Properties

Label 1805.2.b.h.1084.3
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $8$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1084,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1084"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-16,0,0,0,0,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.280944640000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 16x^{6} + 80x^{4} + 128x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1084.3
Root \(-1.69217i\) of defining polynomial
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.h.1084.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.69217i q^{2} -1.52380i q^{3} -0.863428 q^{4} -2.23607 q^{5} -2.57853 q^{6} -1.92327i q^{8} +0.678024 q^{9} +3.78380i q^{10} -5.95117 q^{11} +1.31569i q^{12} +6.79166i q^{13} +3.40733i q^{15} -4.98135 q^{16} -1.14733i q^{18} +1.93068 q^{20} +10.0704i q^{22} -2.93068 q^{24} +5.00000 q^{25} +11.4926 q^{26} -5.60458i q^{27} +5.76577 q^{30} +4.58273i q^{32} +9.06841i q^{33} -0.585425 q^{36} +12.1390i q^{37} +10.3492 q^{39} +4.30056i q^{40} +5.13841 q^{44} -1.51611 q^{45} +7.59059i q^{48} +7.00000 q^{49} -8.46083i q^{50} -5.86411i q^{52} +6.04380i q^{53} -9.48389 q^{54} +13.3072 q^{55} -2.94198i q^{60} -15.5804 q^{61} -2.20795 q^{64} -15.1866i q^{65} +15.3453 q^{66} +3.36134i q^{67} -1.30402i q^{72} +20.5412 q^{74} -7.61901i q^{75} -17.5125i q^{78} +11.1386 q^{80} -6.50621 q^{81} +11.4457i q^{88} +2.56551i q^{90} +6.98318 q^{96} +2.99619i q^{97} -11.8452i q^{98} -4.03504 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} - 24 q^{9} + 32 q^{16} - 8 q^{24} + 40 q^{25} + 24 q^{26} - 40 q^{30} - 8 q^{36} - 72 q^{44} + 56 q^{49} - 88 q^{54} - 64 q^{64} + 104 q^{66} + 120 q^{80} + 72 q^{81} - 120 q^{96} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.69217i − 1.19654i −0.801294 0.598271i \(-0.795855\pi\)
0.801294 0.598271i \(-0.204145\pi\)
\(3\) − 1.52380i − 0.879768i −0.898055 0.439884i \(-0.855020\pi\)
0.898055 0.439884i \(-0.144980\pi\)
\(4\) −0.863428 −0.431714
\(5\) −2.23607 −1.00000
\(6\) −2.57853 −1.05268
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 1.92327i − 0.679978i
\(9\) 0.678024 0.226008
\(10\) 3.78380i 1.19654i
\(11\) −5.95117 −1.79434 −0.897172 0.441680i \(-0.854382\pi\)
−0.897172 + 0.441680i \(0.854382\pi\)
\(12\) 1.31569i 0.379808i
\(13\) 6.79166i 1.88367i 0.336079 + 0.941834i \(0.390899\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(14\) 0 0
\(15\) 3.40733i 0.879768i
\(16\) −4.98135 −1.24534
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) − 1.14733i − 0.270428i
\(19\) 0 0
\(20\) 1.93068 0.431714
\(21\) 0 0
\(22\) 10.0704i 2.14701i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −2.93068 −0.598223
\(25\) 5.00000 1.00000
\(26\) 11.4926 2.25389
\(27\) − 5.60458i − 1.07860i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 5.76577 1.05268
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 4.58273i 0.810120i
\(33\) 9.06841i 1.57861i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.585425 −0.0975709
\(37\) 12.1390i 1.99564i 0.0659893 + 0.997820i \(0.478980\pi\)
−0.0659893 + 0.997820i \(0.521020\pi\)
\(38\) 0 0
\(39\) 10.3492 1.65719
\(40\) 4.30056i 0.679978i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 5.13841 0.774644
\(45\) −1.51611 −0.226008
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 7.59059i 1.09561i
\(49\) 7.00000 1.00000
