Properties

Label 900.2.bf.e.607.28
Level $900$
Weight $2$
Character 900.607
Analytic conductor $7.187$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(7,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 8, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(32\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 607.28
Character \(\chi\) \(=\) 900.607
Dual form 900.2.bf.e.43.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25060 + 0.660305i) q^{2} +(1.72686 + 0.133985i) q^{3} +(1.12799 + 1.65155i) q^{4} +(2.07114 + 1.30782i) q^{6} +(-2.46165 - 0.659597i) q^{7} +(0.320139 + 2.81025i) q^{8} +(2.96410 + 0.462748i) q^{9} +(3.01796 - 1.74242i) q^{11} +(1.72661 + 3.00314i) q^{12} +(1.36518 + 5.09493i) q^{13} +(-2.64300 - 2.45033i) q^{14} +(-1.45526 + 3.72589i) q^{16} +(-2.16382 - 2.16382i) q^{17} +(3.40134 + 2.53592i) q^{18} +3.88577 q^{19} +(-4.16255 - 1.46886i) q^{21} +(4.92478 - 0.186294i) q^{22} +(-3.70190 + 0.991920i) q^{23} +(0.176303 + 4.89581i) q^{24} +(-1.65691 + 7.27315i) q^{26} +(5.05658 + 1.19625i) q^{27} +(-1.68737 - 4.80957i) q^{28} +(3.85118 - 2.22348i) q^{29} +(-1.86992 - 1.07960i) q^{31} +(-4.28016 + 3.69867i) q^{32} +(5.44505 - 2.60455i) q^{33} +(-1.27729 - 4.13484i) q^{34} +(2.57923 + 5.41734i) q^{36} +(-3.67542 - 3.67542i) q^{37} +(4.85954 + 2.56579i) q^{38} +(1.67483 + 8.98115i) q^{39} +(-4.04792 + 7.01121i) q^{41} +(-4.23579 - 4.58550i) q^{42} +(1.36185 - 5.08248i) q^{43} +(6.28194 + 3.01888i) q^{44} +(-5.28456 - 1.20389i) q^{46} +(0.231550 + 0.0620436i) q^{47} +(-3.01224 + 6.23910i) q^{48} +(-0.437526 - 0.252606i) q^{49} +(-3.44669 - 4.02653i) q^{51} +(-6.87463 + 8.00173i) q^{52} +(-0.265818 + 0.265818i) q^{53} +(5.53386 + 4.83491i) q^{54} +(1.06556 - 7.12902i) q^{56} +(6.71018 + 0.520636i) q^{57} +(6.28446 - 0.237728i) q^{58} +(5.69158 - 9.85810i) q^{59} +(-4.61792 - 7.99848i) q^{61} +(-1.62566 - 2.58487i) q^{62} +(-6.99134 - 3.09423i) q^{63} +(-7.79502 + 1.79934i) q^{64} +(8.52937 + 0.338146i) q^{66} +(-0.192807 - 0.719566i) q^{67} +(1.13289 - 6.01443i) q^{68} +(-6.52556 + 1.21691i) q^{69} -2.06980i q^{71} +(-0.351515 + 8.47800i) q^{72} +(-8.97449 + 8.97449i) q^{73} +(-2.16958 - 7.02337i) q^{74} +(4.38312 + 6.41755i) q^{76} +(-8.57845 + 2.29859i) q^{77} +(-3.83576 + 12.3377i) q^{78} +(-7.56173 - 13.0973i) q^{79} +(8.57173 + 2.74326i) q^{81} +(-9.69186 + 6.09534i) q^{82} +(4.01723 - 14.9925i) q^{83} +(-2.26944 - 8.53154i) q^{84} +(5.05911 - 5.45691i) q^{86} +(6.94837 - 3.32364i) q^{87} +(5.86280 + 7.92340i) q^{88} -3.61495i q^{89} -13.4424i q^{91} +(-5.81393 - 4.99500i) q^{92} +(-3.08444 - 2.11486i) q^{93} +(0.248608 + 0.230485i) q^{94} +(-7.88682 + 5.81362i) q^{96} +(0.818990 - 3.05651i) q^{97} +(-0.380373 - 0.604809i) q^{98} +(9.75182 - 3.76814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 2 q^{2} - 8 q^{6} + 8 q^{8} - 2 q^{12} + 4 q^{13} - 4 q^{16} + 16 q^{17} + 36 q^{18} - 24 q^{21} + 10 q^{22} - 48 q^{26} - 8 q^{28} - 18 q^{32} + 20 q^{33} - 40 q^{36} + 16 q^{37} + 34 q^{38} - 8 q^{41}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25060 + 0.660305i 0.884307 + 0.466906i
\(3\) 1.72686 + 0.133985i 0.997003 + 0.0773565i
\(4\) 1.12799 + 1.65155i 0.563997 + 0.825777i
\(5\) 0 0
\(6\) 2.07114 + 1.30782i 0.845539 + 0.533914i
\(7\) −2.46165 0.659597i −0.930416 0.249304i −0.238384 0.971171i \(-0.576618\pi\)
−0.692032 + 0.721867i \(0.743284\pi\)
\(8\) 0.320139 + 2.81025i 0.113186 + 0.993574i
\(9\) 2.96410 + 0.462748i 0.988032 + 0.154249i
\(10\) 0 0
\(11\) 3.01796 1.74242i 0.909948 0.525359i 0.0295338 0.999564i \(-0.490598\pi\)
0.880415 + 0.474205i \(0.157264\pi\)
\(12\) 1.72661 + 3.00314i 0.498428 + 0.866931i
\(13\) 1.36518 + 5.09493i 0.378634 + 1.41308i 0.847962 + 0.530057i \(0.177829\pi\)
−0.469329 + 0.883024i \(0.655504\pi\)
\(14\) −2.64300 2.45033i −0.706372 0.654879i
\(15\) 0 0
\(16\) −1.45526 + 3.72589i −0.363814 + 0.931472i
\(17\) −2.16382 2.16382i −0.524802 0.524802i 0.394216 0.919018i \(-0.371016\pi\)
−0.919018 + 0.394216i \(0.871016\pi\)
\(18\) 3.40134 + 2.53592i 0.801703 + 0.597722i
\(19\) 3.88577 0.891456 0.445728 0.895168i \(-0.352945\pi\)
0.445728 + 0.895168i \(0.352945\pi\)
\(20\) 0 0
\(21\) −4.16255 1.46886i −0.908343 0.320531i
\(22\) 4.92478 0.186294i 1.04997 0.0397180i
\(23\) −3.70190 + 0.991920i −0.771899 + 0.206830i −0.623210 0.782054i \(-0.714172\pi\)
−0.148689 + 0.988884i \(0.547505\pi\)
\(24\) 0.176303 + 4.89581i 0.0359878 + 0.999352i
\(25\) 0 0
\(26\) −1.65691 + 7.27315i −0.324947 + 1.42638i
\(27\) 5.05658 + 1.19625i 0.973139 + 0.230218i
\(28\) −1.68737 4.80957i −0.318883 0.908923i
\(29\) 3.85118 2.22348i 0.715147 0.412890i −0.0978169 0.995204i \(-0.531186\pi\)
0.812964 + 0.582314i \(0.197853\pi\)
\(30\) 0 0
\(31\) −1.86992 1.07960i −0.335848 0.193902i 0.322586 0.946540i \(-0.395448\pi\)
−0.658434 + 0.752638i \(0.728781\pi\)
\(32\) −4.28016 + 3.69867i −0.756633 + 0.653840i
\(33\) 5.44505 2.60455i 0.947862 0.453394i
\(34\) −1.27729 4.13484i −0.219053 0.709120i
\(35\) 0 0
\(36\) 2.57923 + 5.41734i 0.429872 + 0.902890i
\(37\) −3.67542 3.67542i −0.604235 0.604235i 0.337198 0.941434i \(-0.390521\pi\)
−0.941434 + 0.337198i \(0.890521\pi\)
\(38\) 4.85954 + 2.56579i 0.788321 + 0.416226i
\(39\) 1.67483 + 8.98115i 0.268188 + 1.43814i
\(40\) 0 0
\(41\) −4.04792 + 7.01121i −0.632179 + 1.09497i 0.354926 + 0.934894i \(0.384506\pi\)
−0.987105 + 0.160072i \(0.948827\pi\)
\(42\) −4.23579 4.58550i −0.653596 0.707559i
\(43\) 1.36185 5.08248i 0.207680 0.775071i −0.780936 0.624611i \(-0.785258\pi\)
0.988616 0.150461i \(-0.0480757\pi\)
\(44\) 6.28194 + 3.01888i 0.947037 + 0.455113i
\(45\) 0 0
\(46\) −5.28456 1.20389i −0.779165 0.177503i
\(47\) 0.231550 + 0.0620436i 0.0337750 + 0.00904999i 0.275667 0.961253i \(-0.411101\pi\)
−0.241892 + 0.970303i \(0.577768\pi\)
\(48\) −3.01224 + 6.23910i −0.434780 + 0.900537i
\(49\) −0.437526 0.252606i −0.0625037 0.0360865i
\(50\) 0 0
\(51\) −3.44669 4.02653i −0.482633 0.563827i
\(52\) −6.87463 + 8.00173i −0.953340 + 1.10964i
\(53\) −0.265818 + 0.265818i −0.0365129 + 0.0365129i −0.725127 0.688615i \(-0.758219\pi\)
0.688615 + 0.725127i \(0.258219\pi\)
\(54\) 5.53386 + 4.83491i 0.753063 + 0.657948i
\(55\) 0 0
\(56\) 1.06556 7.12902i 0.142392 0.952655i
\(57\) 6.71018 + 0.520636i 0.888785 + 0.0689600i
\(58\) 6.28446 0.237728i 0.825190 0.0312152i
\(59\) 5.69158 9.85810i 0.740980 1.28342i −0.211069 0.977471i \(-0.567695\pi\)
0.952049 0.305944i \(-0.0989722\pi\)
\(60\) 0 0
\(61\) −4.61792 7.99848i −0.591264 1.02410i −0.994062 0.108811i \(-0.965296\pi\)
0.402798 0.915289i \(-0.368038\pi\)
\(62\) −1.62566 2.58487i −0.206459 0.328278i
\(63\) −6.99134 3.09423i −0.880826 0.389837i
\(64\) −7.79502 + 1.79934i −0.974378 + 0.224918i
\(65\) 0 0
\(66\) 8.52937 + 0.338146i 1.04989 + 0.0416228i
\(67\) −0.192807 0.719566i −0.0235551 0.0879089i 0.953148 0.302505i \(-0.0978230\pi\)
−0.976703 + 0.214596i \(0.931156\pi\)
\(68\) 1.13289 6.01443i 0.137383 0.729357i
\(69\) −6.52556 + 1.21691i −0.785585 + 0.146498i
\(70\) 0 0
\(71\) 2.06980i 0.245640i −0.992429 0.122820i \(-0.960806\pi\)
0.992429 0.122820i \(-0.0391938\pi\)
\(72\) −0.351515 + 8.47800i −0.0414265 + 0.999142i
