\) 0 0
\(974\) −23.9946 −0.768837
\(975\) −0.686116 −0.0219733
\(976\) 2.37071 0.0758845
\(977\) −7.11372 −0.227588 −0.113794 0.993504i \(-0.536300\pi\)
−0.113794 + 0.993504i \(0.536300\pi\)
\(978\) 1.77937 0.0568979
\(979\) −45.0593 −1.44010
\(980\) 0 0
\(981\) 22.3396 0.713250
\(982\) 5.17126 0.165022
\(983\) 6.02200 0.192072 0.0960359 0.995378i \(-0.469384\pi\)
0.0960359 + 0.995378i \(0.469384\pi\)
\(984\) −2.21956 −0.0707570
\(985\) 13.8079 0.439956
\(986\) −0.585689 −0.0186521
\(987\) 0 0
\(988\) 9.25540 0.294453
\(989\) −54.7552 −1.74111
\(990\) 9.30426 0.295709
\(991\) −10.1242 −0.321607 −0.160804 0.986986i \(-0.551409\pi\)
−0.160804 + 0.986986i \(0.551409\pi\)
\(992\) −28.0824 −0.891618
\(993\) 0.0756446 0.00240051
\(994\) 0 0
\(995\) −6.38067 −0.202281
\(996\) 0.747722 0.0236925
\(997\) 17.8669 0.565851 0.282925 0.959142i \(-0.408695\pi\)
0.282925 + 0.959142i \(0.408695\pi\)
\(998\) 15.3625 0.486291
\(999\) −0.712100 −0.0225299
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.bc.1.13 yes 34
7.6 odd 2 9065.2.a.bb.1.13 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9065.2.a.bb.1.13 34 7.6 odd 2
9065.2.a.bc.1.13 yes 34 1.1 even 1 trivial