\(50\) − 8.46083i − 1.19654i
\(51\) 0 0
\(52\) − 5.86411i − 0.813206i
\(53\) 6.04380i 0.830179i 0.909781 + 0.415090i \(0.136250\pi\)
−0.909781 + 0.415090i \(0.863750\pi\)
\(54\) −9.48389 −1.29059
\(55\) 13.3072 1.79434
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) − 2.94198i − 0.379808i
\(61\) −15.5804 −1.99486 −0.997430 0.0716414i \(-0.977176\pi\)
−0.997430 + 0.0716414i \(0.977176\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −2.20795 −0.275994
\(65\) − 15.1866i − 1.88367i
\(66\) 15.3453 1.88887
\(67\) 3.36134i 0.410653i 0.978694 + 0.205326i \(0.0658256\pi\)
−0.978694 + 0.205326i \(0.934174\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 1.30402i − 0.153681i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 20.5412 2.38787
\(75\) − 7.61901i − 0.879768i
\(76\) 0 0
\(77\) 0 0
\(78\) − 17.5125i − 1.98290i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 11.1386 1.24534
\(81\) −6.50621 −0.722912
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 11.4457i 1.22012i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 2.56551i 0.270428i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 6.98318 0.712718
\(97\) 2.99619i 0.304217i 0.988364 + 0.152109i \(0.0486063\pi\)
−0.988364 + 0.152109i \(0.951394\pi\)
\(98\) − 11.8452i − 1.19654i
\(99\) −4.03504 −0.405537
\(100\) −4.31714 −0.431714
\(101\) −0.868264 −0.0863955 −0.0431977 0.999067i \(-0.513755\pi\)
−0.0431977 + 0.999067i \(0.513755\pi\)
\(102\) 0 0
\(103\) 16.9447i 1.66961i 0.550548 + 0.834803i \(0.314419\pi\)
−0.550548 + 0.834803i \(0.685581\pi\)
\(104\) 13.0622 1.28085
\(105\) 0 0
\(106\) 10.2271 0.993345
\(107\) − 16.9906i − 1.64255i −0.570534 0.821274i \(-0.693264\pi\)
0.570534 0.821274i \(-0.306736\pi\)
\(108\) 4.83915i 0.465648i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) − 22.5180i − 2.14701i
\(111\) 18.4975 1.75570
\(112\) 0 0
\(113\) 13.6063i 1.27997i 0.768386 + 0.639987i \(0.221060\pi\)
−0.768386 + 0.639987i \(0.778940\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.60491i 0.425724i
\(118\) 0 0
\(119\) 0 0
\(120\) 6.55321 0.598223
\(121\) 24.4164 2.21967
\(122\) 26.3646i 2.38694i
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) − 19.7066i − 1.74868i −0.485315 0.874339i \(-0.661295\pi\)
0.485315 0.874339i \(-0.338705\pi\)
\(128\) 12.9017i 1.14036i
\(129\) 0 0
\(130\) −25.6983 −2.25389
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) − 7.82992i − 0.681507i
\(133\) 0 0
\(134\) 5.68795 0.491364
\(135\) 12.5322i 1.07860i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −8.76093 −0.743092 −0.371546 0.928414i \(-0.621172\pi\)
−0.371546 + 0.928414i \(0.621172\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 40.4183i − 3.37995i
\(144\) −3.37748 −0.281456
\(145\) 0 0
\(146\) 0 0
\(147\) − 10.6666i − 0.879768i
\(148\) − 10.4812i − 0.861546i
\(149\) −22.9364 −1.87902 −0.939512 0.342516i \(-0.888721\pi\)
−0.939512 + 0.342516i \(0.888721\pi\)
\(150\) −12.8926 −1.05268
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −8.93575 −0.715432
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 9.20955 0.730365
\(160\) − 10.2473i − 0.810120i
\(161\) 0 0
\(162\) 11.0096i 0.864995i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) − 20.2776i − 1.57861i
\(166\) 0 0
\(167\) 25.8018i 1.99660i 0.0582442 + 0.998302i \(0.481450\pi\)
−0.0582442 + 0.998302i \(0.518550\pi\)
\(168\) 0 0
\(169\) −33.1266 −2.54820