\(73\) −8.97449 + 8.97449i −1.05038 + 1.05038i −0.0517232 + 0.998661i \(0.516471\pi\)
−0.998661 + 0.0517232i \(0.983529\pi\)
\(74\) −2.16958 7.02337i −0.252208 0.816451i
\(75\) 0 0
\(76\) 4.38312 + 6.41755i 0.502779 + 0.736144i
\(77\) −8.57845 + 2.29859i −0.977605 + 0.261948i
\(78\) −3.83576 + 12.3377i −0.434314 + 1.39697i
\(79\) −7.56173 13.0973i −0.850761 1.47356i −0.880523 0.474004i \(-0.842808\pi\)
0.0297623 0.999557i \(-0.490525\pi\)
\(80\) 0 0
\(81\) 8.57173 + 2.74326i 0.952414 + 0.304807i
\(82\) −9.69186 + 6.09534i −1.07029 + 0.673118i
\(83\) 4.01723 14.9925i 0.440949 1.64564i −0.285468 0.958388i \(-0.592149\pi\)
0.726417 0.687255i \(-0.241184\pi\)
\(84\) −2.26944 8.53154i −0.247616 0.930867i
\(85\) 0 0
\(86\) 5.05911 5.45691i 0.545538 0.588434i
\(87\) 6.94837 3.32364i 0.744944 0.356332i
\(88\) 5.86280 + 7.92340i 0.624977 + 0.844637i
\(89\) 3.61495i 0.383184i −0.981475 0.191592i \(-0.938635\pi\)
0.981475 0.191592i \(-0.0613650\pi\)
\(90\) 0 0
\(91\) 13.4424i 1.40915i
\(92\) −5.81393 4.99500i −0.606144 0.520765i
\(93\) −3.08444 2.11486i −0.319842 0.219301i
\(94\) 0.248608 + 0.230485i 0.0256420 + 0.0237727i
\(95\) 0 0
\(96\) −7.88682 + 5.81362i −0.804945 + 0.593350i
\(97\) 0.818990 3.05651i 0.0831559 0.310342i −0.911803 0.410629i \(-0.865309\pi\)
0.994959 + 0.100287i \(0.0319760\pi\)
\(98\) −0.380373 0.604809i −0.0384234 0.0610949i
\(99\) 9.75182 3.76814i 0.980094 0.378712i
\(100\) 0 0
\(101\) 2.15969 + 3.74069i 0.214897 + 0.372213i 0.953241 0.302212i \(-0.0977250\pi\)
−0.738344 + 0.674425i \(0.764392\pi\)
\(102\) −1.65169 7.31144i −0.163541 0.723940i
\(103\) −1.31939 + 0.353529i −0.130003 + 0.0348342i −0.323234 0.946319i \(-0.604770\pi\)
0.193231 + 0.981153i \(0.438103\pi\)
\(104\) −13.8810 + 5.46760i −1.36114 + 0.536142i
\(105\) 0 0
\(106\) −0.507952 + 0.156910i −0.0493366 + 0.0152405i
\(107\) 5.32781 5.32781i 0.515059 0.515059i −0.401013 0.916072i \(-0.631342\pi\)
0.916072 + 0.401013i \(0.131342\pi\)
\(108\) 3.72813 + 9.70057i 0.358739 + 0.933438i
\(109\) 14.1851i 1.35869i 0.733820 + 0.679344i \(0.237736\pi\)
−0.733820 + 0.679344i \(0.762264\pi\)
\(110\) 0 0
\(111\) −5.85449 6.83939i −0.555683 0.649166i
\(112\) 6.03992 8.21194i 0.570719 0.775956i
\(113\) 0.117242 + 0.437551i 0.0110292 + 0.0411614i 0.971221 0.238180i \(-0.0765507\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(114\) 8.04796 + 5.08187i 0.753761 + 0.475961i
\(115\) 0 0
\(116\) 8.01631 + 3.85236i 0.744296 + 0.357683i
\(117\) 1.68886 + 15.7336i 0.156135 + 1.45457i
\(118\) 13.6272 8.57035i 1.25449 0.788965i
\(119\) 3.89931 + 6.75380i 0.357449 + 0.619120i
\(120\) 0 0
\(121\) 0.572043 0.990808i 0.0520040 0.0900735i
\(122\) −0.493734 13.0521i −0.0447005 1.18168i
\(123\) −7.92960 + 11.5650i −0.714988 + 1.04278i
\(124\) −0.326245 4.30606i −0.0292976 0.386696i
\(125\) 0 0
\(126\) −6.70022 8.48606i −0.596903 0.755998i
\(127\) −2.66261 + 2.66261i −0.236269 + 0.236269i −0.815303 0.579034i \(-0.803430\pi\)
0.579034 + 0.815303i \(0.303430\pi\)
\(128\) −10.9366 2.89683i −0.966664 0.256046i
\(129\) 3.03270 8.59427i 0.267014 0.756683i
\(130\) 0 0
\(131\) 10.6177 + 6.13011i 0.927670 + 0.535590i 0.886074 0.463544i \(-0.153422\pi\)
0.0415959 + 0.999135i \(0.486756\pi\)
\(132\) 10.4435 + 6.05487i 0.908994 + 0.527009i
\(133\) −9.56540 2.56304i −0.829425 0.222244i
\(134\) 0.234009 1.02720i 0.0202153 0.0887365i
\(135\) 0 0
\(136\) 5.38814 6.77359i 0.462029 0.580830i
\(137\) −2.39423 + 8.93538i −0.204553 + 0.763401i 0.785033 + 0.619454i \(0.212646\pi\)
−0.989585 + 0.143947i \(0.954021\pi\)
\(138\) −8.96439 2.78700i −0.763099 0.237245i
\(139\) −8.95460 + 15.5098i −0.759520 + 1.31553i 0.183576 + 0.983005i \(0.441233\pi\)
−0.943096 + 0.332521i \(0.892101\pi\)
\(140\) 0 0
\(141\) 0.391542 + 0.138165i 0.0329738 + 0.0116356i
\(142\) 1.36670 2.58849i 0.114691 0.217221i
\(143\) 12.9976 + 12.9976i 1.08691 + 1.08691i
\(144\) −6.03767 + 10.3705i −0.503139 + 0.864205i
\(145\) 0 0
\(146\) −17.1494 + 5.29759i −1.41929 + 0.438431i
\(147\) −0.721701 0.494837i −0.0595249 0.0408135i
\(148\) 1.92430 10.2160i 0.158176 0.839751i
\(149\) −2.39752 1.38421i −0.196413 0.113399i 0.398568 0.917139i \(-0.369507\pi\)
−0.594981 + 0.803740i \(0.702840\pi\)
\(150\) 0 0
\(151\) 6.51667 3.76240i 0.530319 0.306180i −0.210827 0.977523i \(-0.567616\pi\)
0.741146 + 0.671343i \(0.234282\pi\)
\(152\) 1.24399 + 10.9200i 0.100901 + 0.885728i
\(153\) −5.41246 7.41506i −0.437571 0.599472i
\(154\) −12.2460 2.78978i −0.986808 0.224807i
\(155\) 0 0
\(156\) −12.9437 + 12.8968i −1.03632 + 1.03257i
\(157\) 3.61744 0.969291i 0.288703 0.0773578i −0.111561 0.993758i \(-0.535585\pi\)
0.400264 + 0.916400i \(0.368918\pi\)
\(158\) −0.808476 21.3725i −0.0643189 1.70031i
\(159\) −0.494646 + 0.423414i −0.0392279 + 0.0335789i
\(160\) 0 0
\(161\) 9.76704 0.769751
\(162\) 8.90840 + 9.09067i 0.699910 + 0.714231i
\(163\) −6.76935 6.76935i −0.530216 0.530216i 0.390420 0.920637i \(-0.372330\pi\)
−0.920637 + 0.390420i \(0.872330\pi\)
\(164\) −16.1454 + 1.22324i −1.26074 + 0.0955192i
\(165\) 0 0
\(166\) 14.9236 16.0970i 1.15829 1.24937i
\(167\) −0.957423 3.57315i −0.0740876 0.276499i 0.918937 0.394404i \(-0.129049\pi\)
−0.993025 + 0.117905i \(0.962382\pi\)
\(168\) 2.79526 12.1680i 0.215659 0.938785i
\(169\) −12.8363 + 7.41103i −0.987406 + 0.570079i
\(170\) 0 0
\(171\) 11.5178 + 1.79813i 0.880787 + 0.137507i
\(172\) 9.93015 3.48385i 0.757167 0.265641i
\(173\) 22.3985 + 6.00167i 1.70293 + 0.456299i 0.973674 0.227943i \(-0.0732000\pi\)
0.729255 + 0.684242i \(0.239867\pi\)
\(174\) 10.8842 + 0.431504i 0.825132 + 0.0327122i
\(175\) 0 0
\(176\) 2.10015 + 13.7802i 0.158305 + 1.03872i
\(177\) 11.1494 16.2610i 0.838041 1.22225i
\(178\) 2.38697 4.52085i 0.178911 0.338852i
\(179\) 10.0185 0.748819 0.374410 0.927263i \(-0.377845\pi\)
0.374410 + 0.927263i \(0.377845\pi\)
\(180\) 0 0
\(181\) −19.9811 −1.48518 −0.742590 0.669746i \(-0.766403\pi\)
−0.742590 + 0.669746i \(0.766403\pi\)
\(182\) 8.87609 16.8111i 0.657940 1.24612i
\(183\) −6.90283 14.4310i −0.510272 1.06677i
\(184\) −3.97267 10.0857i −0.292869 0.743528i
\(185\) 0 0
\(186\) −2.46095 4.68152i −0.180446 0.343266i
\(187\) −10.3006 2.76003i −0.753253 0.201833i
\(188\) 0.158719 + 0.452402i 0.0115758 + 0.0329948i
\(189\) −11.6585 6.28005i −0.848030 0.456806i
\(190\) 0 0
\(191\) −13.5705 + 7.83490i −0.981923 + 0.566914i −0.902850 0.429955i \(-0.858529\pi\)
−0.0790731 + 0.996869i \(0.525196\pi\)
\(192\) −13.7020 + 2.06280i −0.988857 + 0.148870i
\(193\) −5.58592 20.8469i −0.402083 1.50060i −0.809372 0.587296i \(-0.800193\pi\)
0.407289 0.913299i \(-0.366474\pi\)
\(194\) 3.04246 3.28169i 0.218436 0.235611i
\(195\) 0 0
\(196\) −0.0763350 1.00754i −0.00545250 0.0719668i
\(197\) 9.44630 + 9.44630i 0.673021 + 0.673021i 0.958411 0.285390i \(-0.0921232\pi\)
−0.285390 + 0.958411i \(0.592123\pi\)
\(198\) 14.6837 + 1.72674i 1.04353 + 0.122714i
\(199\) 2.06079 0.146085 0.0730427 0.997329i \(-0.476729\pi\)
0.0730427 + 0.997329i \(0.476729\pi\)
\(200\) 0 0
\(201\) −0.236540 1.26842i −0.0166842 0.0894677i
\(202\) 0.230907 + 6.10416i 0.0162466 + 0.429487i
