Properties

Label 900.2.r.g.851.4
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.4
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.g.551.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34329 - 0.442228i) q^{2} +(1.72840 - 0.112475i) q^{3} +(1.60887 + 1.18808i) q^{4} +(-2.37148 - 0.613258i) q^{6} +(-0.993605 + 0.573658i) q^{7} +(-1.63578 - 2.30743i) q^{8} +(2.97470 - 0.388803i) q^{9} +(0.629615 + 1.09053i) q^{11} +(2.91439 + 1.87252i) q^{12} +(-2.53890 + 4.39750i) q^{13} +(1.58839 - 0.331191i) q^{14} +(1.17692 + 3.82294i) q^{16} +3.29816i q^{17} +(-4.16783 - 0.793219i) q^{18} +3.62414i q^{19} +(-1.65282 + 1.10326i) q^{21} +(-0.363497 - 1.74333i) q^{22} +(1.78942 - 3.09936i) q^{23} +(-3.08680 - 3.80416i) q^{24} +(5.35518 - 4.78436i) q^{26} +(5.09772 - 1.00658i) q^{27} +(-2.28013 - 0.257544i) q^{28} +(0.184856 - 0.106727i) q^{29} +(9.12339 + 5.26739i) q^{31} +(0.109664 - 5.65579i) q^{32} +(1.21088 + 1.81404i) q^{33} +(1.45854 - 4.43039i) q^{34} +(5.24783 + 2.90866i) q^{36} -4.72925 q^{37} +(1.60269 - 4.86827i) q^{38} +(-3.89361 + 7.88619i) q^{39} +(5.81019 + 3.35452i) q^{41} +(2.70811 - 0.751083i) q^{42} +(-2.45255 + 1.41598i) q^{43} +(-0.282666 + 2.50255i) q^{44} +(-3.77433 + 3.37202i) q^{46} +(0.534497 + 0.925776i) q^{47} +(2.46417 + 6.47517i) q^{48} +(-2.84183 + 4.92220i) q^{49} +(0.370961 + 5.70053i) q^{51} +(-9.30936 + 4.05858i) q^{52} -9.12493i q^{53} +(-7.29287 - 0.902219i) q^{54} +(2.94899 + 1.35430i) q^{56} +(0.407625 + 6.26394i) q^{57} +(-0.295514 + 0.0616167i) q^{58} +(4.87018 - 8.43539i) q^{59} +(-5.24521 - 9.08497i) q^{61} +(-9.92600 - 11.1103i) q^{62} +(-2.73264 + 2.09278i) q^{63} +(-2.64846 + 7.54889i) q^{64} +(-0.824347 - 2.97228i) q^{66} +(12.8589 + 7.42407i) q^{67} +(-3.91849 + 5.30631i) q^{68} +(2.74422 - 5.55818i) q^{69} -9.68598 q^{71} +(-5.76308 - 6.22791i) q^{72} -9.08215 q^{73} +(6.35277 + 2.09141i) q^{74} +(-4.30577 + 5.83076i) q^{76} +(-1.25118 - 0.722368i) q^{77} +(8.71775 - 8.87159i) q^{78} +(5.78563 - 3.34033i) q^{79} +(8.69767 - 2.31314i) q^{81} +(-6.32133 - 7.07552i) q^{82} +(2.84920 + 4.93496i) q^{83} +(-3.96994 - 0.188680i) q^{84} +(3.92068 - 0.817489i) q^{86} +(0.307501 - 0.205258i) q^{87} +(1.48640 - 3.23665i) q^{88} +2.26303i q^{89} -5.82584i q^{91} +(6.56123 - 2.86049i) q^{92} +(16.3613 + 8.07798i) q^{93} +(-0.308582 - 1.47996i) q^{94} +(-0.446593 - 9.78778i) q^{96} +(3.86692 + 6.69770i) q^{97} +(5.99415 - 5.35521i) q^{98} +(2.29692 + 2.99919i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34329 0.442228i −0.949851 0.312702i
\(3\) 1.72840 0.112475i 0.997889 0.0649375i
\(4\) 1.60887 + 1.18808i 0.804435 + 0.594041i
\(5\) 0 0
\(6\) −2.37148 0.613258i −0.968152 0.250361i
\(7\) −0.993605 + 0.573658i −0.375547 + 0.216822i −0.675879 0.737012i \(-0.736236\pi\)
0.300332 + 0.953835i \(0.402903\pi\)
\(8\) −1.63578 2.30743i −0.578335 0.815799i
\(9\) 2.97470 0.388803i 0.991566 0.129601i
\(10\) 0 0
\(11\) 0.629615 + 1.09053i 0.189836 + 0.328806i 0.945196 0.326505i \(-0.105871\pi\)
−0.755359 + 0.655311i \(0.772538\pi\)
\(12\) 2.91439 + 1.87252i 0.841312 + 0.540550i
\(13\) −2.53890 + 4.39750i −0.704164 + 1.21965i 0.262828 + 0.964843i \(0.415345\pi\)
−0.966992 + 0.254805i \(0.917989\pi\)
\(14\) 1.58839 0.331191i 0.424515 0.0885145i
\(15\) 0 0
\(16\) 1.17692 + 3.82294i 0.294230 + 0.955735i
\(17\) 3.29816i 0.799922i 0.916532 + 0.399961i \(0.130976\pi\)
−0.916532 + 0.399961i \(0.869024\pi\)
\(18\) −4.16783 0.793219i −0.982367 0.186964i
\(19\) 3.62414i 0.831434i 0.909494 + 0.415717i \(0.136469\pi\)
−0.909494 + 0.415717i \(0.863531\pi\)
\(20\) 0 0
\(21\) −1.65282 + 1.10326i −0.360675 + 0.240752i
\(22\) −0.363497 1.74333i −0.0774978 0.371679i
\(23\) 1.78942 3.09936i 0.373119 0.646261i −0.616924 0.787022i \(-0.711622\pi\)
0.990044 + 0.140761i \(0.0449549\pi\)
\(24\) −3.08680 3.80416i −0.630090 0.776522i
\(25\) 0 0
\(26\) 5.35518 4.78436i 1.05024 0.938290i
\(27\) 5.09772 1.00658i 0.981057 0.193717i
\(28\) −2.28013 0.257544i −0.430905 0.0486713i
\(29\) 0.184856 0.106727i 0.0343270 0.0198187i −0.482738 0.875765i \(-0.660358\pi\)
0.517065 + 0.855946i \(0.327024\pi\)
\(30\) 0 0
\(31\) 9.12339 + 5.26739i 1.63861 + 0.946052i 0.981313 + 0.192420i \(0.0616337\pi\)
0.657297 + 0.753632i \(0.271700\pi\)
\(32\) 0.109664 5.65579i 0.0193860 0.999812i
\(33\) 1.21088 + 1.81404i 0.210787 + 0.315784i
\(34\) 1.45854 4.43039i 0.250137 0.759806i
\(35\) 0 0
\(36\) 5.24783 + 2.90866i 0.874638 + 0.484776i
\(37\) −4.72925 −0.777484 −0.388742 0.921347i \(-0.627090\pi\)
−0.388742 + 0.921347i \(0.627090\pi\)
\(38\) 1.60269 4.86827i 0.259991 0.789738i
\(39\) −3.89361 + 7.88619i −0.623477 + 1.26280i
\(40\) 0 0
\(41\) 5.81019 + 3.35452i 0.907399 + 0.523887i 0.879594 0.475726i \(-0.157815\pi\)
0.0278059 + 0.999613i \(0.491148\pi\)
\(42\) 2.70811 0.751083i 0.417871 0.115895i
\(43\) −2.45255 + 1.41598i −0.374010 + 0.215935i −0.675209 0.737626i \(-0.735947\pi\)
0.301199 + 0.953561i \(0.402613\pi\)
\(44\) −0.282666 + 2.50255i −0.0426135 + 0.377273i
\(45\) 0 0
\(46\) −3.77433 + 3.37202i −0.556495 + 0.497177i
\(47\) 0.534497 + 0.925776i 0.0779644 + 0.135038i 0.902372 0.430959i \(-0.141825\pi\)
−0.824407 + 0.565997i \(0.808491\pi\)
\(48\) 2.46417 + 6.47517i 0.355672 + 0.934611i
\(49\) −2.84183 + 4.92220i −0.405976 + 0.703171i
\(50\) 0 0
\(51\) 0.370961 + 5.70053i 0.0519449 + 0.798233i
\(52\) −9.30936 + 4.05858i −1.29098 + 0.562824i
\(53\) 9.12493i 1.25341i −0.779258 0.626703i \(-0.784404\pi\)
0.779258 0.626703i \(-0.215596\pi\)
\(54\) −7.29287 0.902219i −0.992434 0.122776i
\(55\) 0 0
\(56\) 2.94899 + 1.35430i 0.394076 + 0.180975i
\(57\) 0.407625 + 6.26394i 0.0539912 + 0.829679i
\(58\) −0.295514 + 0.0616167i −0.0388028 + 0.00809067i
\(59\) 4.87018 8.43539i 0.634043 1.09819i −0.352674 0.935746i \(-0.614728\pi\)
0.986717 0.162449i \(-0.0519391\pi\)
\(60\) 0 0
\(61\) −5.24521 9.08497i −0.671580 1.16321i −0.977456 0.211140i \(-0.932282\pi\)
0.305876 0.952072i \(-0.401051\pi\)
\(62\) −9.92600 11.1103i −1.26060 1.41101i
\(63\) −2.73264 + 2.09278i −0.344280 + 0.263665i
\(64\) −2.64846 + 7.54889i −0.331057 + 0.943611i
\(65\) 0 0
\(66\) −0.824347 2.97228i −0.101470 0.365862i
\(67\) 12.8589 + 7.42407i 1.57096 + 0.906994i 0.996052 + 0.0887767i \(0.0282957\pi\)
0.574909 + 0.818218i \(0.305038\pi\)
\(68\) −3.91849 + 5.30631i −0.475186 + 0.643484i
\(69\) 2.74422 5.55818i 0.330365 0.669127i
\(70\) 0 0
\(71\) −9.68598 −1.14951 −0.574757 0.818324i \(-0.694903\pi\)
−0.574757 + 0.818324i \(0.694903\pi\)
\(72\) −5.76308 6.22791i −0.679186 0.733966i
\(73\) −9.08215 −1.06299 −0.531493 0.847063i \(-0.678369\pi\)
−0.531493 + 0.847063i \(0.678369\pi\)
\(74\) 6.35277 + 2.09141i 0.738494 + 0.243121i
\(75\) 0 0
\(76\) −4.30577 + 5.83076i −0.493906 + 0.668834i
\(77\) −1.25118 0.722368i −0.142585 0.0823215i
\(78\) 8.71775 8.87159i 0.987091 1.00451i
\(79\) 5.78563 3.34033i 0.650934 0.375817i −0.137880 0.990449i \(-0.544029\pi\)
0.788814 + 0.614632i \(0.210695\pi\)