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.83765i 0.519857i 0.965628 + 0.259928i \(0.0836990\pi\)
−0.965628 + 0.259928i \(0.916301\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 29.6448 2.23456
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 1.30905 0.0975709
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 23.7414i 1.75501i
\(184\) 0 0
\(185\) − 27.1436i − 1.99564i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94427 0.647185 0.323592 0.946197i \(-0.395109\pi\)
0.323592 + 0.946197i \(0.395109\pi\)
\(192\) 3.36448i 0.242810i
\(193\) − 21.2818i − 1.53190i −0.642901 0.765950i \(-0.722269\pi\)
0.642901 0.765950i \(-0.277731\pi\)
\(194\) 5.07005 0.364009
\(195\) −23.1414 −1.65719
\(196\) −6.04400 −0.431714
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 6.82796i 0.485242i
\(199\) −26.8328 −1.90213 −0.951064 0.308994i \(-0.900008\pi\)
−0.951064 + 0.308994i \(0.900008\pi\)
\(200\) − 9.61635i − 0.679978i
\(201\) 5.12202 0.361279
\(202\) 1.46925i 0.103376i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 28.6732 1.99776
\(207\) 0 0
\(208\) − 33.8316i − 2.34580i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) − 5.21838i − 0.358400i
\(213\) 0 0
\(214\) −28.7510 −1.96538
\(215\) 0 0
\(216\) −10.7791 −0.733427
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −11.4898 −0.774644
\(221\) 0 0
\(222\) − 31.3008i − 2.10077i
\(223\) 28.8494i 1.93190i 0.258728 + 0.965950i \(0.416697\pi\)
−0.258728 + 0.965950i \(0.583303\pi\)
\(224\) 0 0
\(225\) 3.39012 0.226008
\(226\) 23.0242 1.53154
\(227\) − 3.45331i − 0.229205i −0.993411 0.114602i \(-0.963441\pi\)
0.993411 0.114602i \(-0.0365594\pi\)
\(228\) 0 0
\(229\) −6.48779 −0.428725 −0.214362 0.976754i \(-0.568767\pi\)
−0.214362 + 0.976754i \(0.568767\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 7.79228 0.509397
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) − 16.9731i − 1.09561i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) − 41.3166i − 2.65593i
\(243\) − 6.89957i − 0.442608i
\(244\) 13.4525 0.861209
\(245\) −15.6525 −1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 18.9190i 1.19654i
\(251\) −17.8885 −1.12911 −0.564557 0.825394i \(-0.690953\pi\)
−0.564557 + 0.825394i \(0.690953\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −33.3469 −2.09237
\(255\) 0 0
\(256\) 17.4159 1.08849
\(257\) 3.09902i 0.193312i 0.995318 + 0.0966558i \(0.0308146\pi\)
−0.995318 + 0.0966558i \(0.969185\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 13.1125i 0.813206i
\(261\) 0 0
\(262\) − 20.3060i − 1.25451i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 17.4410 1.07342
\(265\) − 13.5143i − 0.830179i
\(266\) 0 0
\(267\) 0 0
\(268\) − 2.90227i − 0.177285i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 21.2066 1.29059
\(271\) 22.3998 1.36069 0.680345 0.732892i \(-0.261830\pi\)
0.680345 + 0.732892i \(0.261830\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −29.7558 −1.79434
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 14.8250i 0.889142i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −68.3945 −4.04425
\(287\) 0 0
\(288\) 3.10720i 0.183094i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 4.56560 0.267640
\(292\) 0 0
\(293\) 24.3294i 1.42134i 0.703525 + 0.710670i \(0.251608\pi\)
−0.703525 + 0.710670i \(0.748392\pi\)
\(294\) −18.0497 −1.05268
\(295\) 0 0
\(296\) 23.3466 1.35699
\(297\) 33.3538i 1.93539i