\(203\) −10.9469 + 2.93320i −0.768320 + 0.205871i
\(204\) 2.76218 10.2343i 0.193391 0.716544i
\(205\) 0 0
\(206\) −1.88346 0.429076i −0.131227 0.0298951i
\(207\) −11.4318 + 1.22710i −0.794564 + 0.0852893i
\(208\) −20.9698 2.32792i −1.45400 0.161412i
\(209\) 11.7271 6.77063i 0.811179 0.468335i
\(210\) 0 0
\(211\) 1.99458 + 1.15157i 0.137313 + 0.0792776i 0.567083 0.823661i \(-0.308072\pi\)
−0.429770 + 0.902938i \(0.641405\pi\)
\(212\) −0.738853 0.139171i −0.0507446 0.00955831i
\(213\) 0.277323 3.57425i 0.0190019 0.244904i
\(214\) 10.1809 3.14497i 0.695954 0.214986i
\(215\) 0 0
\(216\) −1.74295 + 14.5932i −0.118592 + 0.992943i
\(217\) 3.89099 + 3.89099i 0.264138 + 0.264138i
\(218\) −9.36651 + 17.7399i −0.634380 + 1.20150i
\(219\) −16.7001 + 14.2952i −1.12849 + 0.965983i
\(220\) 0 0
\(221\) 8.07049 13.9785i 0.542880 0.940296i
\(222\) −2.80553 12.4191i −0.188295 0.833514i
\(223\) −4.32002 + 16.1225i −0.289290 + 1.07964i 0.656357 + 0.754450i \(0.272096\pi\)
−0.945647 + 0.325194i \(0.894570\pi\)
\(224\) 12.9759 6.28166i 0.866989 0.419711i
\(225\) 0 0
\(226\) −0.142295 + 0.624617i −0.00946534 + 0.0415489i
\(227\) −4.86933 1.30473i −0.323189 0.0865981i 0.0935772 0.995612i \(-0.470170\pi\)
−0.416766 + 0.909014i \(0.636836\pi\)
\(228\) 6.70919 + 11.6695i 0.444327 + 0.772831i
\(229\) 6.71866 + 3.87902i 0.443981 + 0.256333i 0.705285 0.708924i \(-0.250819\pi\)
−0.261304 + 0.965257i \(0.584152\pi\)
\(230\) 0 0
\(231\) −15.1218 + 2.81995i −0.994939 + 0.185539i
\(232\) 7.48146 + 10.1110i 0.491182 + 0.663818i
\(233\) 4.15335 4.15335i 0.272095 0.272095i −0.557848 0.829943i \(-0.688373\pi\)
0.829943 + 0.557848i \(0.188373\pi\)
\(234\) −8.27689 + 20.7916i −0.541077 + 1.35919i
\(235\) 0 0
\(236\) 22.7012 1.71994i 1.47773 0.111959i
\(237\) −11.3032 23.6304i −0.734222 1.53496i
\(238\) 0.416902 + 11.0210i 0.0270237 + 0.714388i
\(239\) 1.28058 2.21802i 0.0828335 0.143472i −0.821632 0.570018i \(-0.806936\pi\)
0.904466 + 0.426546i \(0.140270\pi\)
\(240\) 0 0
\(241\) 6.89420 + 11.9411i 0.444094 + 0.769194i 0.997989 0.0633929i \(-0.0201921\pi\)
−0.553894 + 0.832587i \(0.686859\pi\)
\(242\) 1.36963 0.861381i 0.0880433 0.0553716i
\(243\) 14.4346 + 5.88572i 0.925981 + 0.377569i
\(244\) 8.00092 16.6490i 0.512206 1.06584i
\(245\) 0 0
\(246\) −17.5532 + 9.22724i −1.11915 + 0.588307i
\(247\) 5.30478 + 19.7977i 0.337535 + 1.25970i
\(248\) 2.43531 5.60057i 0.154642 0.355637i
\(249\) 8.94598 25.3517i 0.566929 1.60660i
\(250\) 0 0
\(251\) 11.4799i 0.724602i −0.932061 0.362301i \(-0.881991\pi\)
0.932061 0.362301i \(-0.118009\pi\)
\(252\) −2.77590 15.0368i −0.174865 0.947232i
\(253\) −9.44382 + 9.44382i −0.593728 + 0.593728i
\(254\) −5.08799 + 1.57172i −0.319249 + 0.0986187i
\(255\) 0 0
\(256\) −11.7645 10.8442i −0.735278 0.677765i
\(257\) −14.1728 + 3.79760i −0.884077 + 0.236888i −0.672165 0.740401i \(-0.734636\pi\)
−0.211912 + 0.977289i \(0.567969\pi\)
\(258\) 9.46753 8.74548i 0.589423 0.544470i
\(259\) 6.62330 + 11.4719i 0.411552 + 0.712829i
\(260\) 0 0
\(261\) 12.4442 4.80848i 0.770276 0.297638i
\(262\) 9.23070 + 14.6772i 0.570274 + 0.906761i
\(263\) 0.474777 1.77189i 0.0292760 0.109259i −0.949742 0.313034i \(-0.898654\pi\)
0.979018 + 0.203775i \(0.0653211\pi\)
\(264\) 9.06262 + 14.4681i 0.557766 + 0.890452i
\(265\) 0 0
\(266\) −10.2701 9.52142i −0.629700 0.583796i
\(267\) 0.484351 6.24252i 0.0296418 0.382036i
\(268\) 0.970916 1.13010i 0.0593081 0.0690317i
\(269\) 13.4031i 0.817201i 0.912713 + 0.408600i \(0.133983\pi\)
−0.912713 + 0.408600i \(0.866017\pi\)
\(270\) 0 0
\(271\) 19.1919i 1.16582i 0.812536 + 0.582911i \(0.198086\pi\)
−0.812536 + 0.582911i \(0.801914\pi\)
\(272\) 11.2110 4.91322i 0.679769 0.297908i
\(273\) 1.80109 23.2132i 0.109007 1.40493i
\(274\) −8.89430 + 9.59366i −0.537324 + 0.579574i
\(275\) 0 0
\(276\) −9.37058 9.40465i −0.564043 0.566093i
\(277\) 1.93430 7.21889i 0.116221 0.433741i −0.883155 0.469082i \(-0.844585\pi\)
0.999375 + 0.0353406i \(0.0112516\pi\)
\(278\) −21.4398 + 13.4838i −1.28588 + 0.808705i
\(279\) −5.04305 4.06534i −0.301919 0.243386i
\(280\) 0 0
\(281\) −6.99536 12.1163i −0.417308 0.722799i 0.578360 0.815782i \(-0.303693\pi\)
−0.995668 + 0.0929831i \(0.970360\pi\)
\(282\) 0.398430 + 0.431326i 0.0237262 + 0.0256851i
\(283\) 1.79491 0.480944i 0.106696 0.0285891i −0.205076 0.978746i \(-0.565744\pi\)
0.311772 + 0.950157i \(0.399077\pi\)
\(284\) 3.41838 2.33472i 0.202844 0.138540i
\(285\) 0 0
\(286\) 7.67238 + 24.8371i 0.453677 + 1.46865i
\(287\) 14.5891 14.5891i 0.861170 0.861170i
\(288\) −14.3984 + 8.98259i −0.848432 + 0.529304i
\(289\) 7.63580i 0.449165i
\(290\) 0 0
\(291\) 1.82381 5.16844i 0.106914 0.302979i
\(292\) −24.9450 4.69867i −1.45980 0.274969i
\(293\) 6.82756 + 25.4808i 0.398870 + 1.48860i 0.815087 + 0.579339i \(0.196689\pi\)
−0.416217 + 0.909266i \(0.636644\pi\)
\(294\) −0.575815 1.09539i −0.0335822 0.0638842i
\(295\) 0 0
\(296\) 9.15221 11.5055i 0.531961 0.668744i
\(297\) 17.3449 5.20045i 1.00645 0.301761i
\(298\) −2.08434 3.31419i −0.120742 0.191986i
\(299\) −10.1075 17.5068i −0.584534 1.01244i
\(300\) 0 0
\(301\) −6.70478 + 11.6130i −0.386457 + 0.669363i
\(302\) 10.6341 0.402264i 0.611922 0.0231477i
\(303\) 3.22828 + 6.74902i 0.185460 + 0.387721i
\(304\) −5.65479 + 14.4779i −0.324325 + 0.830366i
\(305\) 0 0
\(306\) −1.87261 12.8471i −0.107050 0.734422i
\(307\) 13.9421 13.9421i 0.795717 0.795717i −0.186700 0.982417i \(-0.559779\pi\)
0.982417 + 0.186700i \(0.0597792\pi\)
\(308\) −13.4727 11.5750i −0.767677 0.659545i
\(309\) −2.32577 + 0.433717i −0.132308 + 0.0246733i
\(310\) 0 0
\(311\) 0.701482 + 0.405001i 0.0397774 + 0.0229655i 0.519757 0.854314i \(-0.326023\pi\)
−0.479979 + 0.877280i \(0.659356\pi\)
\(312\) −24.7031 + 7.58193i −1.39854 + 0.429242i
\(313\) −6.11329 1.63805i −0.345544 0.0925882i 0.0818732 0.996643i \(-0.473910\pi\)
−0.427417 + 0.904055i \(0.640576\pi\)
\(314\) 5.16400 + 1.17642i 0.291421 + 0.0663893i
\(315\) 0 0
\(316\) 13.1013 27.2623i 0.737005 1.53362i
\(317\) 5.23297 19.5297i 0.293913 1.09690i −0.648164 0.761501i \(-0.724463\pi\)
0.942077 0.335397i \(-0.108871\pi\)
\(318\) −0.898186 + 0.202904i −0.0503678 + 0.0113783i
\(319\) 7.74847 13.4207i 0.433831 0.751418i
\(320\) 0 0
\(321\) 9.91424 8.48654i 0.553359 0.473672i
\(322\) 12.2146 + 6.44923i 0.680696 + 0.359401i
\(323\) −8.40809 8.40809i −0.467838 0.467838i
\(324\) 5.13822 + 17.2510i 0.285457 + 0.958392i
\(325\) 0 0
\(326\) −3.99590 12.9356i −0.221313 0.716435i
\(327\) −1.90060 + 24.4957i −0.105103 + 1.35462i
\(328\) −20.9991 9.13111i −1.15948 0.504181i
\(329\) −0.529071 0.305459i −0.0291686 0.0168405i
\(330\) 0 0
\(331\) −16.9166 + 9.76680i −0.929821 + 0.536832i −0.886755 0.462240i \(-0.847046\pi\)
−0.0430657 + 0.999072i \(0.513712\pi\)
\(332\) 29.2924 10.2768i 1.60763 0.564013i
\(333\) −9.19350 12.5951i −0.503801 0.690207i
\(334\) 1.16202 5.10077i 0.0635828 0.279102i
\(335\) 0 0
\(336\) 11.5304 13.3716i 0.629034 0.729482i
\(337\) −9.77024 + 2.61793i −0.532219 + 0.142608i −0.514913 0.857243i \(-0.672176\pi\)
−0.0173061 + 0.999850i \(0.505509\pi\)
\(338\) −20.9466 + 0.792364i −1.13934 + 0.0430989i
\(339\) 0.143834 + 0.771299i 0.00781201 + 0.0418912i