\(80\) 0 0
\(81\) 8.69767 2.31314i 0.966407 0.257016i
\(82\) −6.32133 7.07552i −0.698074 0.781361i
\(83\) 2.84920 + 4.93496i 0.312740 + 0.541682i 0.978955 0.204078i \(-0.0654197\pi\)
−0.666214 + 0.745760i \(0.732086\pi\)
\(84\) −3.96994 0.188680i −0.433156 0.0205867i
\(85\) 0 0
\(86\) 3.92068 0.817489i 0.422777 0.0881521i
\(87\) 0.307501 0.205258i 0.0329675 0.0220060i
\(88\) 1.48640 3.23665i 0.158451 0.345028i
\(89\) 2.26303i 0.239881i 0.992781 + 0.119940i \(0.0382703\pi\)
−0.992781 + 0.119940i \(0.961730\pi\)
\(90\) 0 0
\(91\) 5.82584i 0.610714i
\(92\) 6.56123 2.86049i 0.684056 0.298227i
\(93\) 16.3613 + 8.07798i 1.69659 + 0.837648i
\(94\) −0.308582 1.47996i −0.0318278 0.152646i
\(95\) 0 0
\(96\) −0.446593 9.78778i −0.0455802 0.998961i
\(97\) 3.86692 + 6.69770i 0.392626 + 0.680048i 0.992795 0.119825i \(-0.0382333\pi\)
−0.600169 + 0.799873i \(0.704900\pi\)
\(98\) 5.99415 5.35521i 0.605500 0.540958i
\(99\) 2.29692 + 2.99919i 0.230849 + 0.301430i
\(100\) 0 0
\(101\) −16.4845 + 9.51736i −1.64027 + 0.947012i −0.659538 + 0.751671i \(0.729248\pi\)
−0.980735 + 0.195341i \(0.937419\pi\)
\(102\) 2.02262 7.82152i 0.200269 0.774446i
\(103\) 6.64918 + 3.83891i 0.655164 + 0.378259i 0.790432 0.612550i \(-0.209856\pi\)
−0.135268 + 0.990809i \(0.543190\pi\)
\(104\) 14.3000 1.33501i 1.40223 0.130908i
\(105\) 0 0
\(106\) −4.03530 + 12.2575i −0.391943 + 1.19055i
\(107\) 11.8511 1.14569 0.572843 0.819665i \(-0.305840\pi\)
0.572843 + 0.819665i \(0.305840\pi\)
\(108\) 9.39747 + 4.43706i 0.904272 + 0.426956i
\(109\) −1.38567 −0.132723 −0.0663615 0.997796i \(-0.521139\pi\)
−0.0663615 + 0.997796i \(0.521139\pi\)
\(110\) 0 0
\(111\) −8.17402 + 0.531923i −0.775843 + 0.0504879i
\(112\) −3.36245 3.12334i −0.317722 0.295128i
\(113\) −0.504944 0.291530i −0.0475012 0.0274248i 0.476061 0.879412i \(-0.342064\pi\)
−0.523563 + 0.851987i \(0.675397\pi\)
\(114\) 2.22253 8.59456i 0.208159 0.804955i
\(115\) 0 0
\(116\) 0.424210 + 0.0479151i 0.0393869 + 0.00444880i
\(117\) −5.84270 + 14.0684i −0.540158 + 1.30062i
\(118\) −10.2724 + 9.17747i −0.945655 + 0.844855i
\(119\) −1.89202 3.27707i −0.173441 0.300408i
\(120\) 0 0
\(121\) 4.70717 8.15306i 0.427924 0.741187i
\(122\) 3.02822 + 14.5234i 0.274163 + 1.31488i
\(123\) 10.4196 + 5.14443i 0.939504 + 0.463857i
\(124\) 8.42025 + 19.3139i 0.756160 + 1.73444i
\(125\) 0 0
\(126\) 4.59621 1.60276i 0.409463 0.142785i
\(127\) 10.3137i 0.915191i −0.889161 0.457595i \(-0.848711\pi\)
0.889161 0.457595i \(-0.151289\pi\)
\(128\) 6.89598 8.96914i 0.609524 0.792767i
\(129\) −4.07971 + 2.72322i −0.359199 + 0.239766i
\(130\) 0 0
\(131\) 7.18947 12.4525i 0.628147 1.08798i −0.359776 0.933039i \(-0.617147\pi\)
0.987923 0.154944i \(-0.0495196\pi\)
\(132\) −0.207085 + 4.35719i −0.0180244 + 0.379244i
\(133\) −2.07902 3.60096i −0.180274 0.312243i
\(134\) −13.9901 15.6592i −1.20856 1.35275i
\(135\) 0 0
\(136\) 7.61027 5.39506i 0.652576 0.462623i
\(137\) 6.40593 3.69847i 0.547296 0.315981i −0.200735 0.979646i \(-0.564333\pi\)
0.748031 + 0.663664i \(0.231000\pi\)
\(138\) −6.14427 + 6.25270i −0.523035 + 0.532265i
\(139\) 1.44892 + 0.836533i 0.122896 + 0.0709538i 0.560188 0.828366i \(-0.310729\pi\)
−0.437292 + 0.899320i \(0.644062\pi\)
\(140\) 0 0
\(141\) 1.02795 + 1.53999i 0.0865689 + 0.129690i
\(142\) 13.0111 + 4.28341i 1.09187 + 0.359456i
\(143\) −6.39412 −0.534703
\(144\) 4.98735 + 10.9145i 0.415612 + 0.909542i
\(145\) 0 0
\(146\) 12.2000 + 4.01638i 1.00968 + 0.332398i
\(147\) −4.35818 + 8.82714i −0.359457 + 0.728050i
\(148\) −7.60875 5.61874i −0.625435 0.461858i
\(149\) −3.87075 2.23478i −0.317104 0.183080i 0.332997 0.942928i \(-0.391940\pi\)
−0.650101 + 0.759848i \(0.725273\pi\)
\(150\) 0 0
\(151\) 11.2428 6.49105i 0.914928 0.528234i 0.0329149 0.999458i \(-0.489521\pi\)
0.882014 + 0.471224i \(0.156188\pi\)
\(152\) 8.36244 5.92828i 0.678283 0.480847i
\(153\) 1.28233 + 9.81104i 0.103671 + 0.793175i
\(154\) 1.36125 + 1.52366i 0.109692 + 0.122780i
\(155\) 0 0
\(156\) −15.6338 + 8.06191i −1.25170 + 0.645469i
\(157\) −3.67874 + 6.37177i −0.293595 + 0.508522i −0.974657 0.223704i \(-0.928185\pi\)
0.681062 + 0.732226i \(0.261519\pi\)
\(158\) −9.24898 + 1.92848i −0.735809 + 0.153422i
\(159\) −1.02633 15.7715i −0.0813930 1.25076i
\(160\) 0 0
\(161\) 4.10605i 0.323602i
\(162\) −12.7064 0.739125i −0.998312 0.0580711i
\(163\) 6.48159i 0.507678i −0.967247 0.253839i \(-0.918307\pi\)
0.967247 0.253839i \(-0.0816933\pi\)
\(164\) 5.36240 + 12.3000i 0.418733 + 0.960466i
\(165\) 0 0
\(166\) −1.64493 7.88909i −0.127671 0.612312i
\(167\) −6.53280 + 11.3151i −0.505523 + 0.875592i 0.494456 + 0.869203i \(0.335367\pi\)
−0.999980 + 0.00638974i \(0.997966\pi\)
\(168\) 5.24935 + 2.00907i 0.404996 + 0.155003i
\(169\) −6.39203 11.0713i −0.491694 0.851639i
\(170\) 0 0
\(171\) 1.40907 + 10.7807i 0.107755 + 0.824422i
\(172\) −5.62813 0.635705i −0.429141 0.0484720i
\(173\) 4.87725 2.81588i 0.370810 0.214087i −0.303002 0.952990i \(-0.597989\pi\)
0.673812 + 0.738902i \(0.264656\pi\)
\(174\) −0.503834 + 0.139736i −0.0381956 + 0.0105934i
\(175\) 0 0
\(176\) −3.42801 + 3.69044i −0.258396 + 0.278178i
\(177\) 7.46882 15.1275i 0.561391 1.13705i
\(178\) 1.00078 3.03991i 0.0750113 0.227851i
\(179\) −14.3831 −1.07504 −0.537520 0.843251i \(-0.680639\pi\)
−0.537520 + 0.843251i \(0.680639\pi\)
\(180\) 0 0
\(181\) −11.3978 −0.847194 −0.423597 0.905851i \(-0.639233\pi\)
−0.423597 + 0.905851i \(0.639233\pi\)
\(182\) −2.57635 + 7.82581i −0.190972 + 0.580088i
\(183\) −10.0876 15.1125i −0.745699 1.11715i
\(184\) −10.0786 + 0.940914i −0.743007 + 0.0693651i
\(185\) 0 0
\(186\) −18.4057 18.0865i −1.34957 1.32617i
\(187\) −3.59673 + 2.07657i −0.263019 + 0.151854i
\(188\) −0.239963 + 2.12448i −0.0175011 + 0.154944i
\(189\) −4.48769 + 3.92450i −0.326431 + 0.285465i
\(190\) 0 0
\(191\) −8.04586 13.9358i −0.582178 1.00836i −0.995221 0.0976507i \(-0.968867\pi\)
0.413042 0.910712i \(-0.364466\pi\)
\(192\) −3.72852 + 13.3453i −0.269083 + 0.963117i
\(193\) −6.06256 + 10.5007i −0.436393 + 0.755854i −0.997408 0.0719511i \(-0.977077\pi\)
0.561016 + 0.827805i \(0.310411\pi\)
\(194\) −2.23249 10.7070i −0.160284 0.768720i
\(195\) 0 0
\(196\) −10.4201 + 4.54284i −0.744294 + 0.324489i
\(197\) 3.58143i 0.255166i −0.991828 0.127583i \(-0.959278\pi\)
0.991828 0.127583i \(-0.0407219\pi\)
\(198\) −1.75910 5.04455i −0.125014 0.358501i
\(199\) 6.39345i 0.453219i −0.973986 0.226610i \(-0.927236\pi\)
0.973986 0.226610i \(-0.0727642\pi\)
\(200\) 0 0
\(201\) 23.0602 + 11.3854i 1.62654 + 0.803066i
\(202\) 26.3524 5.49467i 1.85415 0.386603i
\(203\) −0.122449 + 0.212089i −0.00859427 + 0.0148857i
\(204\) −6.17587 + 9.61213i −0.432397 + 0.672984i
\(205\) 0 0
\(206\) −7.23413 8.09723i −0.504025 0.564161i
\(207\) 4.11794 9.91539i 0.286216 0.689168i
\(208\) −19.7995 4.53055i −1.37285 0.314137i
\(209\) −3.95221 + 2.28181i −0.273380 + 0.157836i
\(210\) 0 0
\(211\) −12.6167 7.28424i −0.868568 0.501468i −0.00169595 0.999999i \(-0.500540\pi\)
