Properties

Label 9025.2.a.cb.1.6
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $8$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,24,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.280944640000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} + 80x^{4} - 128x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.6
Root \(1.69217\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.69217 q^{2} -1.52380 q^{3} +0.863428 q^{4} -2.57853 q^{6} -1.92327 q^{8} -0.678024 q^{9} -5.95117 q^{11} -1.31569 q^{12} +6.79166 q^{13} -4.98135 q^{16} -1.14733 q^{18} -10.0704 q^{22} +2.93068 q^{24} +11.4926 q^{26} +5.60458 q^{27} -4.58273 q^{32} +9.06841 q^{33} -0.585425 q^{36} -12.1390 q^{37} -10.3492 q^{39} -5.13841 q^{44} +7.59059 q^{48} -7.00000 q^{49} +5.86411 q^{52} +6.04380 q^{53} +9.48389 q^{54} -15.5804 q^{61} +2.20795 q^{64} +15.3453 q^{66} -3.36134 q^{67} +1.30402 q^{72} -20.5412 q^{74} -17.5125 q^{78} -6.50621 q^{81} +11.4457 q^{88} +6.98318 q^{96} -2.99619 q^{97} -11.8452 q^{98} +4.03504 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 24 q^{9} + 32 q^{16} + 8 q^{24} + 24 q^{26} - 8 q^{36} + 72 q^{44} - 56 q^{49} + 88 q^{54} + 64 q^{64} + 104 q^{66} + 72 q^{81} - 120 q^{96} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69217 1.19654 0.598271 0.801294i \(-0.295855\pi\)
0.598271 + 0.801294i \(0.295855\pi\)
\(3\) −1.52380 −0.879768 −0.439884 0.898055i \(-0.644980\pi\)
−0.439884 + 0.898055i \(0.644980\pi\)
\(4\) 0.863428 0.431714
\(5\) 0 0
\(6\) −2.57853 −1.05268
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.92327 −0.679978
\(9\) −0.678024 −0.226008
\(10\) 0 0
\(11\) −5.95117 −1.79434 −0.897172 0.441680i \(-0.854382\pi\)
−0.897172 + 0.441680i \(0.854382\pi\)
\(12\) −1.31569 −0.379808
\(13\) 6.79166 1.88367 0.941834 0.336079i \(-0.109101\pi\)
0.941834 + 0.336079i \(0.109101\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.98135 −1.24534
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −1.14733 −0.270428
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) −10.0704 −2.14701
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 2.93068 0.598223
\(25\) 0 0
\(26\) 11.4926 2.25389
\(27\) 5.60458 1.07860
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −4.58273 −0.810120
\(33\) 9.06841 1.57861
\(34\) 0 0
\(35\) 0 0
\(36\) −0.585425 −0.0975709
\(37\) −12.1390 −1.99564 −0.997820 0.0659893i \(-0.978980\pi\)
−0.997820 + 0.0659893i \(0.978980\pi\)
\(38\) 0 0
\(39\) −10.3492 −1.65719
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −5.13841 −0.774644
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 7.59059 1.09561
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 5.86411 0.813206
\(53\) 6.04380 0.830179 0.415090 0.909781i \(-0.363750\pi\)
0.415090 + 0.909781i \(0.363750\pi\)
\(54\) 9.48389 1.29059
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.5804 −1.99486 −0.997430 0.0716414i \(-0.977176\pi\)
−0.997430 + 0.0716414i \(0.977176\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 2.20795 0.275994
\(65\) 0 0
\(66\) 15.3453 1.88887
\(67\) −3.36134 −0.410653 −0.205326 0.978694i \(-0.565826\pi\)
−0.205326 + 0.978694i \(0.565826\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 1.30402 0.153681
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −20.5412 −2.38787
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −17.5125 −1.98290
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −6.50621 −0.722912
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 11.4457 1.22012
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 6.98318 0.712718
\(97\) −2.99619 −0.304217 −0.152109 0.988364i \(-0.548606\pi\)
−0.152109 + 0.988364i \(0.548606\pi\)
\(98\) −11.8452 −1.19654
\(99\) 4.03504 0.405537
\(100\) 0 0
\(101\) −0.868264 −0.0863955 −0.0431977 0.999067i \(-0.513755\pi\)