\(298\) 38.8122i 2.24833i
\(299\) 0 0
\(300\) 6.57847i 0.379808i
\(301\) 0 0
\(302\) 0 0
\(303\) 1.32306i 0.0760080i
\(304\) 0 0
\(305\) 34.8387 1.99486
\(306\) 0 0
\(307\) 23.8053i 1.35864i 0.733842 + 0.679320i \(0.237725\pi\)
−0.733842 + 0.679320i \(0.762275\pi\)
\(308\) 0 0
\(309\) 25.8203 1.46887
\(310\) 0 0
\(311\) −16.1170 −0.913910 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(312\) − 19.9042i − 1.12685i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 33.9123i 1.90471i 0.304999 + 0.952353i \(0.401344\pi\)
−0.304999 + 0.952353i \(0.598656\pi\)
\(318\) − 15.5841i − 0.873913i
\(319\) 0 0
\(320\) 4.93712 0.275994
\(321\) −25.8904 −1.44506
\(322\) 0 0
\(323\) 0 0
\(324\) 5.61764 0.312091
\(325\) 33.9583i 1.88367i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −34.3130 −1.88887
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 8.23054i 0.451031i
\(334\) 43.6610 2.38902
\(335\) − 7.51618i − 0.410653i
\(336\) 0 0
\(337\) 27.0977i 1.47610i 0.674744 + 0.738052i \(0.264254\pi\)
−0.674744 + 0.738052i \(0.735746\pi\)
\(338\) 56.0558i 3.04903i
\(339\) 20.7333 1.12608
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 11.5704 0.622031
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 13.4164 0.718164 0.359082 0.933306i \(-0.383090\pi\)
0.359082 + 0.933306i \(0.383090\pi\)
\(350\) 0 0
\(351\) 38.0644 2.03173
\(352\) − 27.2726i − 1.45364i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.0193 −1.47880 −0.739401 0.673265i \(-0.764891\pi\)
−0.739401 + 0.673265i \(0.764891\pi\)
\(360\) 2.91589i 0.153681i
\(361\) 0 0
\(362\) 0 0
\(363\) − 37.2058i − 1.95280i
\(364\) 0 0
\(365\) 0 0
\(366\) 40.1744 2.09995
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −45.9316 −2.38787
\(371\) 0 0
\(372\) 0 0
\(373\) − 6.14663i − 0.318260i −0.987258 0.159130i \(-0.949131\pi\)
0.987258 0.159130i \(-0.0508689\pi\)
\(374\) 0 0
\(375\) 17.0366i 0.879768i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −30.0290 −1.53843
\(382\) − 15.1352i − 0.774384i
\(383\) − 3.31535i − 0.169407i −0.996406 0.0847033i \(-0.973006\pi\)
0.996406 0.0847033i \(-0.0269942\pi\)
\(384\) 19.6596 1.00325
\(385\) 0 0
\(386\) −36.0124 −1.83298
\(387\) 0 0
\(388\) − 2.58699i − 0.131335i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 39.1591i 1.98290i
\(391\) 0 0
\(392\) − 13.4629i − 0.679978i
\(393\) − 18.2856i − 0.922388i
\(394\) 0 0
\(395\) 0 0
\(396\) 3.48396 0.175076
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 45.4056i 2.27598i
\(399\) 0 0
\(400\) −24.9067 −1.24534
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) − 8.66731i − 0.432286i
\(403\) 0 0
\(404\) 0.749683 0.0372981
\(405\) 14.5483 0.722912
\(406\) 0 0
\(407\) − 72.2413i − 3.58087i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 14.6305i − 0.720793i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −31.1244 −1.52600
\(417\) 13.3499i 0.653749i
\(418\) 0 0
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 11.6238 0.564504
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 14.6702i 0.709111i
\(429\) −61.5896 −2.97357
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 27.9184i 1.34322i
\(433\) − 13.6523i − 0.656088i −0.944662 0.328044i \(-0.893611\pi\)
0.944662 0.328044i \(-0.106389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) − 25.5934i − 1.22012i
\(441\) 4.74617 0.226008
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −15.9712 −0.757961
