L(s) = 1 | + (−1.34 − 0.442i)2-s + (1.72 − 0.112i)3-s + (1.60 + 1.18i)4-s + (−2.37 − 0.613i)6-s + (−0.993 + 0.573i)7-s + (−1.63 − 2.30i)8-s + (2.97 − 0.388i)9-s + (0.629 + 1.09i)11-s + (2.91 + 1.87i)12-s + (−2.53 + 4.39i)13-s + (1.58 − 0.331i)14-s + (1.17 + 3.82i)16-s + 3.29i·17-s + (−4.16 − 0.793i)18-s + 3.62i·19-s + ⋯ |
L(s) = 1 | + (−0.949 − 0.312i)2-s + (0.997 − 0.0649i)3-s + (0.804 + 0.594i)4-s + (−0.968 − 0.250i)6-s + (−0.375 + 0.216i)7-s + (−0.578 − 0.815i)8-s + (0.991 − 0.129i)9-s + (0.189 + 0.328i)11-s + (0.841 + 0.540i)12-s + (−0.704 + 1.21i)13-s + (0.424 − 0.0885i)14-s + (0.294 + 0.955i)16-s + 0.799i·17-s + (−0.982 − 0.186i)18-s + 0.831i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.754 - 0.656i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.754 - 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25396 + 0.468867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25396 + 0.468867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.442i)T \) |
| 3 | \( 1 + (-1.72 + 0.112i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.993 - 0.573i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.629 - 1.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.53 - 4.39i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.29iT - 17T^{2} \) |
| 19 | \( 1 - 3.62iT - 19T^{2} \) |
| 23 | \( 1 + (-1.78 + 3.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.184 + 0.106i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-9.12 - 5.26i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.72T + 37T^{2} \) |
| 41 | \( 1 + (-5.81 - 3.35i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.45 - 1.41i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.534 - 0.925i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9.12iT - 53T^{2} \) |
| 59 | \( 1 + (-4.87 + 8.43i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.24 + 9.08i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-12.8 - 7.42i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.68T + 71T^{2} \) |
| 73 | \( 1 + 9.08T + 73T^{2} \) |
| 79 | \( 1 + (-5.78 + 3.34i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.84 - 4.93i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.26iT - 89T^{2} \) |
| 97 | \( 1 + (-3.86 - 6.69i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.894538013191194779399004124890, −9.446185806686714475750476784215, −8.552088055957832678167531262334, −7.994377206422958061958334201218, −6.91052917950762894245151239160, −6.42617120377617727886873593469, −4.57574321424921909779166496763, −3.54325325106860475601108231334, −2.49378668153788920347585585077, −1.53772158822562359512665343614,
0.802417707567862931123364452774, 2.47269130783997994933973590914, 3.19655592589682047156198537395, 4.72752691585032442553355339067, 5.85660314155881131853046131112, 7.06101236681905022131319324586, 7.50652455512586515440266354424, 8.419438904260535598486873728009, 9.132184919165211998450170268846, 9.876881331336748646887971754724