−0.0431977 + 0.999067i \(0.513755\pi\)
\(102\) 0 0
\(103\) 16.9447 1.66961 0.834803 0.550548i \(-0.185581\pi\)
0.834803 + 0.550548i \(0.185581\pi\)
\(104\) −13.0622 −1.28085
\(105\) 0 0
\(106\) 10.2271 0.993345
\(107\) 16.9906 1.64255 0.821274 0.570534i \(-0.193264\pi\)
0.821274 + 0.570534i \(0.193264\pi\)
\(108\) 4.83915 0.465648
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 18.4975 1.75570
\(112\) 0 0
\(113\) 13.6063 1.27997 0.639987 0.768386i \(-0.278940\pi\)
0.639987 + 0.768386i \(0.278940\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.60491 −0.425724
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 24.4164 2.21967
\(122\) −26.3646 −2.38694
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.7066 1.74868 0.874339 0.485315i \(-0.161295\pi\)
0.874339 + 0.485315i \(0.161295\pi\)
\(128\) 12.9017 1.14036
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 7.82992 0.681507
\(133\) 0 0
\(134\) −5.68795 −0.491364
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 8.76093 0.743092 0.371546 0.928414i \(-0.378828\pi\)
0.371546 + 0.928414i \(0.378828\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −40.4183 −3.37995
\(144\) 3.37748 0.281456
\(145\) 0 0
\(146\) 0 0
\(147\) 10.6666 0.879768
\(148\) −10.4812 −0.861546
\(149\) 22.9364 1.87902 0.939512 0.342516i \(-0.111279\pi\)
0.939512 + 0.342516i \(0.111279\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −8.93575 −0.715432
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) −9.20955 −0.730365
\(160\) 0 0
\(161\) 0 0
\(162\) −11.0096 −0.864995
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −25.8018 −1.99660 −0.998302 0.0582442i \(-0.981450\pi\)
−0.998302 + 0.0582442i \(0.981450\pi\)
\(168\) 0 0
\(169\) 33.1266 2.54820
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.83765 0.519857 0.259928 0.965628i \(-0.416301\pi\)
0.259928 + 0.965628i \(0.416301\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 29.6448 2.23456
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 23.7414 1.75501
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94427 0.647185 0.323592 0.946197i \(-0.395109\pi\)
0.323592 + 0.946197i \(0.395109\pi\)
\(192\) −3.36448 −0.242810
\(193\) −21.2818 −1.53190 −0.765950 0.642901i \(-0.777731\pi\)
−0.765950 + 0.642901i \(0.777731\pi\)
\(194\) −5.07005 −0.364009
\(195\) 0 0
\(196\) −6.04400 −0.431714
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 6.82796 0.485242
\(199\) 26.8328 1.90213 0.951064 0.308994i \(-0.0999924\pi\)
0.951064 + 0.308994i \(0.0999924\pi\)
\(200\) 0 0
\(201\) 5.12202 0.361279
\(202\) −1.46925 −0.103376
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 28.6732 1.99776
\(207\) 0 0
\(208\) −33.8316 −2.34580
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 5.21838 0.358400
\(213\) 0 0
\(214\) 28.7510 1.96538
\(215\) 0 0
\(216\) −10.7791 −0.733427
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 31.3008 2.10077
\(223\) 28.8494 1.93190 0.965950 0.258728i \(-0.0833033\pi\)
0.965950 + 0.258728i \(0.0833033\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 23.0242 1.53154
\(227\) 3.45331 0.229205 0.114602 0.993411i \(-0.463441\pi\)
0.114602 + 0.993411i \(0.463441\pi\)
\(228\) 0 0
\(229\) 6.48779 0.428725 0.214362 0.976754i \(-0.431233\pi\)
0.214362 + 0.976754i \(0.431233\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) −7.79228 −0.509397
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 41.3166 2.65593
\(243\) −6.89957 −0.442608
\(244\) −13.4525 −0.861209
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.8885 −1.12911 −0.564557 0.825394i \(-0.690953\pi\)
−0.564557 + 0.825394i \(0.690953\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 33.3469 2.09237
\(255\) 0 0
\(256\) 17.4159 1.08849
\(257\) −3.09902 −0.193312 −0.0966558 0.995318i \(-0.530815\pi\)