\(445\) 0 0
\(446\) 48.8180 2.31160
\(447\) 34.9506i 1.65311i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) − 5.73665i − 0.270428i
\(451\) 0 0
\(452\) − 11.7481i − 0.552583i
\(453\) 0 0
\(454\) −5.84358 −0.274253
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 10.9784i 0.512988i
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) − 3.97601i − 0.183791i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.09784i 0.187627i
\(478\) 40.6120i 1.85755i
\(479\) −7.68770 −0.351260 −0.175630 0.984456i \(-0.556196\pi\)
−0.175630 + 0.984456i \(0.556196\pi\)
\(480\) −15.6149 −0.712718
\(481\) −82.4440 −3.75912
\(482\) 0 0
\(483\) 0 0
\(484\) −21.0818 −0.958264
\(485\) − 6.69969i − 0.304217i
\(486\) −11.6752 −0.529599
\(487\) − 44.1113i − 1.99887i −0.0335531 0.999437i \(-0.510682\pi\)
0.0335531 0.999437i \(-0.489318\pi\)
\(488\) 29.9652i 1.35646i
\(489\) 0 0
\(490\) 26.4866i 1.19654i
\(491\) 35.7771 1.61460 0.807299 0.590143i \(-0.200929\pi\)
0.807299 + 0.590143i \(0.200929\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 9.02262 0.405537
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −44.4679 −1.99066 −0.995329 0.0965389i \(-0.969223\pi\)
−0.995329 + 0.0965389i \(0.969223\pi\)
\(500\) 9.65342 0.431714
\(501\) 39.3169 1.75655
\(502\) 30.2704i 1.35103i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1.94150 0.0863955
\(506\) 0 0
\(507\) 50.4785i 2.24183i
\(508\) 17.0152i 0.754929i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 3.66724i − 0.162071i
\(513\) 0 0
\(514\) 5.24406 0.231306
\(515\) − 37.8894i − 1.66961i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 10.4192 0.457353
\(520\) −29.2079 −1.28085
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 43.9846i 1.92331i 0.274256 + 0.961657i \(0.411568\pi\)
−0.274256 + 0.961657i \(0.588432\pi\)
\(524\) −10.3611 −0.452628
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) − 45.1729i − 1.96590i
\(529\) 23.0000 1.00000
\(530\) −22.8685 −0.993345
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 37.9922i 1.64255i
\(536\) 6.46476 0.279235
\(537\) 0 0
\(538\) 0 0
\(539\) −41.6582 −1.79434
\(540\) − 10.8207i − 0.465648i
\(541\) −37.6485 −1.61864 −0.809318 0.587371i \(-0.800163\pi\)
−0.809318 + 0.587371i \(0.800163\pi\)
\(542\) − 37.9042i − 1.62812i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 34.8418i − 1.48973i −0.667216 0.744864i \(-0.732514\pi\)
0.667216 0.744864i \(-0.267486\pi\)
\(548\) 0 0
\(549\) −10.5639 −0.450855
\(550\) 50.3518i 2.14701i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −41.3616 −1.75570
\(556\) 7.56443 0.320803
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 47.0322i − 1.98217i −0.133223 0.991086i \(-0.542533\pi\)
0.133223 0.991086i \(-0.457467\pi\)
\(564\) 0 0
\(565\) − 30.4246i − 1.27997i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 26.9461 1.12766 0.563829 0.825891i \(-0.309328\pi\)
0.563829 + 0.825891i \(0.309328\pi\)
\(572\) 34.8983i 1.45917i
\(573\) − 13.6293i − 0.569373i
\(574\) 0 0
\(575\) 0 0
\(576\) −1.49704 −0.0623768
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) − 28.7668i − 1.19654i
\(579\) −32.4293 −1.34772
\(580\) 0 0
\(581\) 0 0
\(582\) − 7.72576i − 0.320243i
\(583\) − 35.9677i − 1.48963i
\(584\) 0 0
\(585\) − 10.2969i − 0.425724i
\(586\) 41.1695 1.70069