−0.866872 + 0.498531i \(0.833873\pi\)
\(212\) 10.8412 14.6808i 0.744575 1.00828i
\(213\) −16.7412 + 1.08943i −1.14709 + 0.0746466i
\(214\) −15.9195 5.24088i −1.08823 0.358259i
\(215\) 0 0
\(216\) −10.6614 10.1161i −0.725414 0.688313i
\(217\) −12.0867 −0.820501
\(218\) 1.86136 + 0.612781i 0.126067 + 0.0415028i
\(219\) −15.6975 + 1.02152i −1.06074 + 0.0690276i
\(220\) 0 0
\(221\) −14.5037 8.37370i −0.975623 0.563276i
\(222\) 11.2153 + 2.90025i 0.752723 + 0.194652i
\(223\) 1.07945 0.623219i 0.0722851 0.0417338i −0.463422 0.886138i \(-0.653379\pi\)
0.535707 + 0.844404i \(0.320045\pi\)
\(224\) 3.13553 + 5.68253i 0.209501 + 0.379680i
\(225\) 0 0
\(226\) 0.549365 + 0.614910i 0.0365432 + 0.0409032i
\(227\) −5.42338 9.39358i −0.359963 0.623474i 0.627992 0.778220i \(-0.283877\pi\)
−0.987954 + 0.154747i \(0.950544\pi\)
\(228\) −6.78626 + 10.5621i −0.449431 + 0.699495i
\(229\) 12.0859 20.9333i 0.798656 1.38331i −0.121836 0.992550i \(-0.538878\pi\)
0.920492 0.390762i \(-0.127788\pi\)
\(230\) 0 0
\(231\) −2.24378 1.10781i −0.147630 0.0728886i
\(232\) −0.548649 0.251961i −0.0360205 0.0165421i
\(233\) 8.94645i 0.586102i −0.956097 0.293051i \(-0.905329\pi\)
0.956097 0.293051i \(-0.0946705\pi\)
\(234\) 14.0699 16.3141i 0.919777 1.06649i
\(235\) 0 0
\(236\) 17.8574 7.78527i 1.16242 0.506778i
\(237\) 9.62415 6.42416i 0.625156 0.417294i
\(238\) 1.09232 + 5.23877i 0.0708046 + 0.339579i
\(239\) −7.59415 + 13.1535i −0.491225 + 0.850826i −0.999949 0.0101033i \(-0.996784\pi\)
0.508724 + 0.860930i \(0.330117\pi\)
\(240\) 0 0
\(241\) −0.235922 0.408630i −0.0151971 0.0263222i 0.858327 0.513103i \(-0.171504\pi\)
−0.873524 + 0.486781i \(0.838171\pi\)
\(242\) −9.92861 + 8.87030i −0.638235 + 0.570204i
\(243\) 14.7728 4.97629i 0.947678 0.319229i
\(244\) 2.35484 20.8483i 0.150753 1.33467i
\(245\) 0 0
\(246\) −11.7216 11.5183i −0.747340 0.734381i
\(247\) −15.9372 9.20132i −1.01406 0.585466i
\(248\) −2.76971 29.6679i −0.175877 1.88391i
\(249\) 5.47960 + 8.20909i 0.347256 + 0.520230i
\(250\) 0 0
\(251\) −24.1551 −1.52465 −0.762327 0.647192i \(-0.775943\pi\)
−0.762327 + 0.647192i \(0.775943\pi\)
\(252\) −6.88285 + 0.120406i −0.433579 + 0.00758484i
\(253\) 4.50658 0.283326
\(254\) −4.56099 + 13.8543i −0.286182 + 0.869295i
\(255\) 0 0
\(256\) −13.2297 + 8.99858i −0.826858 + 0.562411i
\(257\) −12.7715 7.37360i −0.796661 0.459953i 0.0456410 0.998958i \(-0.485467\pi\)
−0.842302 + 0.539005i \(0.818800\pi\)
\(258\) 6.68453 1.85392i 0.416161 0.115420i
\(259\) 4.69901 2.71297i 0.291982 0.168576i
\(260\) 0 0
\(261\) 0.508396 0.389353i 0.0314689 0.0241003i
\(262\) −15.1644 + 13.5480i −0.936861 + 0.836998i
\(263\) 0.654834 + 1.13421i 0.0403788 + 0.0699381i 0.885509 0.464623i \(-0.153810\pi\)
−0.845130 + 0.534561i \(0.820477\pi\)
\(264\) 2.20504 5.76140i 0.135711 0.354589i
\(265\) 0 0
\(266\) 1.20028 + 5.75654i 0.0735939 + 0.352956i
\(267\) 0.254534 + 3.91141i 0.0155773 + 0.239374i
\(268\) 11.8678 + 27.2217i 0.724942 + 1.66283i
\(269\) 21.5574i 1.31438i 0.753725 + 0.657190i \(0.228255\pi\)
−0.753725 + 0.657190i \(0.771745\pi\)
\(270\) 0 0
\(271\) 1.58111i 0.0960453i 0.998846 + 0.0480227i \(0.0152920\pi\)
−0.998846 + 0.0480227i \(0.984708\pi\)
\(272\) −12.6087 + 3.88167i −0.764513 + 0.235361i
\(273\) −0.655262 10.0694i −0.0396583 0.609425i
\(274\) −10.2406 + 2.13524i −0.618658 + 0.128995i
\(275\) 0 0
\(276\) 11.0187 5.68203i 0.663246 0.342018i
\(277\) −3.97015 6.87650i −0.238543 0.413169i 0.721753 0.692150i \(-0.243337\pi\)
−0.960297 + 0.278981i \(0.910003\pi\)
\(278\) −1.57638 1.76446i −0.0945451 0.105825i
\(279\) 29.1873 + 12.1217i 1.74740 + 0.725708i
\(280\) 0 0
\(281\) −5.88352 + 3.39685i −0.350982 + 0.202639i −0.665118 0.746739i \(-0.731619\pi\)
0.314136 + 0.949378i \(0.398285\pi\)
\(282\) −0.699809 2.52324i −0.0416730 0.150257i
\(283\) 6.58918 + 3.80426i 0.391686 + 0.226140i 0.682890 0.730521i \(-0.260723\pi\)
−0.291204 + 0.956661i \(0.594056\pi\)
\(284\) −15.5835 11.5077i −0.924709 0.682859i
\(285\) 0 0
\(286\) 8.58918 + 2.82766i 0.507889 + 0.167203i
\(287\) −7.69738 −0.454362
\(288\) −1.87277 16.8669i −0.110354 0.993892i
\(289\) 6.12213 0.360126
\(290\) 0 0
\(291\) 7.43689 + 11.1413i 0.435958 + 0.653117i
\(292\) −14.6120 10.7903i −0.855102 0.631457i
\(293\) 8.58215 + 4.95491i 0.501375 + 0.289469i 0.729281 0.684214i \(-0.239855\pi\)
−0.227906 + 0.973683i \(0.573188\pi\)
\(294\) 9.75792 9.93012i 0.569094 0.579136i
\(295\) 0 0
\(296\) 7.73601 + 10.9124i 0.449646 + 0.634271i
\(297\) 4.30731 + 4.92544i 0.249936 + 0.285803i
\(298\) 4.21127 + 4.71372i 0.243952 + 0.273058i
\(299\) 9.08630 + 15.7379i 0.525474 + 0.910148i
\(300\) 0 0
\(301\) 1.62458 2.81385i 0.0936391 0.162188i
\(302\) −17.9729 + 3.74749i −1.03423 + 0.215644i
\(303\) −27.4213 + 18.3039i −1.57531 + 1.05153i
\(304\) −13.8549 + 4.26531i −0.794630 + 0.244633i
\(305\) 0 0
\(306\) 2.61616 13.7462i 0.149556 0.785816i
\(307\) 7.97501i 0.455158i 0.973760 + 0.227579i \(0.0730810\pi\)
−0.973760 + 0.227579i \(0.926919\pi\)
\(308\) −1.15475 2.64870i −0.0657979 0.150924i
\(309\) 11.9242 + 5.88728i 0.678344 + 0.334916i
\(310\) 0 0
\(311\) 3.50301 6.06739i 0.198637 0.344050i −0.749449 0.662062i \(-0.769682\pi\)
0.948087 + 0.318011i \(0.103015\pi\)
\(312\) 24.5659 3.91582i 1.39077 0.221689i
\(313\) −7.35028 12.7311i −0.415462 0.719602i 0.580014 0.814606i \(-0.303047\pi\)
−0.995477 + 0.0950041i \(0.969714\pi\)
\(314\) 7.75940 6.93230i 0.437888 0.391212i
\(315\) 0 0
\(316\) 13.2769 + 1.49965i 0.746885 + 0.0843616i
\(317\) −2.01274 + 1.16205i −0.113047 + 0.0652675i −0.555457 0.831545i \(-0.687457\pi\)
0.442411 + 0.896813i \(0.354123\pi\)
\(318\) −5.59593 + 21.6396i −0.313804 + 1.21349i
\(319\) 0.232777 + 0.134394i 0.0130330 + 0.00752460i
\(320\) 0 0
\(321\) 20.4833 1.33295i 1.14327 0.0743980i
\(322\) 1.81581 5.51563i 0.101191 0.307374i
\(323\) −11.9530 −0.665082
\(324\) 16.7416 + 6.61200i 0.930089 + 0.367334i
\(325\) 0 0
\(326\) −2.86634 + 8.70668i −0.158752 + 0.482218i
\(327\) −2.39498 + 0.155853i −0.132443 + 0.00861870i
\(328\) −1.76388 18.8938i −0.0973938 1.04324i
\(329\) −1.06216 0.613237i −0.0585587 0.0338089i
\(330\) 0 0
\(331\) 13.0699 7.54592i 0.718388 0.414762i −0.0957711 0.995403i \(-0.530532\pi\)
0.814159 + 0.580642i \(0.197198\pi\)
\(332\) −1.27915 + 11.3248i −0.0702025 + 0.621528i
\(333\) −14.0681 + 1.83875i −0.770927 + 0.100763i
\(334\) 13.7793 12.3106i 0.753972 0.673604i
\(335\) 0 0
\(336\) −6.16295 5.02018i −0.336216 0.273873i
\(337\) 10.8759 18.8375i 0.592445 1.02615i −0.401456 0.915878i \(-0.631496\pi\)
0.993902 0.110268i \(-0.0351708\pi\)
\(338\) 3.69032 + 17.6987i 0.200727 + 0.962685i
\(339\) −0.905533 0.447085i −0.0491818 0.0242823i
\(340\) 0 0
\(341\) 13.2657i 0.718380i
\(342\) 2.87473 15.1048i 0.155448 0.816773i
\(343\) 14.5522i 0.785744i
\(344\) 7.27910 + 3.34285i 0.392463 + 0.180235i
\(345\) 0 0
\(346\) −7.79683 + 1.62570i −0.419160 + 0.0873979i
\(347\) 13.6590 23.6580i 0.733251 1.27003i −0.222236 0.974993i \(-0.571335\pi\)