−0.0966558 + 0.995318i \(0.530815\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.3060 1.25451
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) −17.4410 −1.07342
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.90227 −0.177285
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 22.3998 1.36069 0.680345 0.732892i \(-0.261830\pi\)
0.680345 + 0.732892i \(0.261830\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 14.8250 0.889142
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −68.3945 −4.04425
\(287\) 0 0
\(288\) 3.10720 0.183094
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 4.56560 0.267640
\(292\) 0 0
\(293\) 24.3294 1.42134 0.710670 0.703525i \(-0.248392\pi\)
0.710670 + 0.703525i \(0.248392\pi\)
\(294\) 18.0497 1.05268
\(295\) 0 0
\(296\) 23.3466 1.35699
\(297\) −33.3538 −1.93539
\(298\) 38.8122 2.24833
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.32306 0.0760080
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −23.8053 −1.35864 −0.679320 0.733842i \(-0.737725\pi\)
−0.679320 + 0.733842i \(0.737725\pi\)
\(308\) 0 0
\(309\) −25.8203 −1.46887
\(310\) 0 0
\(311\) −16.1170 −0.913910 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(312\) 19.9042 1.12685
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.9123 −1.90471 −0.952353 0.304999i \(-0.901344\pi\)
−0.952353 + 0.304999i \(0.901344\pi\)
\(318\) −15.5841 −0.873913
\(319\) 0 0
\(320\) 0 0
\(321\) −25.8904 −1.44506
\(322\) 0 0
\(323\) 0 0
\(324\) −5.61764 −0.312091
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 8.23054 0.451031
\(334\) −43.6610 −2.38902
\(335\) 0 0
\(336\) 0 0
\(337\) −27.0977 −1.47610 −0.738052 0.674744i \(-0.764254\pi\)
−0.738052 + 0.674744i \(0.764254\pi\)
\(338\) 56.0558 3.04903
\(339\) −20.7333 −1.12608
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 11.5704 0.622031
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −13.4164 −0.718164 −0.359082 0.933306i \(-0.616910\pi\)
−0.359082 + 0.933306i \(0.616910\pi\)
\(350\) 0 0
\(351\) 38.0644 2.03173
\(352\) 27.2726 1.45364
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.0193 1.47880 0.739401 0.673265i \(-0.235109\pi\)
0.739401 + 0.673265i \(0.235109\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −37.2058 −1.95280
\(364\) 0 0
\(365\) 0 0
\(366\) 40.1744 2.09995
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.14663 −0.318260 −0.159130 0.987258i \(-0.550869\pi\)
−0.159130 + 0.987258i \(0.550869\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −30.0290 −1.53843
\(382\) 15.1352 0.774384
\(383\) −3.31535 −0.169407 −0.0847033 0.996406i \(-0.526994\pi\)
−0.0847033 + 0.996406i \(0.526994\pi\)
\(384\) −19.6596 −1.00325
\(385\) 0 0
\(386\) −36.0124 −1.83298
\(387\) 0 0
\(388\) −2.58699 −0.131335
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 13.4629 0.679978
\(393\) −18.2856 −0.922388
\(394\) 0 0
\(395\) 0 0
\(396\) 3.48396 0.175076
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 45.4056 2.27598
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 8.66731 0.432286
\(403\) 0 0
\(404\) −0.749683 −0.0372981
\(405\) 0 0
\(406\) 0 0
\(407\) 72.2413 3.58087
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 14.6305 0.720793
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −31.1244 −1.52600
\(417\) −13.3499 −0.653749
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −11.6238 −0.564504
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 14.6702 0.709111
\(429\) 61.5896 2.97357
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −27.9184 −1.34322
\(433\) −13.6523 −0.656088 −0.328044 0.944662i \(-0.606389\pi\)
−0.328044 + 0.944662i \(0.606389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 4.74617 0.226008
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 15.9712 0.757961
\(445\) 0 0