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 9.20986i 0.379808i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) − 60.4686i − 2.48525i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 56.4402 2.31577
\(595\) 0 0
\(596\) 19.8039 0.811201
\(597\) 40.8879i 1.67343i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −14.6534 −0.598223
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 2.27907i 0.0928109i
\(604\) 0 0
\(605\) −54.5967 −2.21967
\(606\) 2.23884 0.0909468
\(607\) 23.6673i 0.960628i 0.877097 + 0.480314i \(0.159477\pi\)
−0.877097 + 0.480314i \(0.840523\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) − 58.9530i − 2.38694i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 40.2825 1.62567
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) − 43.6923i − 1.75756i
\(619\) 35.3754 1.42186 0.710928 0.703265i \(-0.248275\pi\)
0.710928 + 0.703265i \(0.248275\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 27.2726i 1.09353i
\(623\) 0 0
\(624\) −51.5527 −2.06376
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −49.0142 −1.95123 −0.975613 0.219499i \(-0.929558\pi\)
−0.975613 + 0.219499i \(0.929558\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 57.3853 2.27906
\(635\) 44.0653i 1.74868i
\(636\) −7.95179 −0.315309
\(637\) 47.5416i 1.88367i
\(638\) 0 0
\(639\) 0 0
\(640\) − 28.8490i − 1.14036i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 43.8109i 1.72908i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 12.5132i 0.491565i
\(649\) 0 0
\(650\) 57.4631 2.25389
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −26.8328 −1.04844
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 17.5082i 0.681507i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 13.9275 0.539678
\(667\) 0 0
\(668\) − 22.2780i − 0.861962i
\(669\) 43.9608 1.69962
\(670\) −12.7186 −0.491364
\(671\) 92.7214 3.57947
\(672\) 0 0
\(673\) − 27.2356i − 1.04986i −0.851147 0.524928i \(-0.824092\pi\)
0.851147 0.524928i \(-0.175908\pi\)
\(674\) 45.8538 1.76622
\(675\) − 28.0229i − 1.07860i
\(676\) 28.6025 1.10010
\(677\) 12.2418i 0.470492i 0.971936 + 0.235246i \(0.0755896\pi\)
−0.971936 + 0.235246i \(0.924410\pi\)
\(678\) − 35.0843i − 1.34740i
\(679\) 0 0
\(680\) 0 0
\(681\) −5.26217 −0.201647
\(682\) 0 0
\(683\) − 28.7466i − 1.09996i −0.835179 0.549979i \(-0.814636\pi\)
0.835179 0.549979i \(-0.185364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 9.88611i 0.377178i
\(688\) 0 0
\(689\) −41.0474 −1.56378
\(690\) 0 0
\(691\) −0.331647 −0.0126165 −0.00630823 0.999980i \(-0.502008\pi\)
−0.00630823 + 0.999980i \(0.502008\pi\)
\(692\) − 5.90382i − 0.224429i
\(693\) 0 0
\(694\) 0 0
\(695\) 19.5900 0.743092
\(696\) 0 0
\(697\) 0 0
\(698\) − 22.7028i − 0.859314i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.1999 0.800709 0.400354 0.916360i \(-0.368887\pi\)
0.400354 + 0.916360i \(0.368887\pi\)
\(702\) − 64.4114i − 2.43105i
\(703\) 0 0
\(704\) 13.1399 0.495228
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −40.2492 −1.51159 −0.755796 0.654808i \(-0.772750\pi\)
−0.755796 + 0.654808i \(0.772750\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 90.3781i 3.37995i
\(716\) 0 0
\(717\) 36.5713i 1.36578i
\(718\) 47.4134i 1.76945i
\(719\) 51.8240 1.93271 0.966354 0.257214i \(-0.0828047\pi\)
0.966354 + 0.257214i \(0.0828047\pi\)
\(720\) 7.55227 0.281456
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −62.9584 −2.33661
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −30.0322 −1.11230