\(340\) 0 0
\(341\) −7.52446 −0.407472
\(342\) 13.2168 + 9.85400i 0.714684 + 0.532843i
\(343\) 13.5248 + 13.5248i 0.730270 + 0.730270i
\(344\) 14.7190 + 2.20003i 0.793597 + 0.118618i
\(345\) 0 0
\(346\) 24.0487 + 22.2956i 1.29286 + 1.19862i
\(347\) 6.50347 + 24.2713i 0.349125 + 1.30295i 0.887719 + 0.460386i \(0.152289\pi\)
−0.538594 + 0.842565i \(0.681044\pi\)
\(348\) 13.3269 + 7.72656i 0.714397 + 0.414187i
\(349\) −15.0315 + 8.67844i −0.804617 + 0.464546i −0.845083 0.534635i \(-0.820449\pi\)
0.0404658 + 0.999181i \(0.487116\pi\)
\(350\) 0 0
\(351\) 0.808354 + 27.3960i 0.0431467 + 1.46229i
\(352\) −6.47271 + 18.6203i −0.344997 + 0.992464i
\(353\) 28.8445 + 7.72886i 1.53524 + 0.411366i 0.924723 0.380640i \(-0.124296\pi\)
0.610514 + 0.792006i \(0.290963\pi\)
\(354\) 24.6806 12.9740i 1.31176 0.689558i
\(355\) 0 0
\(356\) 5.97028 4.07764i 0.316424 0.216115i
\(357\) 5.82865 + 12.1853i 0.308485 + 0.644916i
\(358\) 12.5291 + 6.61528i 0.662186 + 0.349628i
\(359\) −26.1394 −1.37959 −0.689794 0.724006i \(-0.742299\pi\)
−0.689794 + 0.724006i \(0.742299\pi\)
\(360\) 0 0
\(361\) −3.90081 −0.205306
\(362\) −24.9883 13.1936i −1.31336 0.693440i
\(363\) 1.12059 1.63434i 0.0588159 0.0857807i
\(364\) 22.2009 15.1630i 1.16364 0.794755i
\(365\) 0 0
\(366\) 0.896186 22.6054i 0.0468444 1.18160i
\(367\) −22.2128 5.95191i −1.15950 0.310687i −0.372734 0.927938i \(-0.621580\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(368\) 1.69143 15.2363i 0.0881718 0.794249i
\(369\) −15.2429 + 18.9087i −0.793511 + 0.984348i
\(370\) 0 0
\(371\) 0.829682 0.479017i 0.0430750 0.0248693i
\(372\) 0.0135702 7.47968i 0.000703581 0.387803i
\(373\) 3.44016 + 12.8388i 0.178125 + 0.664770i 0.995998 + 0.0893722i \(0.0284861\pi\)
−0.817874 + 0.575398i \(0.804847\pi\)
\(374\) −11.0594 10.2532i −0.571869 0.530181i
\(375\) 0 0
\(376\) −0.100230 + 0.670576i −0.00516896 + 0.0345823i
\(377\) 16.5861 + 16.5861i 0.854226 + 0.854226i
\(378\) −10.4333 15.5520i −0.536633 0.799907i
\(379\) 12.7657 0.655730 0.327865 0.944725i \(-0.393671\pi\)
0.327865 + 0.944725i \(0.393671\pi\)
\(380\) 0 0
\(381\) −4.95471 + 4.24121i −0.253838 + 0.217284i
\(382\) −22.1446 + 0.837683i −1.13302 + 0.0428596i
\(383\) 33.9365 9.09327i 1.73408 0.464644i 0.752960 0.658066i \(-0.228625\pi\)
0.981116 + 0.193422i \(0.0619586\pi\)
\(384\) −18.4978 6.46777i −0.943961 0.330057i
\(385\) 0 0
\(386\) 6.77959 29.7596i 0.345072 1.51472i
\(387\) 6.38856 14.4348i 0.324749 0.733761i
\(388\) 5.97181 2.09512i 0.303173 0.106364i
\(389\) 15.4675 8.93019i 0.784236 0.452779i −0.0536937 0.998557i \(-0.517099\pi\)
0.837929 + 0.545779i \(0.183766\pi\)
\(390\) 0 0
\(391\) 10.1566 + 5.86389i 0.513639 + 0.296550i
\(392\) 0.569816 1.31043i 0.0287801 0.0661865i
\(393\) 17.5139 + 12.0085i 0.883459 + 0.605747i
\(394\) 5.57609 + 18.0510i 0.280919 + 0.909395i
\(395\) 0 0
\(396\) 17.2233 + 11.8552i 0.865502 + 0.595746i
\(397\) −22.9050 22.9050i −1.14957 1.14957i −0.986637 0.162934i \(-0.947904\pi\)
−0.162934 0.986637i \(-0.552096\pi\)
\(398\) 2.57722 + 1.36075i 0.129184 + 0.0682082i
\(399\) −16.1747 5.70764i −0.809748 0.285739i
\(400\) 0 0
\(401\) −15.2608 + 26.4324i −0.762087 + 1.31997i 0.179686 + 0.983724i \(0.442492\pi\)
−0.941773 + 0.336249i \(0.890841\pi\)
\(402\) 0.541730 1.74248i 0.0270190 0.0869068i
\(403\) 2.94770 11.0010i 0.146836 0.547998i
\(404\) −3.74183 + 7.78632i −0.186163 + 0.387384i
\(405\) 0 0
\(406\) −15.6270 3.56001i −0.775553 0.176680i
\(407\) −17.4964 4.68814i −0.867263 0.232383i
\(408\) 10.2121 10.9751i 0.505576 0.543349i
\(409\) 14.2191 + 8.20942i 0.703091 + 0.405930i 0.808498 0.588499i \(-0.200281\pi\)
−0.105407 + 0.994429i \(0.533614\pi\)
\(410\) 0 0
\(411\) −5.33171 + 15.1094i −0.262994 + 0.745290i
\(412\) −2.07213 1.78026i −0.102087 0.0877072i
\(413\) −20.5130 + 20.5130i −1.00938 + 1.00938i
\(414\) −15.1068 6.01386i −0.742460 0.295565i
\(415\) 0 0
\(416\) −24.6877 16.7578i −1.21041 0.821618i
\(417\) −17.5414 + 25.5835i −0.859008 + 1.25283i
\(418\) 19.1366 0.723895i 0.936000 0.0354068i
\(419\) −5.01036 + 8.67820i −0.244772 + 0.423958i −0.962068 0.272811i \(-0.912047\pi\)
0.717295 + 0.696769i \(0.245380\pi\)
\(420\) 0 0
\(421\) −3.68335 6.37975i −0.179515 0.310930i 0.762199 0.647342i \(-0.224120\pi\)
−0.941715 + 0.336413i \(0.890786\pi\)
\(422\) 1.73403 + 2.75719i 0.0844115 + 0.134218i
\(423\) 0.657626 + 0.291053i 0.0319749 + 0.0141515i
\(424\) −0.832113 0.661915i −0.0404110 0.0321455i
\(425\) 0 0
\(426\) 2.70692 4.28684i 0.131151 0.207698i
\(427\) 6.09194 + 22.7354i 0.294810 + 1.10024i
\(428\) 14.8089 + 2.78942i 0.715816 + 0.134832i
\(429\) 20.7035 + 24.1865i 0.999575 + 1.16773i
\(430\) 0 0
\(431\) 16.4473i 0.792237i 0.918199 + 0.396119i \(0.129643\pi\)
−0.918199 + 0.396119i \(0.870357\pi\)
\(432\) −11.8157 + 17.0994i −0.568483 + 0.822695i
\(433\) 3.78112 3.78112i 0.181709 0.181709i −0.610391 0.792100i \(-0.708988\pi\)
0.792100 + 0.610391i \(0.208988\pi\)
\(434\) 2.29683 + 7.43531i 0.110251 + 0.356906i
\(435\) 0 0
\(436\) −23.4275 + 16.0007i −1.12197 + 0.766297i
\(437\) −14.3847 + 3.85437i −0.688114 + 0.184380i
\(438\) −30.3244 + 6.85042i −1.44896 + 0.327326i
\(439\) −18.4104 31.8878i −0.878683 1.52192i −0.852787 0.522258i \(-0.825090\pi\)
−0.0258954 0.999665i \(-0.508244\pi\)
\(440\) 0 0
\(441\) −1.17998 0.951212i −0.0561893 0.0452958i
\(442\) 19.3230 12.1525i 0.919102 0.578036i
\(443\) −3.13302 + 11.6926i −0.148854 + 0.555532i 0.850699 + 0.525653i \(0.176179\pi\)
−0.999554 + 0.0298790i \(0.990488\pi\)
\(444\) 4.69179 17.3838i 0.222663 0.824998i
\(445\) 0 0
\(446\) −16.0484 + 17.3103i −0.759914 + 0.819666i
\(447\) −3.95472 2.71157i −0.187052 0.128253i
\(448\) 20.3755 + 0.712219i 0.962650 + 0.0336492i
\(449\) 1.04828i 0.0494715i −0.999694 0.0247357i \(-0.992126\pi\)
0.999694 0.0247357i \(-0.00787443\pi\)
\(450\) 0 0
\(451\) 28.2127i 1.32848i
\(452\) −0.590392 + 0.687186i −0.0277697 + 0.0323225i
\(453\) 11.7575 5.62401i 0.552415 0.264239i
\(454\) −5.22805 4.84694i −0.245365 0.227478i
\(455\) 0 0
\(456\) 0.685074 + 19.0240i 0.0320815 + 0.890879i
\(457\) −3.52188 + 13.1438i −0.164747 + 0.614843i 0.833326 + 0.552782i \(0.186434\pi\)
−0.998072 + 0.0620609i \(0.980233\pi\)
\(458\) 5.84101 + 9.28746i 0.272932 + 0.433974i
\(459\) −8.35305 13.5300i −0.389887 0.631525i
\(460\) 0 0
\(461\) 5.72422 + 9.91464i 0.266604 + 0.461771i 0.967983 0.251018i \(-0.0807652\pi\)
−0.701379 + 0.712789i \(0.747432\pi\)
\(462\) −20.7733 6.45834i −0.966461 0.300469i
\(463\) −4.53841 + 1.21606i −0.210918 + 0.0565153i −0.362731 0.931894i \(-0.618156\pi\)
0.151813 + 0.988409i \(0.451489\pi\)
\(464\) 2.67998 + 17.5848i 0.124415 + 0.816354i
\(465\) 0 0
\(466\) 7.93664 2.45169i 0.367658 0.113573i
\(467\) −25.5411 + 25.5411i −1.18190 + 1.18190i −0.202651 + 0.979251i \(0.564956\pi\)
−0.979251 + 0.202651i \(0.935044\pi\)
\(468\) −24.0799 + 20.5367i −1.11309 + 0.949308i
\(469\) 1.89849i 0.0876643i
\(470\) 0 0
\(471\) 6.37669 1.18915i 0.293822 0.0547929i
\(472\) 29.5258 + 12.8388i 1.35904 + 0.590953i
\(473\) −4.74581 17.7116i −0.218213 0.814381i
\(474\) 1.46748 37.0157i 0.0674036 1.70019i
\(475\) 0 0