0.955487 0.295035i \(-0.0953312\pi\)
\(348\) 0.738592 + 0.0351032i 0.0395927 + 0.00188173i
\(349\) 1.77750 + 3.07872i 0.0951472 + 0.164800i 0.909670 0.415332i \(-0.136334\pi\)
−0.814523 + 0.580132i \(0.803001\pi\)
\(350\) 0 0
\(351\) −8.51615 + 24.9729i −0.454559 + 1.33295i
\(352\) 6.23683 3.44138i 0.332424 0.183426i
\(353\) −2.26731 + 1.30903i −0.120677 + 0.0696727i −0.559123 0.829085i \(-0.688862\pi\)
0.438447 + 0.898757i \(0.355529\pi\)
\(354\) −16.7226 + 17.0177i −0.888796 + 0.904480i
\(355\) 0 0
\(356\) −2.68867 + 3.64092i −0.142499 + 0.192968i
\(357\) −3.63874 5.45127i −0.192583 0.288512i
\(358\) 19.3207 + 6.36059i 1.02113 + 0.336168i
\(359\) −21.9608 −1.15904 −0.579522 0.814956i \(-0.696761\pi\)
−0.579522 + 0.814956i \(0.696761\pi\)
\(360\) 0 0
\(361\) 5.86564 0.308718
\(362\) 15.3106 + 5.04044i 0.804709 + 0.264920i
\(363\) 7.21883 14.6211i 0.378890 0.767411i
\(364\) 6.92158 9.37302i 0.362790 0.491280i
\(365\) 0 0
\(366\) 6.86748 + 24.7615i 0.358969 + 1.29430i
\(367\) −17.5533 + 10.1344i −0.916276 + 0.529012i −0.882445 0.470415i \(-0.844104\pi\)
−0.0338310 + 0.999428i \(0.510771\pi\)
\(368\) 13.9547 + 3.19313i 0.727437 + 0.166454i
\(369\) 18.5878 + 7.71966i 0.967643 + 0.401869i
\(370\) 0 0
\(371\) 5.23459 + 9.06658i 0.271767 + 0.470713i
\(372\) 16.7258 + 32.4350i 0.867194 + 1.68167i
\(373\) 6.18110 10.7060i 0.320045 0.554334i −0.660452 0.750868i \(-0.729635\pi\)
0.980497 + 0.196534i \(0.0629686\pi\)
\(374\) 5.74978 1.19887i 0.297314 0.0619921i
\(375\) 0 0
\(376\) 1.26184 2.74768i 0.0650746 0.141701i
\(377\) 1.08388i 0.0558224i
\(378\) 7.76380 3.28717i 0.399327 0.169074i
\(379\) 6.92628i 0.355779i −0.984050 0.177889i \(-0.943073\pi\)
0.984050 0.177889i \(-0.0569270\pi\)
\(380\) 0 0
\(381\) −1.16003 17.8261i −0.0594302 0.913259i
\(382\) 4.64513 + 22.2780i 0.237665 + 1.13984i
\(383\) 0.722230 1.25094i 0.0369042 0.0639200i −0.846983 0.531619i \(-0.821584\pi\)
0.883888 + 0.467699i \(0.154917\pi\)
\(384\) 10.9102 16.2778i 0.556758 0.830675i
\(385\) 0 0
\(386\) 12.7875 11.4244i 0.650865 0.581488i
\(387\) −6.74506 + 5.16567i −0.342871 + 0.262586i
\(388\) −1.73606 + 15.3699i −0.0881349 + 0.780290i
\(389\) −0.707497 + 0.408474i −0.0358715 + 0.0207104i −0.517829 0.855484i \(-0.673259\pi\)
0.481957 + 0.876195i \(0.339926\pi\)
\(390\) 0 0
\(391\) 10.2222 + 5.90178i 0.516958 + 0.298466i
\(392\) 16.0062 1.49430i 0.808437 0.0754734i
\(393\) 11.0256 22.3315i 0.556170 1.12648i
\(394\) −1.58381 + 4.81090i −0.0797910 + 0.242370i
\(395\) 0 0
\(396\) 0.132151 + 7.55423i 0.00664082 + 0.379614i
\(397\) 29.4855 1.47984 0.739918 0.672697i \(-0.234864\pi\)
0.739918 + 0.672697i \(0.234864\pi\)
\(398\) −2.82736 + 8.58827i −0.141723 + 0.430491i
\(399\) −3.99838 5.99004i −0.200169 0.299877i
\(400\) 0 0
\(401\) −1.19058 0.687380i −0.0594546 0.0343261i 0.469978 0.882678i \(-0.344262\pi\)
−0.529433 + 0.848352i \(0.677595\pi\)
\(402\) −25.9417 25.4918i −1.29385 1.27142i
\(403\) −46.3268 + 26.7468i −2.30770 + 1.33235i
\(404\) −37.8289 4.27282i −1.88206 0.212581i
\(405\) 0 0
\(406\) 0.258277 0.230747i 0.0128181 0.0114518i
\(407\) −2.97761 5.15737i −0.147595 0.255642i
\(408\) 12.5467 10.1808i 0.621157 0.504023i
\(409\) 1.66076 2.87653i 0.0821195 0.142235i −0.822041 0.569429i \(-0.807164\pi\)
0.904160 + 0.427194i \(0.140498\pi\)
\(410\) 0 0
\(411\) 10.6560 7.11292i 0.525621 0.350854i
\(412\) 6.13673 + 14.0761i 0.302335 + 0.693479i
\(413\) 11.1753i 0.549899i
\(414\) −9.91646 + 11.4982i −0.487367 + 0.565106i
\(415\) 0 0
\(416\) 24.5929 + 14.8417i 1.20577 + 0.727676i
\(417\) 2.59839 + 1.28289i 0.127244 + 0.0628235i
\(418\) 6.31806 1.31736i 0.309026 0.0644343i
\(419\) 17.6346 30.5441i 0.861508 1.49218i −0.00896441 0.999960i \(-0.502853\pi\)
0.870473 0.492217i \(-0.163813\pi\)
\(420\) 0 0
\(421\) −14.6171 25.3175i −0.712392 1.23390i −0.963957 0.266059i \(-0.914278\pi\)
0.251565 0.967841i \(-0.419055\pi\)
\(422\) 13.7266 + 15.3643i 0.668200 + 0.747923i
\(423\) 1.94991 + 2.54609i 0.0948079 + 0.123795i
\(424\) −21.0551 + 14.9264i −1.02253 + 0.724888i
\(425\) 0 0
\(426\) 22.9701 + 5.94000i 1.11290 + 0.287794i
\(427\) 10.4233 + 6.01792i 0.504421 + 0.291227i
\(428\) 19.0668 + 14.0801i 0.921630 + 0.680585i
\(429\) −11.0516 + 0.719179i −0.533575 + 0.0347223i
\(430\) 0 0
\(431\) 15.7242 0.757408 0.378704 0.925518i \(-0.376370\pi\)
0.378704 + 0.925518i \(0.376370\pi\)
\(432\) 9.84772 + 18.3036i 0.473798 + 0.880633i
\(433\) 40.6371 1.95289 0.976447 0.215758i \(-0.0692222\pi\)
0.976447 + 0.215758i \(0.0692222\pi\)
\(434\) 16.2360 + 5.34509i 0.779354 + 0.256573i
\(435\) 0 0
\(436\) −2.22936 1.64629i −0.106767 0.0788429i
\(437\) 11.2325 + 6.48509i 0.537324 + 0.310224i
\(438\) 21.5381 + 5.56970i 1.02913 + 0.266130i
\(439\) −19.5385 + 11.2806i −0.932523 + 0.538392i −0.887608 0.460599i \(-0.847635\pi\)
−0.0449140 + 0.998991i \(0.514301\pi\)
\(440\) 0 0
\(441\) −6.53983 + 15.7470i −0.311421 + 0.749856i
\(442\) 15.7796 + 17.6623i 0.750559 + 0.840108i
\(443\) −7.20347 12.4768i −0.342247 0.592789i 0.642603 0.766200i \(-0.277855\pi\)
−0.984850 + 0.173410i \(0.944521\pi\)
\(444\) −13.7829 8.85561i −0.654107 0.420269i
\(445\) 0 0
\(446\) −1.72562 + 0.359804i −0.0817104 + 0.0170372i
\(447\) −6.94154 3.42722i −0.328324 0.162102i
\(448\) −1.69896 9.01992i −0.0802682 0.426151i
\(449\) 14.7482i 0.696008i −0.937493 0.348004i \(-0.886860\pi\)
0.937493 0.348004i \(-0.113140\pi\)
\(450\) 0 0
\(451\) 8.44822i 0.397811i
\(452\) −0.466028 1.06895i −0.0219201 0.0502791i
\(453\) 18.7020 12.4836i 0.878695 0.586532i
\(454\) 3.13109 + 15.0167i 0.146949 + 0.704768i
\(455\) 0 0
\(456\) 13.7868 11.1870i 0.645627 0.523878i
\(457\) −0.510332 0.883921i −0.0238723 0.0413481i 0.853842 0.520532i \(-0.174266\pi\)
−0.877715 + 0.479183i \(0.840933\pi\)
\(458\) −25.4921 + 22.7749i −1.19117 + 1.06420i
\(459\) 3.31988 + 16.8131i 0.154959 + 0.784769i
\(460\) 0 0
\(461\) 0.679602 0.392368i 0.0316522 0.0182744i −0.484090 0.875018i \(-0.660849\pi\)
0.515743 + 0.856744i \(0.327516\pi\)
\(462\) 2.52415 + 2.48038i 0.117434 + 0.115398i
\(463\) 28.2095 + 16.2867i 1.31101 + 0.756909i 0.982263 0.187510i \(-0.0600418\pi\)
0.328743 + 0.944420i \(0.393375\pi\)
\(464\) 0.625571 + 0.581086i 0.0290414 + 0.0269762i
\(465\) 0 0
\(466\) −3.95637 + 12.0177i −0.183275 + 0.556709i
\(467\) −26.0874 −1.20718 −0.603590 0.797295i \(-0.706264\pi\)
−0.603590 + 0.797295i \(0.706264\pi\)
\(468\) −26.1145 + 15.6926i −1.20714 + 0.725389i
\(469\) −17.0355 −0.786627
\(470\) 0 0
\(471\) −5.64165 + 11.4267i −0.259954 + 0.526514i
\(472\) −27.4306 + 2.56085i −1.26260 + 0.117872i
\(473\) −3.08833 1.78305i −0.142001 0.0819845i
\(474\) −15.7690 + 4.37345i −0.724294 + 0.200879i
\(475\) 0 0
\(476\) 0.849422 7.52025i 0.0389332 0.344690i
\(477\) −3.54780 27.1439i −0.162443 1.24284i
\(478\) 16.0180 14.3106i 0.732646 0.654551i
\(479\) 15.0858 + 26.1294i 0.689288 + 1.19388i 0.972068 + 0.234698i \(0.0754101\pi\)
−0.282780 + 0.959185i \(0.591257\pi\)
\(480\) 0 0