\(730\) 0 0
\(731\) 0 0
\(732\) − 20.4990i − 0.757664i
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 23.8513i 0.879768i
\(736\) 0 0
\(737\) − 20.0039i − 0.736853i
\(738\) 0 0
\(739\) 53.6656 1.97412 0.987061 0.160345i \(-0.0512606\pi\)
0.987061 + 0.160345i \(0.0512606\pi\)
\(740\) 23.4366i 0.861546i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.62663i 0.0596754i 0.999555 + 0.0298377i \(0.00949905\pi\)
−0.999555 + 0.0298377i \(0.990501\pi\)
\(744\) 0 0
\(745\) 51.2874 1.87902
\(746\) −10.4011 −0.380812
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 28.8288 1.05268
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 27.2586i 0.993359i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.29755 0.337036 0.168518 0.985699i \(-0.446102\pi\)
0.168518 + 0.985699i \(0.446102\pi\)
\(762\) 50.8141i 1.84080i
\(763\) 0 0
\(764\) −7.72273 −0.279399
\(765\) 0 0
\(766\) −5.61013 −0.202702
\(767\) 0 0
\(768\) − 26.5384i − 0.957622i
\(769\) 29.2192 1.05367 0.526836 0.849967i \(-0.323378\pi\)
0.526836 + 0.849967i \(0.323378\pi\)
\(770\) 0 0
\(771\) 4.72230 0.170069
\(772\) 18.3753i 0.661342i
\(773\) − 47.4496i − 1.70665i −0.521383 0.853323i \(-0.674584\pi\)
0.521383 0.853323i \(-0.325416\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5.76248 0.206861
\(777\) 0 0
\(778\) 10.1530i 0.364003i
\(779\) 0 0
\(780\) 19.9809 0.715432
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −34.8694 −1.24534
\(785\) 0 0
\(786\) −30.9423 −1.10368
\(787\) 25.6990i 0.916070i 0.888934 + 0.458035i \(0.151447\pi\)
−0.888934 + 0.458035i \(0.848553\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 7.76046i 0.275756i
\(793\) − 105.817i − 3.75765i
\(794\) 0 0
\(795\) −20.5932 −0.730365
\(796\) 23.1682 0.821175
\(797\) − 48.5046i − 1.71812i −0.511873 0.859061i \(-0.671048\pi\)
0.511873 0.859061i \(-0.328952\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 22.9137i 0.810120i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −4.42249 −0.155969
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1.66991i 0.0587471i
\(809\) −22.3607 −0.786160 −0.393080 0.919504i \(-0.628590\pi\)
−0.393080 + 0.919504i \(0.628590\pi\)
\(810\) − 24.6182i − 0.864995i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) − 34.1329i − 1.19709i
\(814\) −122.244 −4.28466
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 32.5891 1.13530
\(825\) 45.3420i 1.57861i
\(826\) 0 0
\(827\) − 56.1750i − 1.95340i −0.214614 0.976699i \(-0.568849\pi\)
0.214614 0.976699i \(-0.431151\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 14.9956i − 0.519880i
\(833\) 0 0
\(834\) 22.5903 0.782238
\(835\) − 57.6946i − 1.99660i
\(836\) 0 0
\(837\) 0 0
\(838\) 60.9180i 2.10438i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 74.0734 2.54820
\(846\) 0 0
\(847\) 0 0
\(848\) − 30.1063i − 1.03385i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32.6776 −1.11690
\(857\) − 57.6474i − 1.96920i −0.174825 0.984599i \(-0.555936\pi\)
0.174825 0.984599i \(-0.444064\pi\)
\(858\) 104.220i 3.55800i
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.0875i 1.50075i 0.661010 + 0.750377i \(0.270128\pi\)
−0.661010 + 0.750377i \(0.729872\pi\)
\(864\) 25.6843 0.873798
\(865\) − 15.2894i − 0.519857i
\(866\) −23.1020 −0.785037
\(867\) − 25.9047i − 0.879768i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −22.8291 −0.773534
\(872\) 0 0