\(446\) 48.8180 2.31160
\(447\) −34.9506 −1.65311
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 11.7481 0.552583
\(453\) 0 0
\(454\) 5.84358 0.274253
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 10.9784 0.512988
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −3.97601 −0.183791
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.09784 −0.187627
\(478\) 40.6120 1.85755
\(479\) 7.68770 0.351260 0.175630 0.984456i \(-0.443804\pi\)
0.175630 + 0.984456i \(0.443804\pi\)
\(480\) 0 0
\(481\) −82.4440 −3.75912
\(482\) 0 0
\(483\) 0 0
\(484\) 21.0818 0.958264
\(485\) 0 0
\(486\) −11.6752 −0.529599
\(487\) 44.1113 1.99887 0.999437 0.0335531i \(-0.0106823\pi\)
0.999437 + 0.0335531i \(0.0106823\pi\)
\(488\) 29.9652 1.35646
\(489\) 0 0
\(490\) 0 0
\(491\) 35.7771 1.61460 0.807299 0.590143i \(-0.200929\pi\)
0.807299 + 0.590143i \(0.200929\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 44.4679 1.99066 0.995329 0.0965389i \(-0.0307772\pi\)
0.995329 + 0.0965389i \(0.0307772\pi\)
\(500\) 0 0
\(501\) 39.3169 1.75655
\(502\) −30.2704 −1.35103
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −50.4785 −2.24183
\(508\) 17.0152 0.754929
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 3.66724 0.162071
\(513\) 0 0
\(514\) −5.24406 −0.231306
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −10.4192 −0.457353
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 43.9846 1.92331 0.961657 0.274256i \(-0.0884316\pi\)
0.961657 + 0.274256i \(0.0884316\pi\)
\(524\) 10.3611 0.452628
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −45.1729 −1.96590
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 6.46476 0.279235
\(537\) 0 0
\(538\) 0 0
\(539\) 41.6582 1.79434
\(540\) 0 0
\(541\) −37.6485 −1.61864 −0.809318 0.587371i \(-0.800163\pi\)
−0.809318 + 0.587371i \(0.800163\pi\)
\(542\) 37.9042 1.62812
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 34.8418 1.48973 0.744864 0.667216i \(-0.232514\pi\)
0.744864 + 0.667216i \(0.232514\pi\)
\(548\) 0 0
\(549\) 10.5639 0.450855
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 7.56443 0.320803
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −47.0322 −1.98217 −0.991086 0.133223i \(-0.957467\pi\)
−0.991086 + 0.133223i \(0.957467\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 26.9461 1.12766 0.563829 0.825891i \(-0.309328\pi\)
0.563829 + 0.825891i \(0.309328\pi\)
\(572\) −34.8983 −1.45917
\(573\) −13.6293 −0.569373
\(574\) 0 0
\(575\) 0 0
\(576\) −1.49704 −0.0623768
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −28.7668 −1.19654
\(579\) 32.4293 1.34772
\(580\) 0 0
\(581\) 0 0
\(582\) 7.72576 0.320243
\(583\) −35.9677 −1.48963
\(584\) 0 0
\(585\) 0 0
\(586\) 41.1695 1.70069
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 9.20986 0.379808
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 60.4686 2.48525
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −56.4402 −2.31577
\(595\) 0 0
\(596\) 19.8039 0.811201
\(597\) −40.8879 −1.67343
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 2.27907 0.0928109
\(604\) 0 0
\(605\) 0 0
\(606\) 2.23884 0.0909468
\(607\) −23.6673 −0.960628 −0.480314 0.877097i \(-0.659477\pi\)
−0.480314 + 0.877097i \(0.659477\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −40.2825 −1.62567
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) −43.6923 −1.75756
\(619\) −35.3754 −1.42186 −0.710928 0.703265i \(-0.751725\pi\)
−0.710928 + 0.703265i \(0.751725\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −27.2726 −1.09353
\(623\) 0 0
\(624\) 51.5527 2.06376
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.0142 −1.95123 −0.975613 0.219499i \(-0.929558\pi\)
−0.975613 + 0.219499i \(0.929558\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −57.3853 −2.27906
\(635\) 0 0
\(636\) −7.95179 −0.315309