\(481\) 12.0071 20.7969i 0.547477 0.948257i
\(482\) 0.136205 + 0.653241i 0.00620399 + 0.0297543i
\(483\) 0.461829 + 7.09688i 0.0210139 + 0.322919i
\(484\) 17.2597 7.52469i 0.784533 0.342031i
\(485\) 0 0
\(486\) −22.0449 + 0.151658i −0.999976 + 0.00687935i
\(487\) 22.2802i 1.00961i −0.863233 0.504806i \(-0.831564\pi\)
0.863233 0.504806i \(-0.168436\pi\)
\(488\) −12.3829 + 26.9639i −0.560549 + 1.22060i
\(489\) −0.729018 11.2028i −0.0329673 0.506606i
\(490\) 0 0
\(491\) −10.7024 + 18.5371i −0.482992 + 0.836566i −0.999809 0.0195292i \(-0.993783\pi\)
0.516817 + 0.856096i \(0.327117\pi\)
\(492\) 10.6518 + 20.6561i 0.480219 + 0.931247i
\(493\) 0.352002 + 0.609686i 0.0158534 + 0.0274589i
\(494\) 17.3392 + 19.4079i 0.780126 + 0.873203i
\(495\) 0 0
\(496\) −9.39943 + 41.0775i −0.422047 + 1.84443i
\(497\) 9.62404 5.55644i 0.431697 0.249240i
\(498\) −3.73042 13.4504i −0.167164 0.602729i
\(499\) 14.4771 + 8.35834i 0.648083 + 0.374171i 0.787721 0.616032i \(-0.211261\pi\)
−0.139638 + 0.990203i \(0.544594\pi\)
\(500\) 0 0
\(501\) −10.0186 + 20.2918i −0.447598 + 0.906572i
\(502\) 32.4473 + 10.6820i 1.44819 + 0.476763i
\(503\) 37.4827 1.67127 0.835635 0.549285i \(-0.185100\pi\)
0.835635 + 0.549285i \(0.185100\pi\)
\(504\) 9.29892 + 2.88205i 0.414207 + 0.128377i
\(505\) 0 0
\(506\) −6.05365 1.99293i −0.269118 0.0885967i
\(507\) −12.2932 18.4167i −0.545960 0.817912i
\(508\) 12.2535 16.5934i 0.543661 0.736211i
\(509\) −23.3737 13.4948i −1.03602 0.598148i −0.117318 0.993094i \(-0.537430\pi\)
−0.918704 + 0.394947i \(0.870763\pi\)
\(510\) 0 0
\(511\) 9.02407 5.21005i 0.399201 0.230479i
\(512\) 21.7508 6.23717i 0.961259 0.275647i
\(513\) 3.64800 + 18.4748i 0.161063 + 0.815684i
\(514\) 13.8950 + 15.5528i 0.612881 + 0.686004i
\(515\) 0 0
\(516\) −9.79913 0.465725i −0.431383 0.0205024i
\(517\) −0.673055 + 1.16577i −0.0296009 + 0.0512703i
\(518\) −7.51190 + 1.56629i −0.330054 + 0.0688186i
\(519\) 8.11309 5.41552i 0.356125 0.237715i
\(520\) 0 0
\(521\) 26.5168i 1.16172i 0.814003 + 0.580860i \(0.197284\pi\)
−0.814003 + 0.580860i \(0.802716\pi\)
\(522\) −0.855107 + 0.298188i −0.0374270 + 0.0130513i
\(523\) 31.5217i 1.37835i −0.724596 0.689174i \(-0.757974\pi\)
0.724596 0.689174i \(-0.242026\pi\)
\(524\) 26.3615 11.4928i 1.15161 0.502065i
\(525\) 0 0
\(526\) −0.378056 1.81316i −0.0164840 0.0790574i
\(527\) −17.3727 + 30.0904i −0.756767 + 1.31076i
\(528\) −5.50987 + 6.76411i −0.239786 + 0.294370i
\(529\) 5.09598 + 8.82649i 0.221564 + 0.383760i
\(530\) 0 0
\(531\) 11.2076 26.9863i 0.486369 1.17111i
\(532\) 0.933375 8.26352i 0.0404669 0.358269i
\(533\) −29.5030 + 17.0336i −1.27792 + 0.737805i
\(534\) 1.38782 5.36673i 0.0600569 0.232241i
\(535\) 0 0
\(536\) −3.90374 41.8150i −0.168616 1.80613i
\(537\) −24.8596 + 1.61774i −1.07277 + 0.0698105i
\(538\) 9.53329 28.9579i 0.411009 1.24846i
\(539\) −7.15705 −0.308276
\(540\) 0 0
\(541\) −0.0570124 −0.00245116 −0.00122558 0.999999i \(-0.500390\pi\)
−0.00122558 + 0.999999i \(0.500390\pi\)
\(542\) 0.699209 2.12389i 0.0300336 0.0912288i
\(543\) −19.7000 + 1.28197i −0.845406 + 0.0550147i
\(544\) 18.6537 + 0.361689i 0.799771 + 0.0155073i
\(545\) 0 0
\(546\) −3.57274 + 13.8159i −0.152899 + 0.591265i
\(547\) −3.09710 + 1.78811i −0.132422 + 0.0764541i −0.564748 0.825264i \(-0.691027\pi\)
0.432325 + 0.901718i \(0.357693\pi\)
\(548\) 14.7004 + 1.66043i 0.627970 + 0.0709300i
\(549\) −19.1352 24.9857i −0.816670 1.06636i
\(550\) 0 0
\(551\) 0.386793 + 0.669944i 0.0164779 + 0.0285406i
\(552\) −17.3140 + 2.75987i −0.736935 + 0.117468i
\(553\) −3.83242 + 6.63795i −0.162971 + 0.282274i
\(554\) 2.29209 + 10.9929i 0.0973817 + 0.467042i
\(555\) 0 0
\(556\) 1.33725 + 3.06730i 0.0567119 + 0.130083i
\(557\) 15.0861i 0.639217i −0.947550 0.319609i \(-0.896449\pi\)
0.947550 0.319609i \(-0.103551\pi\)
\(558\) −33.8466 29.1904i −1.43284 1.23573i
\(559\) 14.3801i 0.608214i
\(560\) 0 0
\(561\) −5.98301 + 3.99368i −0.252603 + 0.168613i
\(562\) 9.40548 1.96111i 0.396746 0.0827244i
\(563\) −4.21208 + 7.29553i −0.177518 + 0.307470i −0.941030 0.338324i \(-0.890140\pi\)
0.763512 + 0.645794i \(0.223473\pi\)
\(564\) −0.175800 + 3.69893i −0.00740250 + 0.155753i
\(565\) 0 0
\(566\) −7.16884 8.02416i −0.301329 0.337280i
\(567\) −7.31509 + 7.28784i −0.307205 + 0.306060i
\(568\) 15.8441 + 22.3497i 0.664804 + 0.937773i
\(569\) 3.05453 1.76353i 0.128053 0.0739312i −0.434605 0.900621i \(-0.643112\pi\)
0.562658 + 0.826690i \(0.309779\pi\)
\(570\) 0 0
\(571\) 29.6633 + 17.1261i 1.24137 + 0.716705i 0.969373 0.245593i \(-0.0789826\pi\)
0.271997 + 0.962298i \(0.412316\pi\)
\(572\) −10.2873 7.59675i −0.430134 0.317636i
\(573\) −15.4739 23.1817i −0.646430 0.968429i
\(574\) 10.3398 + 3.40400i 0.431576 + 0.142080i
\(575\) 0 0
\(576\) −4.94334 + 23.4854i −0.205973 + 0.978558i
\(577\) 1.78616 0.0743587 0.0371793 0.999309i \(-0.488163\pi\)
0.0371793 + 0.999309i \(0.488163\pi\)
\(578\) −8.22382 2.70738i −0.342066 0.112612i
\(579\) −9.29744 + 18.8312i −0.386388 + 0.782597i
\(580\) 0 0
\(581\) −5.66196 3.26893i −0.234898 0.135618i
\(582\) −5.06290 18.2549i −0.209864 0.756689i
\(583\) 9.95098 5.74520i 0.412127 0.237942i
\(584\) 14.8564 + 20.9564i 0.614762 + 0.867183i
\(585\) 0 0
\(586\) −9.33714 10.4512i −0.385714 0.431733i
\(587\) 7.84570 + 13.5891i 0.323826 + 0.560884i 0.981274 0.192616i \(-0.0616973\pi\)
−0.657448 + 0.753500i \(0.728364\pi\)
\(588\) −17.4991 + 9.02383i −0.721651 + 0.372136i
\(589\) −19.0898 + 33.0644i −0.786579 + 1.36240i
\(590\) 0 0
\(591\) −0.402821 6.19012i −0.0165698 0.254627i
\(592\) −5.56595 18.0796i −0.228759 0.743069i
\(593\) 46.6356i 1.91510i 0.288273 + 0.957548i \(0.406919\pi\)
−0.288273 + 0.957548i \(0.593081\pi\)
\(594\) −3.60781 8.52112i −0.148030 0.349626i
\(595\) 0 0
\(596\) −3.57243 8.19424i −0.146332 0.335649i
\(597\) −0.719103 11.0504i −0.0294309 0.452263i
\(598\) −5.24580 25.1589i −0.214517 1.02882i
\(599\) 21.3211 36.9292i 0.871156 1.50889i 0.0103549 0.999946i \(-0.496704\pi\)
0.860802 0.508941i \(-0.169963\pi\)
\(600\) 0 0
\(601\) 10.7999 + 18.7061i 0.440539 + 0.763036i 0.997729 0.0673489i \(-0.0214541\pi\)
−0.557191 + 0.830385i \(0.688121\pi\)
\(602\) −3.42664 + 3.06139i −0.139660 + 0.124773i
\(603\) 41.1377 + 17.0848i 1.67526 + 0.695747i
\(604\) 25.8001 + 2.91416i 1.04979 + 0.118576i
\(605\) 0 0
\(606\) 44.9294 12.4609i 1.82513 0.506191i
\(607\) 2.59588 + 1.49873i 0.105363 + 0.0608316i 0.551756 0.834006i \(-0.313958\pi\)
−0.446392 + 0.894837i \(0.647291\pi\)
\(608\) 20.4974 + 0.397436i 0.831278 + 0.0161182i
\(609\) −0.187786 + 0.380346i −0.00760949 + 0.0154124i
\(610\) 0 0
\(611\) −5.42814 −0.219599
\(612\) −9.59321 + 17.3082i −0.387783 + 0.699642i
\(613\) 14.2081 0.573858 0.286929 0.957952i \(-0.407366\pi\)
0.286929 + 0.957952i \(0.407366\pi\)
\(614\) 3.52677 10.7128i 0.142329 0.432332i
\(615\) 0 0
\(616\) 0.379837 + 4.06864i 0.0153041 + 0.163930i
\(617\) 22.9723 + 13.2631i 0.924832 + 0.533952i 0.885173 0.465262i \(-0.154040\pi\)