\(873\) 2.03149i 0.0687555i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 42.4094i − 1.43206i −0.698068 0.716032i \(-0.745956\pi\)
0.698068 0.716032i \(-0.254044\pi\)
\(878\) 0 0
\(879\) 37.0733 1.25045
\(880\) −66.2879 −2.23456
\(881\) 58.6434 1.97575 0.987874 0.155261i \(-0.0496217\pi\)
0.987874 + 0.155261i \(0.0496217\pi\)
\(882\) − 8.03131i − 0.270428i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.8527i 0.565858i 0.959141 + 0.282929i \(0.0913060\pi\)
−0.959141 + 0.282929i \(0.908694\pi\)
\(888\) − 35.5756i − 1.19384i
\(889\) 0 0
\(890\) 0 0
\(891\) 38.7195 1.29715
\(892\) − 24.9094i − 0.834028i
\(893\) 0 0
\(894\) 59.1422 1.97801
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −2.92713 −0.0975709
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 26.1686 0.870355
\(905\) 0 0
\(906\) 0 0
\(907\) − 17.0826i − 0.567219i −0.958940 0.283610i \(-0.908468\pi\)
0.958940 0.283610i \(-0.0915320\pi\)
\(908\) 2.98169i 0.0989508i
\(909\) −0.588704 −0.0195261
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 53.0874i − 1.75501i
\(916\) 5.60173 0.185087
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 36.2746 1.19529
\(922\) − 30.4590i − 1.00311i
\(923\) 0 0
\(924\) 0 0
\(925\) 60.6950i 1.99564i
\(926\) 0 0
\(927\) 11.4889i 0.377345i
\(928\) 0 0
\(929\) −31.3050 −1.02708 −0.513541 0.858065i \(-0.671667\pi\)
−0.513541 + 0.858065i \(0.671667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 24.5591i 0.804029i
\(934\) 0 0
\(935\) 0 0
\(936\) 8.85649 0.289483
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 51.6757 1.67570
\(952\) 0 0
\(953\) 39.3618i 1.27505i 0.770428 + 0.637527i \(0.220043\pi\)
−0.770428 + 0.637527i \(0.779957\pi\)
\(954\) 6.93423 0.224504
\(955\) −20.0000 −0.647185
\(956\) 20.7223 0.670206
\(957\) 0 0
\(958\) 13.0089i 0.420297i
\(959\) 0 0
\(960\) − 7.52321i − 0.242810i
\(961\) −31.0000 −1.00000
\(962\) 139.509i 4.49795i
\(963\) − 11.5201i − 0.371229i
\(964\) 0 0
\(965\) 47.5876i 1.53190i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) − 46.9593i − 1.50933i
\(969\) 0 0
\(970\) −11.3370 −0.364009
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 5.95728i 0.191080i
\(973\) 0 0
\(974\) −74.6437 −2.39174
\(975\) 51.7458 1.65719
\(976\) 77.6112 2.48427
\(977\) − 54.3563i − 1.73901i −0.493923 0.869506i \(-0.664438\pi\)
0.493923 0.869506i \(-0.335562\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 13.5148 0.431714
\(981\) 0 0
\(982\) − 60.5408i − 1.93193i
\(983\) − 44.2033i − 1.40987i −0.709274 0.704933i \(-0.750977\pi\)
0.709274 0.704933i \(-0.249023\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) − 15.2678i − 0.485242i
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 60.0000 1.90213
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 75.2472i 2.38191i
\(999\) 68.0341 2.15250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.b.h.1084.3 8
5.2 odd 4 9025.2.a.cb.1.6 8
5.3 odd 4 9025.2.a.cb.1.3 8
5.4 even 2 inner 1805.2.b.h.1084.6 yes 8
19.18 odd 2 inner 1805.2.b.h.1084.6 yes 8
95.18 even 4 9025.2.a.cb.1.6 8
95.37 even 4 9025.2.a.cb.1.3 8
95.94 odd 2 CM 1805.2.b.h.1084.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.h.1084.3 8 1.1 even 1 trivial
1805.2.b.h.1084.3 8 95.94 odd 2 CM
1805.2.b.h.1084.6 yes 8 5.4 even 2 inner
1805.2.b.h.1084.6 yes 8 19.18 odd 2 inner
9025.2.a.cb.1.3 8 5.3 odd 4
9025.2.a.cb.1.3 8 95.37 even 4
9025.2.a.cb.1.6 8 5.2 odd 4
9025.2.a.cb.1.6 8 95.18 even 4