\(637\) −47.5416 −1.88367
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) −43.8109 −1.72908
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 12.5132 0.491565
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 13.9275 0.539678
\(667\) 0 0
\(668\) −22.2780 −0.861962
\(669\) −43.9608 −1.69962
\(670\) 0 0
\(671\) 92.7214 3.57947
\(672\) 0 0
\(673\) −27.2356 −1.04986 −0.524928 0.851147i \(-0.675908\pi\)
−0.524928 + 0.851147i \(0.675908\pi\)
\(674\) −45.8538 −1.76622
\(675\) 0 0
\(676\) 28.6025 1.10010
\(677\) −12.2418 −0.470492 −0.235246 0.971936i \(-0.575590\pi\)
−0.235246 + 0.971936i \(0.575590\pi\)
\(678\) −35.0843 −1.34740
\(679\) 0 0
\(680\) 0 0
\(681\) −5.26217 −0.201647
\(682\) 0 0
\(683\) −28.7466 −1.09996 −0.549979 0.835179i \(-0.685364\pi\)
−0.549979 + 0.835179i \(0.685364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −9.88611 −0.377178
\(688\) 0 0
\(689\) 41.0474 1.56378
\(690\) 0 0
\(691\) −0.331647 −0.0126165 −0.00630823 0.999980i \(-0.502008\pi\)
−0.00630823 + 0.999980i \(0.502008\pi\)
\(692\) 5.90382 0.224429
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −22.7028 −0.859314
\(699\) 0 0
\(700\) 0 0
\(701\) 21.1999 0.800709 0.400354 0.916360i \(-0.368887\pi\)
0.400354 + 0.916360i \(0.368887\pi\)
\(702\) 64.4114 2.43105
\(703\) 0 0
\(704\) −13.1399 −0.495228
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 40.2492 1.51159 0.755796 0.654808i \(-0.227250\pi\)
0.755796 + 0.654808i \(0.227250\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −36.5713 −1.36578
\(718\) 47.4134 1.76945
\(719\) −51.8240 −1.93271 −0.966354 0.257214i \(-0.917195\pi\)
−0.966354 + 0.257214i \(0.917195\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −62.9584 −2.33661
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 30.0322 1.11230
\(730\) 0 0
\(731\) 0 0
\(732\) 20.4990 0.757664
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.0039 0.736853
\(738\) 0 0
\(739\) −53.6656 −1.97412 −0.987061 0.160345i \(-0.948739\pi\)
−0.987061 + 0.160345i \(0.948739\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.62663 0.0596754 0.0298377 0.999555i \(-0.490501\pi\)
0.0298377 + 0.999555i \(0.490501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10.4011 −0.380812
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 27.2586 0.993359
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.29755 0.337036 0.168518 0.985699i \(-0.446102\pi\)
0.168518 + 0.985699i \(0.446102\pi\)
\(762\) −50.8141 −1.84080
\(763\) 0 0
\(764\) 7.72273 0.279399
\(765\) 0 0
\(766\) −5.61013 −0.202702
\(767\) 0 0
\(768\) −26.5384 −0.957622
\(769\) −29.2192 −1.05367 −0.526836 0.849967i \(-0.676622\pi\)
−0.526836 + 0.849967i \(0.676622\pi\)
\(770\) 0 0
\(771\) 4.72230 0.170069
\(772\) −18.3753 −0.661342
\(773\) −47.4496 −1.70665 −0.853323 0.521383i \(-0.825416\pi\)
−0.853323 + 0.521383i \(0.825416\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5.76248 0.206861
\(777\) 0 0
\(778\) 10.1530 0.364003
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 34.8694 1.24534
\(785\) 0 0
\(786\) −30.9423 −1.10368
\(787\) −25.6990 −0.916070 −0.458035 0.888934i \(-0.651447\pi\)
−0.458035 + 0.888934i \(0.651447\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −7.76046 −0.275756
\(793\) −105.817 −3.75765
\(794\) 0 0
\(795\) 0 0
\(796\) 23.1682 0.821175
\(797\) 48.5046 1.71812 0.859061 0.511873i \(-0.171048\pi\)
0.859061 + 0.511873i \(0.171048\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 4.42249 0.155969
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.66991 0.0587471
\(809\) 22.3607 0.786160 0.393080 0.919504i \(-0.371410\pi\)
0.393080 + 0.919504i \(0.371410\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −34.1329 −1.19709
\(814\) 122.244 4.28466
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) −32.5891 −1.13530