0.0396583 + 0.999213i \(0.487373\pi\)
\(618\) −13.4142 13.1816i −0.539597 0.530240i
\(619\) 13.2974 7.67724i 0.534466 0.308574i −0.208367 0.978051i \(-0.566815\pi\)
0.742833 + 0.669476i \(0.233481\pi\)
\(620\) 0 0
\(621\) 6.00219 17.6009i 0.240859 0.706299i
\(622\) −7.38874 + 6.60115i −0.296261 + 0.264682i
\(623\) −1.29821 2.24856i −0.0520115 0.0900866i
\(624\) −34.7309 5.60364i −1.39035 0.224325i
\(625\) 0 0
\(626\) 4.24355 + 20.3520i 0.169606 + 0.813431i
\(627\) −6.57434 + 4.38840i −0.262554 + 0.175256i
\(628\) −13.4888 + 5.88069i −0.538262 + 0.234665i
\(629\) 15.5978i 0.621927i
\(630\) 0 0
\(631\) 4.30213i 0.171265i 0.996327 + 0.0856326i \(0.0272911\pi\)
−0.996327 + 0.0856326i \(0.972709\pi\)
\(632\) −17.1716 7.88588i −0.683049 0.313684i
\(633\) −22.6259 11.1710i −0.899299 0.444007i
\(634\) 3.21759 0.670890i 0.127787 0.0266445i
\(635\) 0 0
\(636\) 17.0866 26.5936i 0.677528 1.05451i
\(637\) −14.4303 24.9939i −0.571748 0.990296i
\(638\) −0.253255 0.283470i −0.0100264 0.0112227i
\(639\) −28.8129 + 3.76593i −1.13982 + 0.148978i
\(640\) 0 0
\(641\) 26.3204 15.1961i 1.03959 0.600209i 0.119875 0.992789i \(-0.461751\pi\)
0.919718 + 0.392580i \(0.128417\pi\)
\(642\) −28.1046 7.26776i −1.10920 0.286836i
\(643\) −23.2202 13.4062i −0.915714 0.528688i −0.0334490 0.999440i \(-0.510649\pi\)
−0.882265 + 0.470753i \(0.843982\pi\)
\(644\) −4.87833 + 6.60610i −0.192233 + 0.260317i
\(645\) 0 0
\(646\) 16.0564 + 5.28594i 0.631729 + 0.207973i
\(647\) 9.51887 0.374225 0.187113 0.982338i \(-0.440087\pi\)
0.187113 + 0.982338i \(0.440087\pi\)
\(648\) −19.5649 16.2855i −0.768580 0.639753i
\(649\) 12.2654 0.481457
\(650\) 0 0
\(651\) −20.8907 + 1.35946i −0.818769 + 0.0532813i
\(652\) 7.70067 10.4280i 0.301581 0.408393i
\(653\) −13.3577 7.71208i −0.522728 0.301797i 0.215322 0.976543i \(-0.430920\pi\)
−0.738050 + 0.674746i \(0.764253\pi\)
\(654\) 3.28608 + 0.849772i 0.128496 + 0.0332287i
\(655\) 0 0
\(656\) −5.98598 + 26.1600i −0.233713 + 1.02138i
\(657\) −27.0167 + 3.53116i −1.05402 + 0.137764i
\(658\) 1.15560 + 1.29347i 0.0450499 + 0.0504248i
\(659\) −17.3345 30.0242i −0.675256 1.16958i −0.976394 0.215998i \(-0.930700\pi\)
0.301137 0.953581i \(-0.402634\pi\)
\(660\) 0 0
\(661\) −10.7043 + 18.5404i −0.416350 + 0.721139i −0.995569 0.0940328i \(-0.970024\pi\)
0.579219 + 0.815172i \(0.303357\pi\)
\(662\) −20.8937 + 4.35650i −0.812059 + 0.169320i
\(663\) −26.0099 12.8418i −1.01014 0.498733i
\(664\) 6.72641 14.6468i 0.261035 0.568407i
\(665\) 0 0
\(666\) 19.7107 + 3.75133i 0.763775 + 0.145361i
\(667\) 0.763915i 0.0295789i
\(668\) −23.9538 + 10.4431i −0.926799 + 0.404055i
\(669\) 1.79561 1.19858i 0.0694225 0.0463398i
\(670\) 0 0
\(671\) 6.60493 11.4401i 0.254981 0.441639i
\(672\) 6.05858 + 9.46899i 0.233715 + 0.365274i
\(673\) −12.8764 22.3026i −0.496349 0.859702i 0.503642 0.863913i \(-0.331993\pi\)
−0.999991 + 0.00421032i \(0.998660\pi\)
\(674\) −22.9399 + 20.4947i −0.883613 + 0.789427i
\(675\) 0 0
\(676\) 2.86970 25.4065i 0.110373 0.977175i
\(677\) −25.1994 + 14.5489i −0.968492 + 0.559159i −0.898776 0.438408i \(-0.855542\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(678\) 1.01868 + 1.00102i 0.0391223 + 0.0384439i
\(679\) −7.68438 4.43658i −0.294899 0.170260i
\(680\) 0 0
\(681\) −10.4303 15.6258i −0.399690 0.598783i
\(682\) 5.86648 17.8198i 0.224639 0.682354i
\(683\) −0.973163 −0.0372370 −0.0186185 0.999827i \(-0.505927\pi\)
−0.0186185 + 0.999827i \(0.505927\pi\)
\(684\) −10.5414 + 19.0189i −0.403059 + 0.727204i
\(685\) 0 0
\(686\) −6.43538 + 19.5478i −0.245704 + 0.746340i
\(687\) 18.5347 37.5404i 0.707141 1.43225i
\(688\) −8.29966 7.70945i −0.316421 0.293920i
\(689\) 40.1269 + 23.1673i 1.52871 + 0.882604i
\(690\) 0 0
\(691\) −14.2382 + 8.22045i −0.541648 + 0.312721i −0.745747 0.666230i \(-0.767907\pi\)
0.204099 + 0.978950i \(0.434574\pi\)
\(692\) 11.1924 + 1.26419i 0.425469 + 0.0480573i
\(693\) −4.00274 1.66237i −0.152051 0.0631481i
\(694\) −28.8102 + 25.7392i −1.09362 + 0.977048i
\(695\) 0 0
\(696\) −0.976621 0.373780i −0.0370187 0.0141681i
\(697\) −11.0637 + 19.1629i −0.419069 + 0.725848i
\(698\) −1.02620 4.92167i −0.0388424 0.186288i
\(699\) −1.00625 15.4630i −0.0380600 0.584865i
\(700\) 0 0
\(701\) 12.3225i 0.465415i −0.972547 0.232707i \(-0.925242\pi\)
0.972547 0.232707i \(-0.0747585\pi\)
\(702\) 22.4834 29.7798i 0.848581 1.12397i
\(703\) 17.1395i 0.646427i
\(704\) −9.89977 + 1.86468i −0.373111 + 0.0702778i
\(705\) 0 0
\(706\) 3.62455 0.755744i 0.136412 0.0284428i
\(707\) 10.9194 18.9130i 0.410667 0.711296i
\(708\) 29.9890 15.4645i 1.12706 0.581193i
\(709\) −2.75578 4.77314i −0.103495 0.179259i 0.809627 0.586945i \(-0.199669\pi\)
−0.913122 + 0.407685i \(0.866336\pi\)
\(710\) 0 0
\(711\) 15.9118 12.1860i 0.596738 0.457009i
\(712\) 5.22178 3.70182i 0.195695 0.138731i
\(713\) 32.6511 18.8511i 1.22279 0.705980i
\(714\) 2.47719 + 8.93180i 0.0927066 + 0.334264i
\(715\) 0 0
\(716\) −23.1405 17.0883i −0.864800 0.638619i
\(717\) −11.6463 + 23.5885i −0.434937 + 0.880929i
\(718\) 29.4997 + 9.71166i 1.10092 + 0.362436i
\(719\) 13.7828 0.514012 0.257006 0.966410i \(-0.417264\pi\)
0.257006 + 0.966410i \(0.417264\pi\)
\(720\) 0 0
\(721\) −8.80888 −0.328060
\(722\) −7.87927 2.59395i −0.293236 0.0965368i
\(723\) −0.453728 0.679738i −0.0168743 0.0252797i
\(724\) −18.3376 13.5416i −0.681512 0.503268i
\(725\) 0 0
\(726\) −16.1629 + 16.4481i −0.599861 + 0.610446i
\(727\) 40.0622 23.1299i 1.48583 0.857842i 0.485956 0.873983i \(-0.338472\pi\)
0.999870 + 0.0161416i \(0.00513827\pi\)
\(728\) −13.4427 + 9.52979i −0.498220 + 0.353197i
\(729\) 24.9736 10.2626i 0.924947 0.380095i
\(730\) 0 0
\(731\) −4.67013 8.08890i −0.172731 0.299179i
\(732\) 1.72518 36.2989i 0.0637646 1.34165i
\(733\) −14.9365 + 25.8707i −0.551690 + 0.955556i 0.446462 + 0.894802i \(0.352684\pi\)
−0.998153 + 0.0607534i \(0.980650\pi\)
\(734\) 28.0610 5.85092i 1.03575 0.215961i
\(735\) 0 0
\(736\) −17.3331 10.4605i −0.638907 0.385577i
\(737\) 18.6972i 0.688721i
\(738\) −21.5550 18.5898i −0.793451 0.684300i
\(739\) 37.3592i 1.37428i 0.726526 + 0.687139i \(0.241134\pi\)
−0.726526 + 0.687139i \(0.758866\pi\)
\(740\) 0 0
\(741\) −28.5806 14.1110i −1.04994 0.518380i
\(742\) −3.02209 14.4940i −0.110945 0.532090i
\(743\) −12.2440 + 21.2072i −0.449188 + 0.778016i −0.998333 0.0577104i \(-0.981620\pi\)
0.549145 + 0.835727i \(0.314953\pi\)
\(744\) −8.12405 50.9663i −0.297842 1.86851i
\(745\) 0 0
\(746\) −13.0375 + 11.6478i −0.477337 + 0.426456i
\(747\) 10.3942 + 13.5722i 0.380305 + 0.496582i
\(748\) −8.25381 0.932279i −0.301789 0.0340875i
\(749\) −11.7753 + 6.79847i −0.430260 + 0.248411i
\(750\) 0 0
\(751\) −20.1320 11.6232i −0.734629 0.424138i 0.0854843 0.996340i \(-0.472756\pi\)
−0.820113 + 0.572201i \(0.806090\pi\)
\(752\) −2.91012 + 3.13291i −0.106121 + 0.114246i
\(753\) −41.7495 + 2.71684i −1.52144 + 0.0990072i
\(754\) 0.479320 1.45596i 0.0174558 0.0530230i
\(755\) 0 0
\(756\) −11.8827 + 0.982257i −0.432171 + 0.0357243i