\(476\) −6.75587 + 14.0582i −0.309655 + 0.644355i
\(477\) −0.910915 + 0.664902i −0.0417080 + 0.0304438i
\(478\) 3.06606 1.92828i 0.140238 0.0881977i
\(479\) 6.06234 + 10.5003i 0.276995 + 0.479770i 0.970637 0.240551i \(-0.0773280\pi\)
−0.693641 + 0.720321i \(0.743995\pi\)
\(480\) 0 0
\(481\) 13.7084 23.7436i 0.625049 1.08262i
\(482\) 0.737106 + 19.4858i 0.0335743 + 0.887554i
\(483\) 16.8663 + 1.30864i 0.767444 + 0.0595452i
\(484\) 2.28163 0.172866i 0.103711 0.00785755i
\(485\) 0 0
\(486\) 14.1656 + 16.8919i 0.642562 + 0.766233i
\(487\) 12.5621 12.5621i 0.569243 0.569243i −0.362673 0.931916i \(-0.618136\pi\)
0.931916 + 0.362673i \(0.118136\pi\)
\(488\) 20.9994 15.5382i 0.950596 0.703379i
\(489\) −10.7827 12.5967i −0.487612 0.569643i
\(490\) 0 0
\(491\) −0.109289 0.0630982i −0.00493215 0.00284758i 0.497532 0.867446i \(-0.334240\pi\)
−0.502464 + 0.864598i \(0.667573\pi\)
\(492\) −28.0448 0.0508809i −1.26436 0.00229389i
\(493\) −13.1445 3.52205i −0.591997 0.158625i
\(494\) −6.43838 + 28.2618i −0.289677 + 1.27156i
\(495\) 0 0
\(496\) 6.74369 5.39602i 0.302800 0.242289i
\(497\) −1.36523 + 5.09512i −0.0612391 + 0.228547i
\(498\) 27.9277 25.7978i 1.25147 1.15603i
\(499\) −20.2868 + 35.1377i −0.908161 + 1.57298i −0.0915430 + 0.995801i \(0.529180\pi\)
−0.816618 + 0.577179i \(0.804153\pi\)
\(500\) 0 0
\(501\) −1.17459 6.29862i −0.0524766 0.281401i
\(502\) 7.58021 14.3567i 0.338321 0.640771i
\(503\) 6.97397 + 6.97397i 0.310954 + 0.310954i 0.845279 0.534325i \(-0.179434\pi\)
−0.534325 + 0.845279i \(0.679434\pi\)
\(504\) 6.45737 20.6380i 0.287634 0.919290i
\(505\) 0 0
\(506\) −18.0462 + 5.57463i −0.802253 + 0.247823i
\(507\) −23.1594 + 11.0779i −1.02855 + 0.491989i
\(508\) −7.40086 1.39403i −0.328360 0.0618503i
\(509\) 27.6387 + 15.9572i 1.22507 + 0.707292i 0.965994 0.258566i \(-0.0832499\pi\)
0.259072 + 0.965858i \(0.416583\pi\)
\(510\) 0 0
\(511\) 28.0116 16.1725i 1.23916 0.715430i
\(512\) −7.55210 21.3299i −0.333759 0.942658i
\(513\) 19.6487 + 4.64834i 0.867511 + 0.205229i
\(514\) −20.2321 4.60912i −0.892400 0.203300i
\(515\) 0 0
\(516\) 17.6148 4.68563i 0.775447 0.206273i
\(517\) 0.806914 0.216212i 0.0354880 0.00950899i
\(518\) 0.708142 + 18.7201i 0.0311140 + 0.822516i
\(519\) 37.8750 + 13.3651i 1.66253 + 0.586664i
\(520\) 0 0
\(521\) 34.5815 1.51504 0.757521 0.652811i \(-0.226410\pi\)
0.757521 + 0.652811i \(0.226410\pi\)
\(522\) 18.7378 + 2.20348i 0.820129 + 0.0964436i
\(523\) 31.6445 + 31.6445i 1.38372 + 1.38372i 0.837915 + 0.545801i \(0.183775\pi\)
0.545801 + 0.837915i \(0.316225\pi\)
\(524\) 1.85246 + 24.4504i 0.0809251 + 1.06812i
\(525\) 0 0
\(526\) 1.76374 1.90243i 0.0769028 0.0829497i
\(527\) 1.71011 + 6.38222i 0.0744936 + 0.278014i
\(528\) 1.78031 + 24.0779i 0.0774782 + 1.04786i
\(529\) −7.19846 + 4.15603i −0.312976 + 0.180697i
\(530\) 0 0
\(531\) 21.4322 26.5866i 0.930078 1.15376i
\(532\) −6.55672 18.6889i −0.284270 0.810265i
\(533\) −41.2478 11.0523i −1.78664 0.478729i
\(534\) 4.72769 7.48706i 0.204587 0.323997i
\(535\) 0 0
\(536\) 1.96044 0.772198i 0.0846779 0.0333539i
\(537\) 17.3006 + 1.34234i 0.746575 + 0.0579261i
\(538\) −8.85013 + 16.7619i −0.381556 + 0.722656i
\(539\) −1.76058 −0.0758335
\(540\) 0 0
\(541\) 35.6814 1.53407 0.767033 0.641608i \(-0.221732\pi\)
0.767033 + 0.641608i \(0.221732\pi\)
\(542\) −12.6725 + 24.0013i −0.544330 + 1.03094i
\(543\) −34.5045 2.67717i −1.48073 0.114888i
\(544\) 17.2647 + 1.25824i 0.740220 + 0.0539464i
\(545\) 0 0
\(546\) 17.5802 27.8411i 0.752364 1.19149i
\(547\) 15.9487 + 4.27345i 0.681919 + 0.182720i 0.583118 0.812388i \(-0.301833\pi\)
0.0988010 + 0.995107i \(0.468499\pi\)
\(548\) −17.4579 + 6.12487i −0.745766 + 0.261641i
\(549\) −9.98668 25.8452i −0.426221 1.10305i
\(550\) 0 0
\(551\) 14.9648 8.63994i 0.637522 0.368074i
\(552\) −5.50890 17.9489i −0.234475 0.763955i
\(553\) 9.97538 + 37.2286i 0.424197 + 1.58312i
\(554\) 7.18570 7.75071i 0.305291 0.329296i
\(555\) 0 0
\(556\) −35.7161 + 2.70599i −1.51470 + 0.114760i
\(557\) −1.96120 1.96120i −0.0830989 0.0830989i 0.664336 0.747434i \(-0.268715\pi\)
−0.747434 + 0.664336i \(0.768715\pi\)
\(558\) −3.62246 8.41406i −0.153351 0.356196i
\(559\) 27.7541 1.17387
\(560\) 0 0
\(561\) −17.4179 6.14632i −0.735383 0.259498i
\(562\) −0.747922 19.7717i −0.0315492 0.834020i
\(563\) −12.8024 + 3.43039i −0.539557 + 0.144574i −0.518298 0.855200i \(-0.673434\pi\)
−0.0212589 + 0.999774i \(0.506767\pi\)
\(564\) 0.213470 + 0.802501i 0.00898870 + 0.0337914i
\(565\) 0 0
\(566\) 2.56228 + 0.583718i 0.107701 + 0.0245355i
\(567\) −19.2911 12.4068i −0.810152 0.521038i
\(568\) 5.81665 0.662624i 0.244061 0.0278031i
\(569\) −9.89594 + 5.71342i −0.414859 + 0.239519i −0.692876 0.721057i \(-0.743656\pi\)
0.278016 + 0.960576i \(0.410323\pi\)
\(570\) 0 0
\(571\) −32.2228 18.6038i −1.34848 0.778546i −0.360447 0.932780i \(-0.617376\pi\)
−0.988034 + 0.154234i \(0.950709\pi\)
\(572\) −6.80499 + 36.1274i −0.284531 + 1.51056i
\(573\) −24.4840 + 11.7115i −1.02284 + 0.489257i
\(574\) 27.8784 8.61188i 1.16362 0.359453i
\(575\) 0 0
\(576\) −23.9378 + 1.72629i −0.997410 + 0.0719289i
\(577\) 8.63696 + 8.63696i 0.359561 + 0.359561i 0.863651 0.504090i \(-0.168172\pi\)
−0.504090 + 0.863651i \(0.668172\pi\)
\(578\) 5.04196 9.54932i 0.209718 0.397199i
\(579\) −6.85292 36.7482i −0.284798 1.52720i
\(580\) 0 0
\(581\) −19.7780 + 34.2566i −0.820532 + 1.42120i
\(582\) 5.69360 5.25937i 0.236007 0.218008i
\(583\) −0.339061 + 1.26539i −0.0140425 + 0.0524072i
\(584\) −28.0937 22.3475i −1.16252 0.924745i
\(585\) 0 0
\(586\) −8.28656 + 36.3745i −0.342315 + 1.50262i
\(587\) 7.66180 + 2.05297i 0.316236 + 0.0847352i 0.413446 0.910529i \(-0.364325\pi\)
−0.0972097 + 0.995264i \(0.530992\pi\)
\(588\) 0.00317516 1.75010i 0.000130941 0.0721729i
\(589\) −7.26609 4.19508i −0.299394 0.172855i
\(590\) 0 0
\(591\) 15.0468 + 17.5781i 0.618942 + 0.723067i
\(592\) 19.0429 8.34552i 0.782657 0.342999i
\(593\) 17.4824 17.4824i 0.717918 0.717918i −0.250261 0.968178i \(-0.580516\pi\)
0.968178 + 0.250261i \(0.0805164\pi\)
\(594\) 25.1254 + 4.94925i 1.03091 + 0.203070i
\(595\) 0 0
\(596\) −0.418295 5.52102i −0.0171340 0.226150i
\(597\) 3.55869 + 0.276116i 0.145648 + 0.0113007i
\(598\) −1.08067 28.5680i −0.0441917 1.16823i
\(599\) −15.1365 + 26.2172i −0.618461 + 1.07121i 0.371305 + 0.928511i \(0.378910\pi\)
−0.989767 + 0.142696i \(0.954423\pi\)
\(600\) 0 0
\(601\) −1.15030 1.99238i −0.0469219 0.0812710i 0.841611 0.540085i \(-0.181608\pi\)
−0.888532 + 0.458814i \(0.848275\pi\)
\(602\) −16.0531 + 10.0960i −0.654277 + 0.411483i
\(603\) −0.238521 2.22208i −0.00971331 0.0904902i
\(604\) 13.5646 + 6.51866i 0.551935 + 0.265241i
\(605\) 0 0
\(606\) −0.419124 + 10.5720i −0.0170257 + 0.429457i
\(607\) −11.3362 42.3071i −0.460120 1.71719i −0.672581 0.740023i \(-0.734815\pi\)
0.212461 0.977170i \(-0.431852\pi\)
\(608\) −16.6317 + 14.3722i −0.674506 + 0.582869i
\(609\) −19.2967 + 3.59851i −0.781943 + 0.145819i
\(610\) 0 0
\(611\) 1.26443i 0.0511535i
\(612\) 6.14115 17.3031i 0.248241 0.699437i
\(613\) −5.01756 + 5.01756i −0.202657 + 0.202657i −0.801138 0.598480i \(-0.795772\pi\)
0.598480 + 0.801138i \(0.295772\pi\)