\(825\) 0 0
\(826\) 0 0
\(827\) 56.1750 1.95340 0.976699 0.214614i \(-0.0688494\pi\)
0.976699 + 0.214614i \(0.0688494\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.9956 0.519880
\(833\) 0 0
\(834\) −22.5903 −0.782238
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 60.9180 2.10438
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −30.1063 −1.03385
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32.6776 −1.11690
\(857\) 57.6474 1.96920 0.984599 0.174825i \(-0.0559361\pi\)
0.984599 + 0.174825i \(0.0559361\pi\)
\(858\) 104.220 3.55800
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.0875 1.50075 0.750377 0.661010i \(-0.229872\pi\)
0.750377 + 0.661010i \(0.229872\pi\)
\(864\) −25.6843 −0.873798
\(865\) 0 0
\(866\) −23.1020 −0.785037
\(867\) 25.9047 0.879768
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −22.8291 −0.773534
\(872\) 0 0
\(873\) 2.03149 0.0687555
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.4094 1.43206 0.716032 0.698068i \(-0.245956\pi\)
0.716032 + 0.698068i \(0.245956\pi\)
\(878\) 0 0
\(879\) −37.0733 −1.25045
\(880\) 0 0
\(881\) 58.6434 1.97575 0.987874 0.155261i \(-0.0496217\pi\)
0.987874 + 0.155261i \(0.0496217\pi\)
\(882\) 8.03131 0.270428
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.8527 −0.565858 −0.282929 0.959141i \(-0.591306\pi\)
−0.282929 + 0.959141i \(0.591306\pi\)
\(888\) −35.5756 −1.19384
\(889\) 0 0
\(890\) 0 0
\(891\) 38.7195 1.29715
\(892\) 24.9094 0.834028
\(893\) 0 0
\(894\) −59.1422 −1.97801
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −26.1686 −0.870355
\(905\) 0 0
\(906\) 0 0
\(907\) 17.0826 0.567219 0.283610 0.958940i \(-0.408468\pi\)
0.283610 + 0.958940i \(0.408468\pi\)
\(908\) 2.98169 0.0989508
\(909\) 0.588704 0.0195261
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 5.60173 0.185087
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 36.2746 1.19529
\(922\) 30.4590 1.00311
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −11.4889 −0.377345
\(928\) 0 0
\(929\) 31.3050 1.02708 0.513541 0.858065i \(-0.328333\pi\)
0.513541 + 0.858065i \(0.328333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 24.5591 0.804029
\(934\) 0 0
\(935\) 0 0
\(936\) 8.85649 0.289483
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 51.6757 1.67570
\(952\) 0 0
\(953\) 39.3618 1.27505 0.637527 0.770428i \(-0.279957\pi\)
0.637527 + 0.770428i \(0.279957\pi\)
\(954\) −6.93423 −0.224504
\(955\) 0 0
\(956\) 20.7223 0.670206
\(957\) 0 0
\(958\) 13.0089 0.420297
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −139.509 −4.49795
\(963\) −11.5201 −0.371229
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −46.9593 −1.50933
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −5.95728 −0.191080
\(973\) 0 0
\(974\) 74.6437 2.39174
\(975\) 0 0
\(976\) 77.6112 2.48427
\(977\) 54.3563 1.73901 0.869506 0.493923i \(-0.164438\pi\)
0.869506 + 0.493923i \(0.164438\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 60.5408 1.93193
\(983\) −44.2033 −1.40987 −0.704933 0.709274i \(-0.749023\pi\)
−0.704933 + 0.709274i \(0.749023\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 75.2472 2.38191
\(999\) −68.0341 −2.15250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cb.1.6 8
5.2 odd 4 1805.2.b.h.1084.6 yes 8
5.3 odd 4 1805.2.b.h.1084.3 8
5.4 even 2 inner 9025.2.a.cb.1.3 8
19.18 odd 2 inner 9025.2.a.cb.1.3 8
95.18 even 4 1805.2.b.h.1084.6 yes 8
95.37 even 4 1805.2.b.h.1084.3 8
95.94 odd 2 CM 9025.2.a.cb.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.h.1084.3 8 5.3 odd 4
1805.2.b.h.1084.3 8 95.37 even 4
1805.2.b.h.1084.6 yes 8 5.2 odd 4
1805.2.b.h.1084.6 yes 8 95.18 even 4
9025.2.a.cb.1.3 8 5.4 even 2 inner
9025.2.a.cb.1.3 8 19.18 odd 2 inner
9025.2.a.cb.1.6 8 1.1 even 1 trivial
9025.2.a.cb.1.6 8 95.94 odd 2 CM