\(757\) 31.5549 1.14688 0.573442 0.819246i \(-0.305608\pi\)
0.573442 + 0.819246i \(0.305608\pi\)
\(758\) −3.06299 + 9.30402i −0.111253 + 0.337937i
\(759\) 7.78915 0.506878i 0.282728 0.0183985i
\(760\) 0 0
\(761\) 22.9687 + 13.2610i 0.832616 + 0.480711i 0.854747 0.519044i \(-0.173712\pi\)
−0.0221316 + 0.999755i \(0.507045\pi\)
\(762\) −6.32494 + 24.4587i −0.229128 + 0.886044i
\(763\) 1.37681 0.794900i 0.0498438 0.0287773i
\(764\) 3.61220 31.9801i 0.130685 1.15700i
\(765\) 0 0
\(766\) −1.52337 + 1.36099i −0.0550415 + 0.0491745i
\(767\) 24.7298 + 42.8332i 0.892941 + 1.54662i
\(768\) −21.8541 + 17.0411i −0.788591 + 0.614918i
\(769\) −2.70091 + 4.67812i −0.0973974 + 0.168697i −0.910607 0.413274i \(-0.864385\pi\)
0.813209 + 0.581971i \(0.197718\pi\)
\(770\) 0 0
\(771\) −22.9035 11.3080i −0.824848 0.407249i
\(772\) −22.2295 + 9.69137i −0.800058 + 0.348800i
\(773\) 10.0058i 0.359884i −0.983677 0.179942i \(-0.942409\pi\)
0.983677 0.179942i \(-0.0575910\pi\)
\(774\) 11.3450 3.95615i 0.407787 0.142201i
\(775\) 0 0
\(776\) 9.12905 19.8786i 0.327714 0.713600i
\(777\) 7.81660 5.21761i 0.280419 0.187181i
\(778\) 1.13101 0.235825i 0.0405488 0.00845472i
\(779\) −12.1572 + 21.0569i −0.435578 + 0.754443i
\(780\) 0 0
\(781\) −6.09844 10.5628i −0.218219 0.377967i
\(782\) −11.1215 12.4484i −0.397702 0.445152i
\(783\) 0.834917 0.730137i 0.0298375 0.0260930i
\(784\) −22.1619 5.07112i −0.791495 0.181112i
\(785\) 0 0
\(786\) −24.6863 + 25.1219i −0.880531 + 0.896069i
\(787\) −1.99517 1.15191i −0.0711202 0.0410613i 0.464018 0.885826i \(-0.346407\pi\)
−0.535138 + 0.844764i \(0.679741\pi\)
\(788\) 4.25503 5.76204i 0.151579 0.205264i
\(789\) 1.25938 + 1.88670i 0.0448352 + 0.0671684i
\(790\) 0 0
\(791\) 0.668954 0.0237853
\(792\) 3.16317 10.2060i 0.112398 0.362654i
\(793\) 53.2683 1.89161
\(794\) −39.6077 13.0393i −1.40562 0.462748i
\(795\) 0 0
\(796\) 7.59594 10.2862i 0.269231 0.364585i
\(797\) 8.50066 + 4.90786i 0.301109 + 0.173845i 0.642941 0.765916i \(-0.277714\pi\)
−0.341832 + 0.939761i \(0.611047\pi\)
\(798\) 2.72203 + 9.81458i 0.0963587 + 0.347432i
\(799\) −3.05336 + 1.76286i −0.108020 + 0.0623654i
\(800\) 0 0
\(801\) 0.879872 + 6.73183i 0.0310888 + 0.237858i
\(802\) 1.29532 + 1.44986i 0.0457392 + 0.0511963i
\(803\) −5.71826 9.90432i −0.201793 0.349516i
\(804\) 23.5740 + 45.7151i 0.831393 + 1.61225i
\(805\) 0 0
\(806\) 74.0586 15.4417i 2.60860 0.543912i
\(807\) 2.42467 + 37.2597i 0.0853525 + 1.31161i
\(808\) 48.9257 + 22.4686i 1.72120 + 0.790444i
\(809\) 2.25430i 0.0792571i 0.999214 + 0.0396285i \(0.0126175\pi\)
−0.999214 + 0.0396285i \(0.987383\pi\)
\(810\) 0 0
\(811\) 43.2702i 1.51942i −0.650260 0.759711i \(-0.725340\pi\)
0.650260 0.759711i \(-0.274660\pi\)
\(812\) −0.448984 + 0.195743i −0.0157563 + 0.00686923i
\(813\) 0.177835 + 2.73278i 0.00623694 + 0.0958426i
\(814\) 1.71907 + 8.24464i 0.0602533 + 0.288975i
\(815\) 0 0
\(816\) −21.3562 + 8.12722i −0.747615 + 0.284509i
\(817\) −5.13170 8.88837i −0.179536 0.310965i
\(818\) −3.50297 + 3.12958i −0.122478 + 0.109423i
\(819\) −2.26510 17.3301i −0.0791491 0.605564i
\(820\) 0 0
\(821\) 14.9032 8.60434i 0.520124 0.300293i −0.216862 0.976202i \(-0.569582\pi\)
0.736985 + 0.675909i \(0.236249\pi\)
\(822\) −17.4596 + 4.84235i −0.608975 + 0.168896i
\(823\) 13.3192 + 7.68986i 0.464279 + 0.268052i 0.713842 0.700307i \(-0.246954\pi\)
−0.249563 + 0.968359i \(0.580287\pi\)
\(824\) −2.01858 21.6221i −0.0703206 0.753242i
\(825\) 0 0
\(826\) 4.94202 15.0117i 0.171955 0.522322i
\(827\) 0.827927 0.0287899 0.0143949 0.999896i \(-0.495418\pi\)
0.0143949 + 0.999896i \(0.495418\pi\)
\(828\) 18.4055 11.0601i 0.639636 0.384366i
\(829\) −30.8355 −1.07096 −0.535481 0.844547i \(-0.679870\pi\)
−0.535481 + 0.844547i \(0.679870\pi\)
\(830\) 0 0
\(831\) −7.63542 11.4388i −0.264870 0.396807i
\(832\) −26.4721 30.8125i −0.917754 1.06823i
\(833\) −16.2342 9.37282i −0.562482 0.324749i
\(834\) −2.92307 2.87238i −0.101218 0.0994624i
\(835\) 0 0
\(836\) −9.06958 1.02442i −0.313678 0.0354303i
\(837\) 51.8106 + 17.6683i 1.79084 + 0.610704i
\(838\) −37.1959 + 33.2311i −1.28491 + 1.14795i
\(839\) 7.49176 + 12.9761i 0.258644 + 0.447985i 0.965879 0.258994i \(-0.0833909\pi\)
−0.707235 + 0.706979i \(0.750058\pi\)
\(840\) 0 0
\(841\) −14.4772 + 25.0753i −0.499214 + 0.864665i
\(842\) 8.43889 + 40.4729i 0.290823 + 1.39479i
\(843\) −9.78699 + 6.53286i −0.337082 + 0.225004i
\(844\) −11.6443 26.7091i −0.400813 0.919364i
\(845\) 0 0
\(846\) −1.49335 4.28245i −0.0513424 0.147234i
\(847\) 10.8012i 0.371134i
\(848\) 34.8841 10.7393i 1.19792 0.368789i
\(849\) 11.8166 + 5.83415i 0.405544 + 0.200228i
\(850\) 0 0
\(851\) −8.46260 + 14.6577i −0.290094 + 0.502458i
\(852\) −28.2287 18.1372i −0.967100 0.621369i
\(853\) 1.45764 + 2.52471i 0.0499088 + 0.0864445i 0.889901 0.456155i \(-0.150774\pi\)
−0.839992 + 0.542599i \(0.817440\pi\)
\(854\) −11.3403 12.6933i −0.388057 0.434356i
\(855\) 0 0
\(856\) −19.3857 27.3455i −0.662591 0.934650i
\(857\) −45.3198 + 26.1654i −1.54810 + 0.893794i −0.549809 + 0.835291i \(0.685299\pi\)
−0.998287 + 0.0585032i \(0.981367\pi\)
\(858\) 15.1635 + 3.92124i 0.517674 + 0.133869i
\(859\) −1.52668 0.881431i −0.0520897 0.0300740i 0.473729 0.880671i \(-0.342908\pi\)
−0.525819 + 0.850597i \(0.676241\pi\)
\(860\) 0 0
\(861\) −13.3041 + 0.865763i −0.453403 + 0.0295051i
\(862\) −21.1222 6.95368i −0.719425 0.236843i
\(863\) −16.9992 −0.578658 −0.289329 0.957230i \(-0.593432\pi\)
−0.289329 + 0.957230i \(0.593432\pi\)
\(864\) −5.13399 28.9420i −0.174662 0.984628i
\(865\) 0 0
\(866\) −54.5875 17.9709i −1.85496 0.610674i
\(867\) 10.5815 0.688587i 0.359365 0.0233857i
\(868\) −19.4460 14.3600i −0.660039 0.487412i
\(869\) 7.28544 + 4.20625i 0.247142 + 0.142687i
\(870\) 0 0
\(871\) −65.2947 + 37.6979i −2.21243 + 1.27735i
\(872\) 2.26665 + 3.19733i 0.0767583 + 0.108275i
\(873\) 14.1070 + 18.4202i 0.477450 + 0.623428i
\(874\) −12.2207 13.6787i −0.413370 0.462689i
\(875\) 0 0
\(876\) −26.4689 17.0065i −0.894302 0.574596i
\(877\) −18.7837 + 32.5343i −0.634279 + 1.09860i 0.352388 + 0.935854i \(0.385370\pi\)
−0.986667 + 0.162750i \(0.947964\pi\)
\(878\) 31.2345 6.51262i 1.05411 0.219790i
\(879\) 15.3907 + 7.59876i 0.519114 + 0.256300i
\(880\) 0 0
\(881\) 32.8340i 1.10620i −0.833114 0.553102i \(-0.813444\pi\)
0.833114 0.553102i \(-0.186556\pi\)
\(882\) 15.7487 18.2607i 0.530285 0.614869i
\(883\) 57.6883i 1.94137i 0.240363 + 0.970683i \(0.422734\pi\)
−0.240363 + 0.970683i \(0.577266\pi\)
\(884\) −13.3859 30.7038i −0.450215 1.03268i
\(885\) 0 0
\(886\) 4.15879 + 19.9455i 0.139717 + 0.670083i
\(887\) 18.8010 32.5642i 0.631275 1.09340i −0.356017 0.934479i \(-0.615865\pi\)
0.987291 0.158920i \(-0.0508012\pi\)
\(888\) 14.5983 + 17.9909i 0.489885 + 0.603734i
\(889\) 5.91652 + 10.2477i 0.198434 + 0.343698i
\(890\) 0 0
\(891\) 7.99873 + 8.02864i 0.267967 + 0.268970i
\(892\) 2.47712 + 0.279795i 0.0829403 + 0.00936821i
\(893\) −3.35514 + 1.93709i −0.112275 + 0.0648222i