\(614\) 26.6420 8.22993i 1.07518 0.332133i
\(615\) 0 0
\(616\) −9.20591 23.3717i −0.370917 0.941674i
\(617\) 6.92773 1.85628i 0.278900 0.0747310i −0.116658 0.993172i \(-0.537218\pi\)
0.395558 + 0.918441i \(0.370551\pi\)
\(618\) −3.19499 0.993311i −0.128521 0.0399568i
\(619\) 6.11352 + 10.5889i 0.245723 + 0.425605i 0.962335 0.271868i \(-0.0876413\pi\)
−0.716612 + 0.697473i \(0.754308\pi\)
\(620\) 0 0
\(621\) −19.9055 + 0.587337i −0.798781 + 0.0235690i
\(622\) 0.609848 + 0.969686i 0.0244527 + 0.0388809i
\(623\) −2.38441 + 8.89874i −0.0955294 + 0.356521i
\(624\) −35.9001 6.82965i −1.43715 0.273405i
\(625\) 0 0
\(626\) −6.56366 6.08519i −0.262337 0.243213i
\(627\) 21.1582 10.1207i 0.844977 0.404181i
\(628\) 5.68129 + 4.88105i 0.226708 + 0.194775i
\(629\) 15.9059i 0.634208i
\(630\) 0 0
\(631\) 8.53598i 0.339812i 0.985460 + 0.169906i \(0.0543464\pi\)
−0.985460 + 0.169906i \(0.945654\pi\)
\(632\) 34.3859 25.4433i 1.36780 1.01208i
\(633\) 3.29008 + 2.25585i 0.130769 + 0.0896621i
\(634\) 19.4399 20.9685i 0.772058 0.832765i
\(635\) 0 0
\(636\) −1.25725 0.339325i −0.0498532 0.0134551i
\(637\) 0.689706 2.57402i 0.0273272 0.101986i
\(638\) 18.5520 11.6676i 0.734481 0.461925i
\(639\) 0.957796 6.13508i 0.0378898 0.242700i
\(640\) 0 0
\(641\) 5.32828 + 9.22886i 0.210454 + 0.364518i 0.951857 0.306543i \(-0.0991723\pi\)
−0.741402 + 0.671061i \(0.765839\pi\)
\(642\) 18.0024 4.06683i 0.710500 0.160505i
\(643\) 0.317383 0.0850425i 0.0125164 0.00335375i −0.252555 0.967582i \(-0.581271\pi\)
0.265072 + 0.964229i \(0.414604\pi\)
\(644\) 11.0172 + 16.1308i 0.434137 + 0.635642i
\(645\) 0 0
\(646\) −4.96324 16.0670i −0.195276 0.632149i
\(647\) −1.08970 + 1.08970i −0.0428405 + 0.0428405i −0.728203 0.685362i \(-0.759644\pi\)
0.685362 + 0.728203i \(0.259644\pi\)
\(648\) −4.96511 + 24.9669i −0.195048 + 0.980794i
\(649\) 39.6684i 1.55712i
\(650\) 0 0
\(651\) 6.19787 + 7.24054i 0.242914 + 0.283779i
\(652\) 3.54415 18.8157i 0.138800 0.736881i
\(653\) −5.92931 22.1285i −0.232032 0.865954i −0.979465 0.201617i \(-0.935380\pi\)
0.747433 0.664337i \(-0.231286\pi\)
\(654\) −18.5515 + 29.3794i −0.725423 + 1.14882i
\(655\) 0 0
\(656\) −20.2322 25.2852i −0.789934 0.987221i
\(657\) −30.7542 + 22.4483i −1.19983 + 0.875792i
\(658\) −0.459959 0.731356i −0.0179311 0.0285112i
\(659\) −6.24819 10.8222i −0.243395 0.421572i 0.718284 0.695750i \(-0.244928\pi\)
−0.961679 + 0.274177i \(0.911594\pi\)
\(660\) 0 0
\(661\) −2.84081 + 4.92043i −0.110495 + 0.191382i −0.915970 0.401247i \(-0.868577\pi\)
0.805475 + 0.592630i \(0.201910\pi\)
\(662\) −27.6050 + 1.04424i −1.07290 + 0.0405854i
\(663\) 15.8095 23.0576i 0.613991 0.895483i
\(664\) 43.4188 + 6.48974i 1.68498 + 0.251851i
\(665\) 0 0
\(666\) −3.18078 21.8219i −0.123253 0.845582i
\(667\) −12.0512 + 12.0512i −0.466623 + 0.466623i
\(668\) 4.82128 5.61173i 0.186541 0.217124i
\(669\) −9.62026 + 27.2625i −0.371941 + 1.05403i
\(670\) 0 0
\(671\) −27.8734 16.0927i −1.07604 0.621252i
\(672\) 23.2492 9.10897i 0.896858 0.351386i
\(673\) 28.9286 + 7.75138i 1.11511 + 0.298794i 0.768905 0.639363i \(-0.220802\pi\)
0.346209 + 0.938157i \(0.387469\pi\)
\(674\) −13.9473 3.17736i −0.537229 0.122387i
\(675\) 0 0
\(676\) −26.7190 12.8402i −1.02765 0.493854i
\(677\) 0.688499 2.56951i 0.0264612 0.0987544i −0.951432 0.307858i \(-0.900388\pi\)
0.977894 + 0.209103i \(0.0670545\pi\)
\(678\) −0.329414 + 1.05956i −0.0126511 + 0.0406922i
\(679\) −4.03213 + 6.98386i −0.154739 + 0.268016i
\(680\) 0 0
\(681\) −8.23384 2.90551i −0.315521 0.111339i
\(682\) −9.41008 4.96844i −0.360331 0.190251i
\(683\) −31.3443 31.3443i −1.19936 1.19936i −0.974359 0.224999i \(-0.927762\pi\)
−0.224999 0.974359i \(-0.572238\pi\)
\(684\) 10.0223 + 21.0505i 0.383212 + 0.804887i
\(685\) 0 0
\(686\) 7.98360 + 25.8446i 0.304815 + 0.986750i
\(687\) 11.0825 + 7.59873i 0.422822 + 0.289909i
\(688\) 16.9549 + 12.4704i 0.646400 + 0.475430i
\(689\) −1.71721 0.991433i −0.0654206 0.0377706i
\(690\) 0 0
\(691\) 1.44150 0.832251i 0.0548373 0.0316603i −0.472331 0.881421i \(-0.656587\pi\)
0.527168 + 0.849761i \(0.323254\pi\)
\(692\) 15.3534 + 43.7622i 0.583647 + 1.66359i
\(693\) −26.4910 + 2.84357i −1.00631 + 0.108018i
\(694\) −7.89322 + 34.6479i −0.299623 + 1.31522i
\(695\) 0 0
\(696\) 11.5647 + 18.4626i 0.438359 + 0.699825i
\(697\) 23.9299 6.41200i 0.906410 0.242872i
\(698\) −24.5288 + 0.927871i −0.928428 + 0.0351204i
\(699\) 7.72874 6.61576i 0.292328 0.250231i
\(700\) 0 0
\(701\) −6.95642 −0.262740 −0.131370 0.991333i \(-0.541938\pi\)
−0.131370 + 0.991333i \(0.541938\pi\)
\(702\) −17.0788 + 34.7952i −0.644598 + 1.31326i
\(703\) −14.2818 14.2818i −0.538649 0.538649i
\(704\) −20.3898 + 19.0125i −0.768471 + 0.716562i
\(705\) 0 0
\(706\) 30.9695 + 28.7119i 1.16555 + 1.08059i
\(707\) −2.84905 10.6328i −0.107150 0.399888i
\(708\) 39.4323 + 0.0715410i 1.48196 + 0.00268868i
\(709\) 41.5369 23.9814i 1.55995 0.900639i 0.562693 0.826666i \(-0.309765\pi\)
0.997260 0.0739729i \(-0.0235678\pi\)
\(710\) 0 0
\(711\) −16.3529 42.3208i −0.613283 1.58715i
\(712\) 10.1589 1.15729i 0.380722 0.0433712i
\(713\) 7.99314 + 2.14175i 0.299345 + 0.0802093i
\(714\) −0.756727 + 19.0876i −0.0283198 + 0.714337i
\(715\) 0 0
\(716\) 11.3008 + 16.5461i 0.422332 + 0.618357i
\(717\) 2.50856 3.65864i 0.0936838 0.136634i
\(718\) −32.6900 17.2600i −1.21998 0.644138i
\(719\) 27.9555 1.04257 0.521283 0.853384i \(-0.325454\pi\)
0.521283 + 0.853384i \(0.325454\pi\)
\(720\) 0 0
\(721\) 3.48106 0.129641
\(722\) −4.87834 2.57572i −0.181553 0.0958584i
\(723\) 10.3054 + 21.5443i 0.383261 + 0.801243i
\(724\) −22.5385 32.9998i −0.837638 1.22643i
\(725\) 0 0
\(726\) 2.48058 1.30397i 0.0920629 0.0483950i
\(727\) 32.2018 + 8.62843i 1.19430 + 0.320011i 0.800583 0.599222i \(-0.204523\pi\)
0.393714 + 0.919233i \(0.371190\pi\)
\(728\) 37.7766 4.30345i 1.40009 0.159496i
\(729\) 24.1380 + 12.0978i 0.893999 + 0.448068i
\(730\) 0 0
\(731\) −13.9443 + 8.05077i −0.515750 + 0.297768i
\(732\) 16.0472 27.6785i 0.593122 1.02303i
\(733\) 0.439391 + 1.63983i 0.0162293 + 0.0605685i 0.973566 0.228408i \(-0.0733519\pi\)
−0.957336 + 0.288976i \(0.906685\pi\)
\(734\) −23.8493 22.1107i −0.880293 0.816121i
\(735\) 0 0
\(736\) 12.1759 17.9377i 0.448811 0.661192i
\(737\) −1.83567 1.83567i −0.0676177 0.0676177i
\(738\) −31.5482 + 13.5823i −1.16131 + 0.499971i
\(739\) 48.7588 1.79362 0.896811 0.442414i \(-0.145878\pi\)
0.896811 + 0.442414i \(0.145878\pi\)
\(740\) 0 0
\(741\) 6.50802 + 34.8987i 0.239078 + 1.28204i
\(742\) 1.35390 0.0512150i 0.0497031 0.00188016i
\(743\) −20.5756 + 5.51322i −0.754846 + 0.202260i −0.615667 0.788007i \(-0.711113\pi\)
−0.139179 + 0.990267i \(0.544446\pi\)
\(744\) 4.95584 9.34512i 0.181690 0.342609i
\(745\) 0 0
\(746\) −4.17530 + 18.3278i −0.152868 + 0.671028i
\(747\) 18.8452 42.5803i 0.689511 1.55793i
\(748\) −7.06065 20.1253i −0.258163 0.735852i
\(749\) −16.6294 + 9.60100i −0.607626 + 0.350813i
\(750\) 0 0
\(751\) −30.0558 17.3527i −1.09675 0.633209i −0.161385 0.986892i \(-0.551596\pi\)
−0.935366 + 0.353682i \(0.884929\pi\)
\(752\) −0.568132 + 0.772440i −0.0207177 + 0.0281680i
\(753\) 1.53813 19.8241i 0.0560527 0.722431i
\(754\) 9.79065 + 31.6944i 0.356554 + 1.15424i
\(755\) 0 0
\(756\) −2.77887 26.3385i −0.101067 0.957921i
\(757\) −21.6732 21.6732i −0.787727 0.787727i 0.193394 0.981121i \(-0.438050\pi\)
−0.981121 + 0.193394i \(0.938050\pi\)
\(758\) 15.9648 + 8.42926i 0.579867 + 0.306165i
\(759\) −17.5735 + 15.0428i −0.637878 + 0.546020i
\(760\) 0 0
\(761\) 13.2539 22.9564i 0.480452 0.832167i −0.519297 0.854594i \(-0.673806\pi\)
0.999748 + 0.0224270i \(0.00713933\pi\)
\(762\) −8.99685 + 2.03243i −0.325921 + 0.0736271i
\(763\) 9.35647 34.9188i 0.338727 1.26415i
\(764\) −28.2472 13.5746i −1.02195 0.491112i
\(765\) 0 0
\(766\) 48.4453 + 11.0364i 1.75040 + 0.398763i
\(767\) 57.9964 + 15.5401i 2.09413 + 0.561120i
\(768\) −18.8626 20.3028i −0.680646 0.732613i
\(769\) 10.2142 + 5.89716i 0.368333 + 0.212657i 0.672730 0.739888i \(-0.265122\pi\)
−0.304397 + 0.952545i \(0.598455\pi\)
\(770\) 0 0
\(771\) −24.9833 + 4.65897i −0.899753 + 0.167789i
\(772\) 28.1289 32.7407i 1.01238 1.17836i
\(773\) −7.36402 + 7.36402i −0.264865 + 0.264865i −0.827027 0.562162i \(-0.809970\pi\)
0.562162 + 0.827027i \(0.309970\pi\)
\(774\) 17.5209 13.8337i 0.629775 0.497242i
\(775\) 0 0
\(776\) 8.85176 + 1.32306i 0.317760 + 0.0474950i
\(777\) 9.90045 + 20.6978i 0.355177 + 0.742529i
\(778\) 25.2403 0.954788i 0.904910 0.0342308i
\(779\) −15.7293 + 27.2439i −0.563560 + 0.976115i
\(780\) 0 0
\(781\) −3.60645 6.24656i −0.129049 0.223520i
\(782\) 8.82982 + 14.0398i 0.315754 + 0.502062i
\(783\) 22.1337 6.63624i 0.790992 0.237160i
\(784\) 1.57789 1.26257i 0.0563533 0.0450916i
\(785\) 0 0
\(786\) 13.9736 + 26.5823i 0.498422 + 0.948158i
\(787\) 7.95656 + 29.6943i 0.283621 + 1.05849i 0.949841 + 0.312733i \(0.101244\pi\)
−0.666220 + 0.745755i \(0.732089\pi\)
\(788\) −4.94570 + 26.2565i −0.176183 + 0.935347i
\(789\) 1.05728 2.99619i 0.0376402 0.106667i
\(790\) 0 0
\(791\) 1.15443i 0.0410468i
\(792\) 13.7114 + 26.1987i 0.487212 + 0.930931i
\(793\) 34.4474 34.4474i 1.22326 1.22326i
\(794\) −13.5207 43.7693i −0.479832 1.55332i
\(795\) 0 0
\(796\) 2.32456 + 3.40350i 0.0823918 + 0.120634i
\(797\) 17.8210 4.77511i 0.631251 0.169143i 0.0710135 0.997475i \(-0.477377\pi\)
0.560237 + 0.828332i \(0.310710\pi\)
\(798\) −16.4593 17.8182i −0.582652 0.630758i
\(799\) −0.366781 0.635283i −0.0129758 0.0224747i
\(800\) 0 0
\(801\) 1.67281 10.7151i 0.0591059 0.378598i
\(802\) −36.5386 + 22.9796i −1.29022 + 0.811438i
\(803\) −11.4473 + 42.7219i −0.403967 + 1.50762i
\(804\) 1.82805 1.82143i 0.0644705 0.0642370i
\(805\) 0 0
\(806\) 10.9504 11.8114i 0.385711 0.416040i
\(807\) −1.79582 + 23.1453i −0.0632158 + 0.814752i
\(808\) −9.82088 + 7.26681i −0.345497 + 0.255646i
\(809\) 45.3459i 1.59428i −0.603798 0.797138i \(-0.706347\pi\)
0.603798 0.797138i \(-0.293653\pi\)
\(810\) 0 0
\(811\) 32.6505i 1.14652i 0.819375 + 0.573258i \(0.194321\pi\)
−0.819375 + 0.573258i \(0.805679\pi\)
\(812\) −17.1924 14.7707i −0.603333 0.518350i
\(813\) −2.57143 + 33.1417i −0.0901840 + 1.16233i
\(814\) −18.7853 17.4159i −0.658426 0.610428i
\(815\) 0 0
\(816\) 20.0182 6.98234i 0.700777 0.244431i
\(817\) 5.29182 19.7493i 0.185137 0.690942i
\(818\) 12.3617 + 19.6557i 0.432217 + 0.687244i
\(819\) 6.22045 39.8446i 0.217360 1.39228i
\(820\) 0 0
\(821\) −14.0278 24.2968i −0.489572 0.847964i 0.510356 0.859963i \(-0.329514\pi\)
−0.999928 + 0.0119995i \(0.996180\pi\)
\(822\) −16.6446 + 15.3752i −0.580548 + 0.536272i
\(823\) −33.5290 + 8.98407i −1.16875 + 0.313165i −0.790454 0.612521i \(-0.790156\pi\)
−0.378293 + 0.925686i \(0.623489\pi\)
\(824\) −1.41589 3.59463i −0.0493250 0.125225i
\(825\) 0 0
\(826\) −39.1985 + 12.1087i −1.36389 + 0.421316i
\(827\) −0.244245 + 0.244245i −0.00849323 + 0.00849323i −0.711341 0.702847i \(-0.751912\pi\)
0.702847 + 0.711341i \(0.251912\pi\)
\(828\) −14.9216 17.4960i −0.518562 0.608029i
\(829\) 24.5821i 0.853771i 0.904306 + 0.426885i \(0.140389\pi\)
−0.904306 + 0.426885i \(0.859611\pi\)
\(830\) 0 0
\(831\) 4.30749 12.2069i 0.149425 0.423451i
\(832\) −19.8092 37.2587i −0.686759 1.29171i
\(833\) 0.400133 + 1.49332i 0.0138638 + 0.0517404i
\(834\) −38.8302 + 20.4120i −1.34458 + 0.706811i
\(835\) 0 0
\(836\) 24.4101 + 11.7307i 0.844243 + 0.405713i
\(837\) −8.16394 7.69597i −0.282187 0.266012i
\(838\) −11.9962 + 7.54458i −0.414402 + 0.260623i
\(839\) −4.08967 7.08351i −0.141191 0.244550i 0.786754 0.617266i \(-0.211760\pi\)
−0.927945 + 0.372716i \(0.878426\pi\)
\(840\) 0 0
\(841\) −4.61225 + 7.98866i −0.159043 + 0.275471i
\(842\) −0.393812 10.4106i −0.0135717 0.358774i
\(843\) −10.4566 21.8605i −0.360144 0.752914i
\(844\) 0.347994 + 4.59313i 0.0119785 + 0.158102i
\(845\) 0 0
\(846\) 0.630242 + 0.798224i 0.0216682 + 0.0274435i
\(847\) −2.06171 + 2.06171i −0.0708410 + 0.0708410i
\(848\) −0.603573 1.37724i −0.0207268 0.0472946i
\(849\) 3.16399 0.590032i 0.108588 0.0202498i
\(850\) 0 0
\(851\) 17.2517 + 9.96030i 0.591382 + 0.341435i
\(852\) 6.21589 3.57372i 0.212953 0.122434i
\(853\) −26.9342 7.21700i −0.922210 0.247105i −0.233680 0.972314i \(-0.575077\pi\)
−0.688530 + 0.725208i \(0.741743\pi\)
\(854\) −7.39374 + 32.4554i −0.253009 + 1.11060i
\(855\) 0 0
\(856\) 16.6781 + 13.2668i 0.570047 + 0.453451i
\(857\) 11.3944 42.5245i 0.389226 1.45261i −0.442171 0.896931i \(-0.645792\pi\)
0.831397 0.555679i \(-0.187542\pi\)
\(858\) 9.92133 + 43.9182i 0.338708 + 1.49934i
\(859\) −1.47011 + 2.54630i −0.0501593 + 0.0868785i −0.890015 0.455931i \(-0.849306\pi\)
0.839856 + 0.542810i \(0.182640\pi\)
\(860\) 0 0
\(861\) 27.1481 23.2387i 0.925206 0.791972i
\(862\) −10.8602 + 20.5689i −0.369900 + 0.700581i
\(863\) −7.13386 7.13386i −0.242839 0.242839i 0.575184 0.818024i \(-0.304930\pi\)
−0.818024 + 0.575184i \(0.804930\pi\)
\(864\) −26.0675 + 13.5825i −0.886835 + 0.462086i
\(865\) 0 0
\(866\) 7.22536 2.23197i 0.245528 0.0758455i
\(867\) 1.02309 13.1860i 0.0347458 0.447819i
\(868\) −2.03716 + 10.8152i −0.0691459 + 0.367092i
\(869\) −45.6419 26.3514i −1.54830 0.893909i
\(870\) 0 0
\(871\) 3.40292 1.96468i 0.115304 0.0665706i
\(872\) −39.8638 + 4.54122i −1.34996 + 0.153785i
\(873\) 3.84196 8.68081i 0.130031 0.293801i
\(874\) −20.5346 4.67802i −0.694592 0.158237i
\(875\) 0 0
\(876\) −42.4470 11.4562i −1.43415 0.387070i
\(877\) 22.5386 6.03921i 0.761076 0.203930i 0.142650 0.989773i \(-0.454438\pi\)
0.618426 + 0.785843i \(0.287771\pi\)
\(878\) −1.96839 52.0354i −0.0664298 1.75611i
\(879\) 8.37619 + 44.9166i 0.282522 + 1.51500i
\(880\) 0 0
\(881\) −42.4590 −1.43048 −0.715241 0.698878i \(-0.753683\pi\)
−0.715241 + 0.698878i \(0.753683\pi\)
\(882\) −0.847586 1.96873i −0.0285397 0.0662905i
\(883\) −7.64008 7.64008i −0.257109 0.257109i 0.566768 0.823877i \(-0.308193\pi\)
−0.823877 + 0.566768i \(0.808193\pi\)
\(884\) 32.1897 2.43882i 1.08266 0.0820265i
\(885\) 0 0
\(886\) −11.6388 + 12.5540i −0.391014 + 0.421759i
\(887\) −1.25685 4.69064i −0.0422010 0.157496i 0.941610 0.336706i \(-0.109313\pi\)
−0.983811 + 0.179209i \(0.942646\pi\)
\(888\) 17.3462 18.6421i 0.582099 0.625589i
\(889\) 8.31067 4.79817i 0.278731 0.160925i
\(890\) 0 0
\(891\) 30.6490 6.65649i 1.02678 0.223001i
\(892\) −31.5002 + 11.0514i −1.05470 + 0.370028i