\(894\) 7.80891 + 7.67350i 0.261169 + 0.256640i
\(895\) 0 0
\(896\) −1.70666 + 12.8677i −0.0570157 + 0.429880i
\(897\) 17.4748 + 26.1794i 0.583468 + 0.874104i
\(898\) −6.52204 + 19.8111i −0.217643 + 0.661104i
\(899\) 2.24869 0.0749980
\(900\) 0 0
\(901\) 30.0955 1.00263
\(902\) 3.73604 11.3484i 0.124396 0.377861i
\(903\) 2.49142 5.04617i 0.0829094 0.167926i
\(904\) 0.153293 + 1.64200i 0.00509844 + 0.0546122i
\(905\) 0 0
\(906\) −30.6428 + 8.49864i −1.01804 + 0.282349i
\(907\) −22.1806 + 12.8060i −0.736494 + 0.425215i −0.820793 0.571225i \(-0.806468\pi\)
0.0842990 + 0.996441i \(0.473135\pi\)
\(908\) 2.43483 21.5565i 0.0808027 0.715376i
\(909\) −45.3362 + 34.7205i −1.50371 + 1.15161i
\(910\) 0 0
\(911\) −0.996781 1.72648i −0.0330248 0.0572007i 0.849041 0.528328i \(-0.177181\pi\)
−0.882065 + 0.471127i \(0.843847\pi\)
\(912\) −23.4669 + 8.93047i −0.777067 + 0.295718i
\(913\) −3.58780 + 6.21425i −0.118739 + 0.205662i
\(914\) 0.294631 + 1.41305i 0.00974552 + 0.0467395i
\(915\) 0 0
\(916\) 44.3151 19.3200i 1.46421 0.638349i
\(917\) 16.4972i 0.544785i
\(918\) 2.97566 24.0531i 0.0982115 0.793870i
\(919\) 13.2072i 0.435667i 0.975986 + 0.217833i \(0.0698989\pi\)
−0.975986 + 0.217833i \(0.930101\pi\)
\(920\) 0 0
\(921\) 0.896990 + 13.7840i 0.0295568 + 0.454197i
\(922\) −1.08642 + 0.226526i −0.0357793 + 0.00746025i
\(923\) 24.5917 42.5941i 0.809446 1.40200i
\(924\) −2.29377 4.44812i −0.0754597 0.146332i
\(925\) 0 0
\(926\) −30.6911 34.3529i −1.00857 1.12891i
\(927\) 21.2719 + 8.83437i 0.698661 + 0.290159i
\(928\) −0.583353 1.05721i −0.0191495 0.0347047i
\(929\) 14.7794 8.53291i 0.484897 0.279956i −0.237558 0.971373i \(-0.576347\pi\)
0.722455 + 0.691418i \(0.243014\pi\)
\(930\) 0 0
\(931\) −17.8387 10.2992i −0.584640 0.337542i
\(932\) 10.6291 14.3937i 0.348169 0.471480i
\(933\) 5.37215 10.8808i 0.175876 0.356223i
\(934\) 35.0430 + 11.5366i 1.14664 + 0.377488i
\(935\) 0 0
\(936\) 42.0192 9.53113i 1.37344 0.311535i
\(937\) 20.0658 0.655523 0.327761 0.944761i \(-0.393706\pi\)
0.327761 + 0.944761i \(0.393706\pi\)
\(938\) 22.8837 + 7.53358i 0.747178 + 0.245980i
\(939\) −14.1361 21.1776i −0.461315 0.691104i
\(940\) 0 0
\(941\) −28.5447 16.4803i −0.930532 0.537243i −0.0435520 0.999051i \(-0.513867\pi\)
−0.886980 + 0.461808i \(0.847201\pi\)
\(942\) 12.6316 12.8545i 0.411559 0.418822i
\(943\) 20.7937 12.0053i 0.677136 0.390945i
\(944\) 37.9798 + 8.69061i 1.23614 + 0.282855i
\(945\) 0 0
\(946\) 3.36001 + 3.76090i 0.109243 + 0.122277i
\(947\) −25.6271 44.3874i −0.832767 1.44240i −0.895835 0.444386i \(-0.853422\pi\)
0.0630680 0.998009i \(-0.479912\pi\)
\(948\) 23.1164 + 1.09866i 0.750787 + 0.0356828i
\(949\) 23.0587 39.9388i 0.748516 1.29647i
\(950\) 0 0
\(951\) −3.34810 + 2.23487i −0.108570 + 0.0724707i
\(952\) −4.46669 + 9.72626i −0.144766 + 0.315230i
\(953\) 23.0185i 0.745641i 0.927903 + 0.372821i \(0.121609\pi\)
−0.927903 + 0.372821i \(0.878391\pi\)
\(954\) −7.23807 + 38.0312i −0.234341 + 1.23130i
\(955\) 0 0
\(956\) −27.8454 + 12.1397i −0.900584 + 0.392626i
\(957\) 0.417446 + 0.206104i 0.0134941 + 0.00666239i
\(958\) −8.70951 41.7708i −0.281392 1.34955i
\(959\) −4.24331 + 7.34963i −0.137024 + 0.237332i
\(960\) 0 0
\(961\) 39.9909 + 69.2662i 1.29003 + 2.23439i
\(962\) −25.3260 + 22.6265i −0.816544 + 0.729506i
\(963\) 35.2534 4.60773i 1.13602 0.148482i
\(964\) 0.105918 0.937727i 0.00341137 0.0302022i
\(965\) 0 0
\(966\) 2.51807 9.73742i 0.0810175 0.313296i
\(967\) 38.8737 + 22.4438i 1.25010 + 0.721743i 0.971128 0.238558i \(-0.0766747\pi\)
0.278967 + 0.960301i \(0.410008\pi\)
\(968\) −26.5125 + 2.47513i −0.852143 + 0.0795538i
\(969\) −20.6595 + 1.34441i −0.663678 + 0.0431888i
\(970\) 0 0
\(971\) 49.5015 1.58858 0.794290 0.607539i \(-0.207843\pi\)
0.794290 + 0.607539i \(0.207843\pi\)
\(972\) 29.6798 + 9.54514i 0.951980 + 0.306161i
\(973\) −1.91954 −0.0615375
\(974\) −9.85293 + 29.9288i −0.315708 + 0.958982i
\(975\) 0 0
\(976\) 28.5581 30.7444i 0.914123 0.984104i
\(977\) −27.1220 15.6589i −0.867710 0.500972i −0.00112320 0.999999i \(-0.500358\pi\)
−0.866586 + 0.499027i \(0.833691\pi\)
\(978\) −3.97489 + 15.3710i −0.127103 + 0.491509i
\(979\) −2.46789 + 1.42484i −0.0788742 + 0.0455380i
\(980\) 0 0
\(981\) −4.12195 + 0.538752i −0.131604 + 0.0172010i
\(982\) 22.5740 20.1678i 0.720367 0.643581i
\(983\) 27.7206 + 48.0135i 0.884149 + 1.53139i 0.846686 + 0.532094i \(0.178595\pi\)
0.0374637 + 0.999298i \(0.488072\pi\)
\(984\) −5.17376 32.4576i −0.164934 1.03471i
\(985\) 0 0
\(986\) −0.203222 0.974652i −0.00647190 0.0310392i
\(987\) −1.90480 0.940450i −0.0606305 0.0299348i
\(988\) −14.7089 33.7384i −0.467951 1.07336i
\(989\) 10.1351i 0.322278i
\(990\) 0 0
\(991\) 5.66060i 0.179815i 0.995950 + 0.0899075i \(0.0286571\pi\)
−0.995950 + 0.0899075i \(0.971343\pi\)
\(992\) 30.7918 51.0224i 0.977640 1.61996i
\(993\) 21.7413 14.5124i 0.689938 0.460536i
\(994\) −15.3851 + 3.20791i −0.487986 + 0.101749i
\(995\) 0 0
\(996\) −0.937120 + 19.7176i −0.0296938 + 0.624775i
\(997\) 9.37172 + 16.2323i 0.296805 + 0.514082i 0.975403 0.220428i \(-0.0707454\pi\)
−0.678598 + 0.734510i \(0.737412\pi\)
\(998\) −15.7507 17.6299i −0.498578 0.558064i
\(999\) −24.1084 + 4.76039i −0.762757 + 0.150612i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.851.4 48
4.3 odd 2 inner 900.2.r.g.851.10 48
5.2 odd 4 180.2.n.d.59.16 yes 48
5.3 odd 4 180.2.n.d.59.9 yes 48
5.4 even 2 inner 900.2.r.g.851.21 48
9.2 odd 6 inner 900.2.r.g.551.10 48
15.2 even 4 540.2.n.d.179.9 48
15.8 even 4 540.2.n.d.179.16 48
20.3 even 4 180.2.n.d.59.22 yes 48
20.7 even 4 180.2.n.d.59.3 48
20.19 odd 2 inner 900.2.r.g.851.15 48
36.11 even 6 inner 900.2.r.g.551.4 48
45.2 even 12 180.2.n.d.119.22 yes 48
45.7 odd 12 540.2.n.d.359.3 48
45.29 odd 6 inner 900.2.r.g.551.15 48
45.38 even 12 180.2.n.d.119.3 yes 48
45.43 odd 12 540.2.n.d.359.22 48
60.23 odd 4 540.2.n.d.179.3 48
60.47 odd 4 540.2.n.d.179.22 48
180.7 even 12 540.2.n.d.359.16 48
180.43 even 12 540.2.n.d.359.9 48
180.47 odd 12 180.2.n.d.119.9 yes 48
180.83 odd 12 180.2.n.d.119.16 yes 48
180.119 even 6 inner 900.2.r.g.551.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.3 48 20.7 even 4
180.2.n.d.59.9 yes 48 5.3 odd 4
180.2.n.d.59.16 yes 48 5.2 odd 4
180.2.n.d.59.22 yes 48 20.3 even 4
180.2.n.d.119.3 yes 48 45.38 even 12
180.2.n.d.119.9 yes 48 180.47 odd 12
180.2.n.d.119.16 yes 48 180.83 odd 12
180.2.n.d.119.22 yes 48 45.2 even 12
540.2.n.d.179.3 48 60.23 odd 4
540.2.n.d.179.9 48 15.2 even 4
540.2.n.d.179.16 48 15.8 even 4
540.2.n.d.179.22 48 60.47 odd 4
540.2.n.d.359.3 48 45.7 odd 12
540.2.n.d.359.9 48 180.43 even 12
540.2.n.d.359.16 48 180.7 even 12
540.2.n.d.359.22 48 45.43 odd 12
900.2.r.g.551.4 48 36.11 even 6 inner
900.2.r.g.551.10 48 9.2 odd 6 inner
900.2.r.g.551.15 48 45.29 odd 6 inner
900.2.r.g.551.21 48 180.119 even 6 inner
900.2.r.g.851.4 48 1.1 even 1 trivial
900.2.r.g.851.10 48 4.3 odd 2 inner
900.2.r.g.851.15 48 20.19 odd 2 inner
900.2.r.g.851.21 48 5.4 even 2 inner