\(893\) 0.899750 + 0.241087i 0.0301090 + 0.00806768i
\(894\) −3.15531 6.00241i −0.105529 0.200751i
\(895\) 0 0
\(896\) 25.0112 + 14.3447i 0.835567 + 0.479223i
\(897\) −15.1086 31.5860i −0.504463 1.05463i
\(898\) 0.692186 1.31098i 0.0230985 0.0437480i
\(899\) −9.60189 −0.320241
\(900\) 0 0
\(901\) 1.15036 0.0383241
\(902\) −18.6290 + 35.2828i −0.620277 + 1.17479i
\(903\) −13.1342 + 19.1557i −0.437079 + 0.637463i
\(904\) −1.19210 + 0.469556i −0.0396485 + 0.0156172i
\(905\) 0 0
\(906\) 18.4175 + 0.730157i 0.611879 + 0.0242579i
\(907\) −58.1113 15.5709i −1.92955 0.517022i −0.977399 0.211402i \(-0.932197\pi\)
−0.952154 0.305620i \(-0.901136\pi\)
\(908\) −3.33774 9.51369i −0.110767 0.315723i
\(909\) 4.67053 + 12.0872i 0.154912 + 0.400906i
\(910\) 0 0
\(911\) 2.72513 1.57335i 0.0902875 0.0521275i −0.454176 0.890912i \(-0.650066\pi\)
0.544464 + 0.838784i \(0.316733\pi\)
\(912\) −11.7049 + 24.2437i −0.387587 + 0.802789i
\(913\) −13.9994 52.2465i −0.463313 1.72911i
\(914\) −13.0834 + 14.1122i −0.432761 + 0.466789i
\(915\) 0 0
\(916\) 1.17220 + 15.4717i 0.0387306 + 0.511200i
\(917\) −22.0936 22.0936i −0.729594 0.729594i
\(918\) −1.51240 22.4361i −0.0499168 0.740502i
\(919\) −31.3326 −1.03357 −0.516783 0.856116i \(-0.672871\pi\)
−0.516783 + 0.856116i \(0.672871\pi\)
\(920\) 0 0
\(921\) 25.9441 22.2080i 0.854887 0.731779i
\(922\) 0.612016 + 16.1790i 0.0201557 + 0.532826i
\(923\) 10.5455 2.82565i 0.347109 0.0930075i
\(924\) −21.7146 21.7935i −0.714357 0.716954i
\(925\) 0 0
\(926\) −6.47871 1.47593i −0.212904 0.0485020i
\(927\) −4.07439 + 0.437349i −0.133820 + 0.0143644i
\(928\) −8.25976 + 23.7611i −0.271140 + 0.779998i
\(929\) −10.8495 + 6.26399i −0.355962 + 0.205515i −0.667308 0.744782i \(-0.732554\pi\)
0.311346 + 0.950297i \(0.399220\pi\)
\(930\) 0 0
\(931\) −1.70012 0.981567i −0.0557193 0.0321696i
\(932\) 11.5444 + 2.17452i 0.378150 + 0.0712288i
\(933\) 1.15710 + 0.793368i 0.0378817 + 0.0259737i
\(934\) −48.8066 + 15.0768i −1.59700 + 0.493327i
\(935\) 0 0
\(936\) −43.6747 + 9.78307i −1.42755 + 0.319770i
\(937\) 27.1824 + 27.1824i 0.888011 + 0.888011i 0.994332 0.106321i \(-0.0339070\pi\)
−0.106321 + 0.994332i \(0.533907\pi\)
\(938\) −1.25359 + 2.37425i −0.0409310 + 0.0775221i
\(939\) −10.3373 3.64778i −0.337346 0.119041i
\(940\) 0 0
\(941\) 12.5030 21.6558i 0.407585 0.705957i −0.587034 0.809562i \(-0.699704\pi\)
0.994619 + 0.103605i \(0.0330378\pi\)
\(942\) 8.75988 + 2.72342i 0.285412 + 0.0887337i
\(943\) 8.03043 29.9700i 0.261507 0.975956i
\(944\) 28.4475 + 35.5522i 0.925886 + 1.15713i
\(945\) 0 0
\(946\) 5.75996 25.2838i 0.187273 0.822048i
\(947\) −58.2038 15.5957i −1.89137 0.506791i −0.998392 0.0566928i \(-0.981944\pi\)
−0.892979 0.450098i \(-0.851389\pi\)
\(948\) 26.2769 45.3228i 0.853433 1.47201i
\(949\) −57.9762 33.4726i −1.88199 1.08657i
\(950\) 0 0
\(951\) 11.6533 33.0240i 0.377885 1.07088i
\(952\) −17.7316 + 13.1202i −0.574683 + 0.425228i
\(953\) −7.86673 + 7.86673i −0.254828 + 0.254828i −0.822947 0.568118i \(-0.807672\pi\)
0.568118 + 0.822947i \(0.307672\pi\)
\(954\) −1.57823 + 0.230044i −0.0510970 + 0.00744794i
\(955\) 0 0
\(956\) 5.10766 0.386977i 0.165194 0.0125157i
\(957\) 15.1787 22.1376i 0.490658 0.715606i
\(958\) 0.648166 + 17.1346i 0.0209413 + 0.553595i
\(959\) 11.7875 20.4166i 0.380638 0.659285i
\(960\) 0 0
\(961\) −13.1689 22.8092i −0.424804 0.735782i
\(962\) 32.8218 20.6420i 1.05822 0.665526i
\(963\) 18.2576 13.3267i 0.588342 0.429447i
\(964\) −11.9448 + 24.8556i −0.384715 + 0.800546i
\(965\) 0 0
\(966\) 20.2289 + 12.7735i 0.650854 + 0.410981i
\(967\) −4.17163 15.5687i −0.134151 0.500657i −1.00000 0.000352232i \(-0.999888\pi\)
0.865849 0.500305i \(-0.166779\pi\)
\(968\) 2.96755 + 1.29039i 0.0953808 + 0.0414747i
\(969\) −13.3930 15.6462i −0.430246 0.502627i
\(970\) 0 0
\(971\) 51.3038i 1.64642i −0.567739 0.823209i \(-0.692182\pi\)
0.567739 0.823209i \(-0.307818\pi\)
\(972\) 6.56160 + 30.4786i 0.210463 + 0.977602i
\(973\) 32.2733 32.2733i 1.03464 1.03464i
\(974\) 24.0050 7.41533i 0.769169 0.237602i
\(975\) 0 0
\(976\) 36.5217 5.56601i 1.16903 0.178164i
\(977\) −1.37730 + 0.369048i −0.0440639 + 0.0118069i −0.280784 0.959771i \(-0.590594\pi\)
0.236720 + 0.971578i \(0.423928\pi\)
\(978\) −5.16719 22.8733i −0.165229 0.731408i
\(979\) −6.29876 10.9098i −0.201309 0.348678i
\(980\) 0 0
\(981\) −6.56414 + 42.0461i −0.209577 + 1.34243i
\(982\) −0.0950129 0.151075i −0.00303198 0.00482099i
\(983\) 11.8993 44.4088i 0.379529 1.41642i −0.467085 0.884212i \(-0.654696\pi\)
0.846614 0.532208i \(-0.178638\pi\)
\(984\) −35.0392 18.5817i −1.11701 0.592364i
\(985\) 0 0
\(986\) −14.1128 13.0840i −0.449444 0.416680i
\(987\) −0.872705 0.598374i −0.0277785 0.0190464i
\(988\) −26.7132 + 31.0929i −0.849861 + 0.989196i
\(989\) 20.1657i 0.641231i
\(990\) 0 0
\(991\) 47.4822i 1.50832i −0.656689 0.754161i \(-0.728044\pi\)
0.656689 0.754161i \(-0.271956\pi\)
\(992\) 11.9967 2.29537i 0.380895 0.0728780i
\(993\) −30.5212 + 14.5993i −0.968562 + 0.463296i
\(994\) −5.07169 + 5.47048i −0.160864 + 0.173513i
\(995\) 0 0
\(996\) 51.9608 13.8219i 1.64644 0.437962i
\(997\) −14.6874 + 54.8142i −0.465156 + 1.73598i 0.191218 + 0.981548i \(0.438756\pi\)
−0.656373 + 0.754436i \(0.727910\pi\)
\(998\) −48.5722 + 30.5477i −1.53753 + 0.966971i
\(999\) −14.1883 22.9818i −0.448899 0.727111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bf.e.607.28 128
4.3 odd 2 inner 900.2.bf.e.607.1 128
5.2 odd 4 180.2.x.a.103.12 yes 128
5.3 odd 4 inner 900.2.bf.e.643.21 128
5.4 even 2 180.2.x.a.67.5 yes 128
9.7 even 3 inner 900.2.bf.e.7.15 128
15.2 even 4 540.2.y.a.523.21 128
15.14 odd 2 540.2.y.a.307.28 128
20.3 even 4 inner 900.2.bf.e.643.15 128
20.7 even 4 180.2.x.a.103.18 yes 128
20.19 odd 2 180.2.x.a.67.32 yes 128
36.7 odd 6 inner 900.2.bf.e.7.21 128
45.2 even 12 540.2.y.a.343.1 128
45.7 odd 12 180.2.x.a.43.32 yes 128
45.29 odd 6 540.2.y.a.127.15 128
45.34 even 6 180.2.x.a.7.18 yes 128
45.43 odd 12 inner 900.2.bf.e.43.1 128
60.47 odd 4 540.2.y.a.523.15 128
60.59 even 2 540.2.y.a.307.1 128
180.7 even 12 180.2.x.a.43.5 yes 128
180.43 even 12 inner 900.2.bf.e.43.28 128
180.47 odd 12 540.2.y.a.343.28 128
180.79 odd 6 180.2.x.a.7.12 128
180.119 even 6 540.2.y.a.127.21 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.x.a.7.12 128 180.79 odd 6
180.2.x.a.7.18 yes 128 45.34 even 6
180.2.x.a.43.5 yes 128 180.7 even 12
180.2.x.a.43.32 yes 128 45.7 odd 12
180.2.x.a.67.5 yes 128 5.4 even 2
180.2.x.a.67.32 yes 128 20.19 odd 2
180.2.x.a.103.12 yes 128 5.2 odd 4
180.2.x.a.103.18 yes 128 20.7 even 4
540.2.y.a.127.15 128 45.29 odd 6
540.2.y.a.127.21 128 180.119 even 6
540.2.y.a.307.1 128 60.59 even 2
540.2.y.a.307.28 128 15.14 odd 2
540.2.y.a.343.1 128 45.2 even 12
540.2.y.a.343.28 128 180.47 odd 12
540.2.y.a.523.15 128 60.47 odd 4
540.2.y.a.523.21 128 15.2 even 4
900.2.bf.e.7.15 128 9.7 even 3 inner
900.2.bf.e.7.21 128 36.7 odd 6 inner
900.2.bf.e.43.1 128 45.43 odd 12 inner
900.2.bf.e.43.28 128 180.43 even 12 inner
900.2.bf.e.607.1 128 4.3 odd 2 inner
900.2.bf.e.607.28 128 1.1 even 1 trivial
900.2.bf.e.643.15 128 20.3 even 4 inner
900.2.bf.e.643.21 128 5.3 odd 4 inner